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Abstract: This article focuses on the analysis of dynamics emerging in a network of Hodgkin–Huxley
reaction–diffusion equations. The network has three levels. The three neurons in level 1 receive a
periodic input but do not receive inputs from other neurons. The three neurons in level 2 receive
inputs from one specific neuron in level 1 and all neurons in level 3. The neurons in level 3 (all
other neurons) receive inputs from all other neurons in levels 2 and 3. Furthermore, the right-hand
side of pre-synaptic neurons is connected to the left-hand side of the post-synaptic neurons. The
synchronization phenomenon is observed for neurons in level 3, even though the system is initiated
with different functions. As far as we know, it is the first time that evidence of the synchronization
phenomenon is provided for spatially extended Hodgkin–Huxley equations, which are periodically
forced at three different sites and embedded in such a hierarchical network with space-dependent
coupling interactions.
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1. Introduction

The main objective of this article is to provide some insights about the qualitative anal-
ysis of a non-autonomous neuronal network of Hodgkin–Huxley (HH) reaction–diffusion
(RD) equations. The model under consideration writes as follows:

Vit = ḡNam3
i hi(ENa − Vi) + ḡKn4

i (EK − Vi) + ḡL(EL − Vi) + Vixx

+ Hi(V1, . . . , VN) + Ii(x, t), i ∈ {1, . . . , N}
nit = αn(Vi)(1 − ni)− βn(Vi)ni

mit = αm(Vi)(1 − mi)− βm(Vi)mi

hit = αh(Vi)(1 − hi)− βh(Vi)hi

(1)

The dynamics of each individual neuron are described by a standard HH equation
containing ionic (sodium, potassium, leakage) fluxes and a spatial diffusion term. As a
reminder, in this setting, V stands for the voltage between the exterior and the interior of
the cell, and n, m, h stand for the gating variables. We refer, for example, to [1–3] and the
references therein for details about the HH-RD systems. The functions and parameters on
the above equation are as follows:
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αn(V) = 0.01
−V − 55

exp(−5.5 − 0.1V)− 1
, βn(V) = 0.125

exp(−(V + 65))
80

,

αm(V) = 0.1
−V − 40

exp(−4 − 0.1V)− 1
, βm(V) = 4

exp(−(V + 65))
18

,

αh(V) = 0.07
exp(−(V + 65))

20
, βh(V) =

1
1 + exp(−0.1V − 3.5)

.

These values correspond to the ones found in [3]. We recall that the HH equations are
of the voltage-gated type: when the values of m, n, and h are close to 1, the corresponding
ionic fluxes conductances are close to their maximal values. On the opposite, if they
are close to zero, there is almost no ionic currents flowing trough the membrane. One
of the most important contributions of the Hodgkin and Huxley was to fit the α and
β functions with the available data thanks to the voltage clamp technique. We refer to
the original paper [4] and, for example, to the textbooks [2,5] for more details. As for the
space domain, we consider a one-dimensional interval Ω = (a, b). We assume Neumann
boundary conditions. Each neuron is embedded in a network and receives inputs from its
pre-synaptic neurons trough the coupling term

Hi(V1, . . . , VN) =
N

∑
j=0

cji(x)(S − Vi)Γ(Vj(b − x)), (2)

with,

Γ(V) =
1

1 + e−λ(V−θ)
, λ = 20, θ = 10.

These type of coupling functions have been used, for example, in [6,7] in the context of
the Hindmarsh–Rose ODE networks. It was later used in [3] in the networks of HH PDEs.
Since Γ(V) is a sigmoid function, the pre-synaptic neurons Vj of Vi will have an effect only
when they spike. The parameter S is set to

S = 100,

which means that when there is enough pre-synaptic activity, the neuron Vi will tend to S;
this corresponds to depolarization and, eventually, a spike. This means that in our network,
all neurons have an excitatory effect. As we deal with spatial extended neurons, we need
to specify where the connectivity arises with respect to the spatial position. We assume
that the neurons are connected from the right-hand side of the pre-synaptic neuron j to the
left-hand side of the post-synaptic neuron i. This is to model the fact that action potential
travels through the axon in one direction, and kicks the post-synaptic neuron through
synaptic connections. As a consequence, the function c, which stands for the coupling
strength, is generally set to zero everywhere except in the left-hand part of size l, (a, a + l)
of the neuron. We assume that c has the following expression:

cij(x) =
{

c ∀x ∈ (a, a + l),
0 ∀x otherwise,

and we use the term Vj(b − x) to express that only the right-hand side of the pre-synaptic
neuron j connects to the left-hand side of the neuron i. Finally, the network topology
is set as follows. We assume that there are three levels in the network that separate the
network into three sets of neurons. At level 1, the set one contains three neurons that
receive periodic input Ii0(t), Ii1(t), Ii2(t). Each of these three neurons possesses only one
unidirectional connection to a unique neuron in level 2. Therefore, the second set of neurons
also contains three neurons, each of which receives an input from a single neuron in level 1.
The neurons in this second set connect to all the neurons in levels 2 and 3. Finally, the last
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set of neurons, which correspond to level 3, are connected to all of the neurons of levels 2
and 3, but do not receive any inputs from the neurons in level 1. The network topology is
represented in Figure 1.

Figure 1. Network topology in Equation (1). In the graph, vertices represent neurons and edges
represent connections between neurons. There are three sets of neurons that appear in different colors.
The neurons of set 1 are in blue. These neurons receive periodic input currents Ii0 , Ii1 , and Ii2 . Each of
these neurons is connected to a single green neuron. The neurons in green are the neurons of the set 2.
All other neurons are in the set 3. The neurons in sets 2 and 3 are connected in an all to all manner.
The orientated edges indicate synaptic connexions. Their color corrsepond to the group from which
they emerge.

Finally, the functions I(x, t) are set to 0 for all but the three neurons in the set 1. For
these three neurons, indexed by {i0, i1, i2}, a periodic signal is injected at neuron’s left-hand
as follows:

Ii0(x, t) = A cos(at), Ii1(x, t) = A cos(at + b), Ii2 = −Ii0 − Ii1 .

for x < a + l for some small l and 0 elsewhere. The dynamics of the HH ODE have been
widely studied. For the parameters’ values considered here, it is known from numerical
studies that the HH system undergoes a subcritical Hopf bifurcation. For a certain region
around I ≃ 7, we can observe the coexistence of a stable limit cycle and a stable stationary
point. In the next section, we will consider a non-autonomous HH ODE system.

The present article is a theoretical and numerical investigation of Equation (1), a
mathematical model that arises in a neuroscience context. Aside from the standard HH
framework, several specificities of the model, namely, periodic stimulation at three different
locations with specific frequencies, are indeed inspired by recent studies that are worth
mentioning here. The topic of brain dynamics modeling has attracted an increasing interest,
in particular, for the therapeutically potential of non-invasive brain stimulation (NIBS),
see, for example, reference [8] for a summary about the transcranial alternating current
stimulation (tACS) method, its mechanisms, use for cognitive applications, and novel
developments for personalized stimulation. A software, SimNIBS, (current version 4)
has been developed to simulate NIBS on realistic domains representing brain geometries,
see [9]. SimNIBS is based on the finite element method to solve time-dependent Poisson
equations. In the context of EEG data-driven modeling, recent studies have shown the
importance of periodic current sources to retrieve real spatiotemporal signals, see [10,11].
HH neural networks have also been used recently to model the effect of specific frequency
stimulation to help patients suffering from post-traumatic stress disorder (PTSD), see [12].

The remaining part of this article is dived as follows: in Section 2, we provide a
numerical description of the effect of the variation in the frequency of the periodic input
in a single HH equation. In Section 3, we provide a theoretical mathematical framework
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for a description of the solutions of Equation (1) as well as theoretical insights about
the synchronization phenomenon. Section 4 is devoted to the numerical simulations of
Equation (1) and the illustrations of the synchronization phenomenon. Finally, we conclude
in Section 5.

2. Forced ODE HH Equations

The aim of this section is to provide some insights about the response of a single HH
ODE when the frequency of a periodic stimulus I(t) is varied. We consider a single HH
non-autonomous equation as follows:

Vt = ḡNam3h(ENa − V) + ḡKn4(EK − V) + ḡL(EL − V) + I(t),

nt = αn(V)(1 − n)− βn(V)n,

mt = αm(V)(1 − m)− βm(V)m,

ht = αh(V)(1 − h)− βh(V)h,

(3)

with I(t) set to:
I(t) = A cos(at),

with A = 7 and a ∈ (0, 2). The outputs of the simulations are reported in Figures 2–4. A
careful analysis of the numerical simulations lead to the following observations:

• When the frequency of the input is very slow (a = 0.0001), then the behavior is akin
to an autonomous HH with I = 7. For the initial conditions considered here, the
system evolves toward a limit cycle and the frequency observed is intrinsic to the
autonomous HH;

• When the frequency increases, for a range of a ∈ (0.01, 0.4), there are two frequencies
that play a role. There is a recurrent pattern with a frequency of a

2π , which is imposed
by I(t), i.e., the time-periodicity of the global recurrent pattern is given by the peri-
odicity of I(t). Concurrently, within this period, the dynamics of HH appear. For
example, for a = 0.03, the system stays at an equilibrium that varies with I(t), but
there is no spike. For other values, such as a ∈ (0.04465, 0.3) some spikes arise. For
some values, one can observe the appearance of the so-called mixed-mode oscillations
(MMOs), see, for example, references [13–18] and the references therein cited;

• It is worth emphasizing the qualitative difference between the output for a = 0.0001
and a = 0.4. Although the oscillatory frequency is the same, for a = 0.0001, the
oscillations correspond to the intrinsic frequency of the non-autonomous HH. In this
case, one can clearly observe the characteristic difference of the trajectories in a slow
manifold and a jump, see [19] and the references therein cited. For a = 0.4, however,
the frequency is imposed by I(t);

• After a = 0.5, the situation changes, and the period of I(t) becomes smaller than the
one of the output, i.e., there is a periodic pattern, but its period results from a not
straightforward interplay between the drive I(t) and the dynamics of HH. An analysis
of such an interplay was carried out in [20] in the simpler case of a FitzHugh–Nagumo
system that was kicked periodically. For some values of the frequency, the behavior is
more complicated and difficult to predict. The neuron can, in this case, spike or not in
an erratic way. This is the case, for example, for a = 1.156. See also Figure 4, in which
the solution is represented in the (V, m, h) phase space. In this case, the behavior is
difficult to predict: the trajectories can switch between small and large oscillations
in an unpredictable manner. This picture illustrates a geometry appearing in some
slow–fast systems, in which the switching between the small and large oscillations
occurs as canard solutions and in a tiny space region. We refer to [16,21] for such
systems derivated from the FitzHugh–Nagumo system and with three time scales.
Although there is no small parameter in the HH equation, its hidden slow–fast nature
has been studied for a long time, see [5,22,23];

• When the frequency is too high, for example, for a = 2, only small oscillations persist.
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Figure 2. Simulations of Equation (3). This figure illustrates the potential V as a function of time as
the parameter a is increased from 0 to 2 with a current injection I(t) = 7 cos(at).
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Figure 3. Simulations of Equation (3). This figure illustrates the potential V as a function of time
as the parameter a is increased from 0.02 to 0.3 along with the injected current I(t) = 7 cos(at). It
emphasizes how the injected current imposes its frequency.

Figure 4. Solution of Equation (3) in the (V, m, h) phase space for a = 1.159. For this value of a, the
behavior is difficult to predict: the trajectories can switch between small and large oscillations in
an unpredictable manner. Of note, this picture illustrates a geometry appearing in some slow–fast
systems, in which the switching between small and large oscillations occurs as canard solutions and
in a tiny space region. We refer to [16,21] for such systems derivated from the FitzHugh–Nagumo
system and with three time scales. Although there is no small parameter in the HH equation, its
hidden slow–fast nature has been studied for a long time, see [5,22,23].

3. Theoretical Framework and Analysis

In this section, we provide some theoretical results. We start with the existence of
solutions in an appropriate functional space. Let X = C([a, b]) be the space of continuous
functions defined on the real interval [a, b]. The following result holds.
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Theorem 1. Assume that (Vi(0), ni(0), mi(0), hi(0)) ∈ X4N , and that for all x ∈ [a, b], ni(0, x),
mi(0, x) and hi(0, x) ∈ (0, 1). Then,

1. there exists a unique solution of Equation (1) in C([0, ∞, X4N)).
2. For all x ∈ [a, b], for all t ∈ [0,+∞), ni(t, x), mi(t, x) and hi(t, x) ∈ [0, 1],
3. sup

t∈[0,+∞),x∈[a,b]
|Vi(t, x)| < +∞.

Proof. The proof is based on the semigroup generated by the operator u → u′′ with NBC
and the fact that HH ODE has an invariant region. We refer to [3], in which the details have
been provided for a similar system.

Let Ui = (Vi, ni, mi, hi), and let L3 denote the set of indices in level 3 in the network.
The next proposition emphasizes that Ui = Uj∀i, j ∈ L3 is a solution of Equation (1).

Proposition 1. We assume that at t = 0, Ui(x, 0) = Uj(x, 0)∀i, j ∈ L3, then

∀i, j ∈ L3, ∀t ≥ 0, Ui(x, t) = Uj(x, t).

Proof. Since for neurons in level 3, the network topology is of all-to-all type, each single
neuron receives the same inputs.

What is more striking for this non-autonomous network is that the synchronized
solution attracts other initial conditions. The next result provides mathematical insights
about this fact. It indicates that the coupling practically implies an “energy” decrease. Let

Hij =
∫

Ω
(Vi − Vj)

2 +
∫

Ω
(ni − nj)

2 +
∫

Ω
(mi − mj)

2 +
∫

Ω
(hi − hj)

2.

Theorem 2. The following inequality holds:

d
dt
Hij ≤− (N − 3)cΓm

∫
[a,a+l]

|Vi − Vj|2dx

+
∫
[a,a+l]

cS(Γ(Vj(b − x))− Γ(Vi(b − x))(Vi(x)− Vj(x))dx

+ c
∫
[a,a+l]

∣∣∣∣Γ(Vi(b − x)) Vi(x)
Γ(Vj(b − x)) Vj(x)

∣∣∣∣(Vi − Vj)dx

− A
∫

Ω
(ni − nj)

2 − B
∫

Ω
(mi − mj)

2 − C
∫

Ω
(hi − hj)

2

+ D
∫

Ω
(ni − nj)(Vi − Vj)dx + E

∫
Ω
(mi − mj)(Vi − Vj)dx

+ F
∫

Ω
(hi − hj)(Vi − Vj)dx,

where A, B, C, D, E, F are positive constants, and Γm = infi∈{1,...,N},x∈Ω,t∈[0,+∞) Γ(Vi(x, t)).

Proof. Let i, j ∈ l2. We compute

d
dt

( ∫
Ω
(Vi − Vj)

2 +
∫

Ω
(ni − nj)

2 +
∫

Ω
(mi − mj)

2 +
∫

Ω
(hi − hj)

2
)

.

We have

d
dt
(Vi − Vj) =Fi(Vi, ni, mi, hi)− Fj(Vj, nj, mj, hj) + Vixx − Vjxx (4)

+ ∑
k ̸=i

αki(x)(S − Vi)Γ(Vk(b − x))− ∑
k ̸=j

αkj(x)(S − Vj)Γ(Vk(b − x)), (5)
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where Fi denotes the classical reaction term in the first equation of HH. Note that k /∈ L0,
we omit that part for simplicity. We consider different terms successively.

∑
k ̸=i

αki(x)(S − Vi)Γ(Vk(b − x))− ∑
k ̸=j

αkj(x)(S − Vj)Γ(Vk(b − x))

= ∑
k ̸=i,k ̸=j

cki(x)(−Vi + Vj)Γ(Vk(b − x))

+ cji(x)(S − Vi)Γ(Vj(b − x))− cij(x)(S − Vj)Γ(Vi(b − x)).

Next, note that

∑
k ̸=i,k ̸=j

∫
[a,a+l]

cki(x)(−Vi + Vj)Γ(Vk(b − x))(Vi − Vj)

≤ −(N − 3)cΓm

∫
[a,a+l]

|Vi − Vj|2dx.

Also, we have,∫
[a,a+l]

cS(Γ(Vj(b − x))− Γ(Vi(b − x))(Vi(x)− Vj(x))dx

≤ 2
√

lcS||Vi − Vj||L2(a,a+l),

and, ∫
[a,a+l]

c(−Vi)Γ(Vj(b − x)) + cVjΓ(Vi(b − x))(Vi − Vj)

= c
∫
[a,a+l]

∣∣∣∣Γ(Vi(b − x)) Vi(x)
Γ(Vj(b − x)) Vj(x)

∣∣∣∣(Vi − Vj)dx

≤ 2
√

2lc||Vi − Vj||L2(a,a+l).

4. Synchronization in the Forced Network of PDE HH Equations

This section focuses on the illustration of the numerical results obtained from the
simulation of Equation (1). The simulations were carried out using our own C++ program,
with a finite difference scheme in space and a Runge–Kutta 4 method in time. The time
step was 0.01 and the space step was 1. The space domain was Ω = (0, 100), and l = 10.

4.1. Synchronization for c = 1

In this paragraph, the parameter c is set to 1. Figure 5 illustrates the time evolution
of the potential for the three neurons at three distinct locations. The first row, in blue,
corresponds to a neuron in level 1. It receives a periodic input I(t). The second row, in
green, corresponds to the unique neuron connected to the first one. Finally, the third row, in
red, corresponds to a neuron in level 3. The first column corresponds to x = 0, the second
column corresponds to x = 10, and the last column corresponds to x = 12. This illustrates
how the signal is propagated from left to right, and how the small oscillations in the left of
the neuron are filtered. The colors are as those in Figure 1.
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Figure 5. Simulation of Equation (1). This figure illustrates the time evolution of the potential for
three neurons at three distinct locations. The first row, in blue, corresponds to a neuron in level 1. It
receives a periodic input I(t). The second row, in green, corresponds to the unique neuron connected
to the first one. Finally, the third row corresponds to a neuron in level 3. The first column corresponds
to x = 0, the second column corresponds to x = 10, the last column corresponds to x = 12. This
illustrates how the signal is propagated from left to right and how the small oscillations in the left of
the neuron are filtered.

Figures 6 and 7 illustrate the synchronization phenomenon for neurons in level 3.
Although the initial conditions were different, asymptotically, they are the same: the
synchronized manifold attracts some solutions. Figure 6 illustrates the time evolution
of the potential for different neurons at fixed spaces. In each panel, two neurons are
represented. The curves are almost indistinguishable to the naked eye emphasizing the
synchronization phenomenon.

Figure 6. Simulation of Equation (1). This figure illustrates the time evolution of the potential for
different neurons at fixed spaces. In each panel, two neurons are represented. The curves are almost
indistinguishable to the naked eye emphasizing the synchronization phenomenon.
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We observe that the neurons in level 3 (in red in Figure 1) synchronize. In Figure 7,
even if we perturb the initial conditions, we observe identical synchronization.

Figure 7. This figure illustrates a comparison between the eight neurons in level 3. It plots the value
Vi vs. Vj. Equation (1) was simulated over time interval (0, 2000), the time interval (0, 100) was cut
off. The picture illustrates that after t = 100, the system evolves in a identically synchronized state.

4.2. Variation in c and Synchronization

In this part, we discuss the synchronization phenomenon for neurons in level 3 and
how it relates to the variation in the parameter c, which stands for the coupling strength.
We set the initial conditions as follows: the neurons 0 to 6 are set to the initial value
(−70, 0.4, 0.4, 0.4) and the neurons 7 to 13 are set to (45, 0.9, 0.9, 0.9). We then vary the
parameter c from c = 0 (no coupling) to c = 10, and observe the resulting dynamical
behavior. We remark that the synchronization arises in all cases but one has to discriminate
between several different qualitative behaviors. The first observation is that for c ∈ (0, 0.03),
the neurons in level 3 evolve to the same stationary state. So even for c = 0 (no coupling),
the system is asymptotically in a synchronized state because all the neurons in level 3 reach
the same stationary state. There is an external drive at the neurons in level 1, but this does
not influence the neurons in other levels. Of course, as soon as c > 0, there is a coupling.
However, the same observation holds until a bifurcation arises when the parameter c
reaches a value between 0.03 and 0.04. Indeed, for c ∈ (0.04, 10), the system does not
evolve anymore toward a stationary state. We observe, instead, waves traveling along
the x-axis at some frequency. This behavior is induced by the periodic stimulation of the
neurons in level 1. Still, for these values of c, we observe a complete synchronization for the
neurons in level 3. To illustrate this phenomenon, we provided different illustrations of it in
Figures 8 and 9. In Figure 8, the first column corresponds to a value of c = 0 (no coupling),
the second column corresponds to a value of c = 0.1, and the third column corresponds to
a value of c = 1. In Figure 9, the first column corresponds to a value of c = 2 (no coupling),
the second column corresponds to a value of c = 5, and the third column corresponds to
a value of c = 10. In both of these figures, in the first row, we represented the L2 norm

||(V2 − V9)(·, t)|| =
( ∫

Ω(V9(x, t)− V2(x, t))2dx
) 1

2 as a function of time. In the second row,
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we have represented the time evolution of V2(5, t) and V9(5, t) (i.e., the time evolution of
the variable V for neurons 2 and 9, for the fixed-space variable x = 5). And in the third
row, we have represented (V2(5, t), m2(5, t), h2(5, t)) and (V9(5, t), m9(5, t), h9(5, t)) in the
3-dimensional (V, m, h) phase space. For all the values of c considered, the numerical
simulations indicate that the quantity ||(V2 − V9)|| converges to zero as t goes to infinity.
It is worth noting that we observe only two qualitative shapes for this function of t. For
c ∈ (0, 0.03) (only c = 0 is illustrated), we have one typical shape that corresponds to a
synchronized state induced by a convergence toward stationary states. For c ∈ (0.03, 10),
we have another shape that corresponds to a synchronized state with waves propagating
across the space. Indeed, for example, for (0.03, 10) we first observe two spikes (before
t = 20), then an increase and a plateau followed by a decreased in two phases ending at
a value close to zero at around t = 60. A second decrease is observed at around t = 90.
Other details can be observed: at x = 5, the increase from c = 0.1 to c = 1 induces a faster
synchronization between V2 and V9 (see Figure 8 second row, columns 2 and 3). We also
observe the emergence of a supplementary spike around t = 60. For c = 0.1, we notice
a very small oscillation following a large oscillation just before t = 60. The size of this
oscillation increases progressively with the value of c. The increase in c leads to a notable
increase in the frequency of propagated spikes. Two movies illustrating this observation are
included as a Supplementary Materials. Overall, the rows two and three in Figures 8 and 9
illustrate how after a short transient behavior the trajectories synchronize.

Figure 8. This figure illustrates the synchronization phenomenon in the solutions of Equation (1). The
first column corresponds to a value of c = 0 (no coupling), the second column corresponds to a value
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of c = 0.1, and the third column corresponds to a value of c = 1. The first row represents the

L2 norm, ||(V2 − V9)(·, t)|| =
( ∫

Ω(V9(x, t)− V2(x, t))2dx
) 1

2 , as a function of time. The second row
represents the time evolution of V2(5, t) (yellow) and V9(5, t) (red) (i.e., the time evolution of the
variable V for neurons 2 and 9, for the fixed-space variable x = 5). The third row, represents
(V2(5, t), m2(5, t), h2(5, t)) (yellow) and (V9(5, t), m9(5, t), h9(5, t)) (red) in the 3-dimensional (V, m, h)
phase space. Two distinct initial conditions were set: for neurons 0 to 6 the initial value was
(−70, 0.4, 0.4, 0.4) and for neurons 7 to 13 the initial value was (45, 0.9, 0.9, 0.9). Synchronization is
observed for all cases. See Section 4.2 for a more elaborated discussion.

Figure 9. This figure illustrates the synchronization phenomenon in solutions of Equation (1). The
first column corresponds to a value of c = 2 (no coupling), the second column corresponds to a
value of c = 5, and the third column corresponds to a value of c = 10. The first row represents

the L2 norm ||(V2 − V9)(·, t)|| =
( ∫

Ω(V9(x, t)− V2(x, t))2dx
) 1

2 , as a function of time. The second
row represents the time evolution of V2(5, t) (yellow) and V9(5, t) (red) (i.e., the time evolution of
the variable V for neurons 2 and 9, for the fixed-space variable x = 5). The third row represents
(V2(5, t), m2(5, t), h2(5, t)) (yellow) and (V9(5, t), m9(5, t), h9(5, t)) (red) in the 3-dimensional (V, m, h)
phase space. Two distinct initial conditions were set: for neurons from 0 to 6, the initial value was
(−70, 0.4, 0.4, 0.4), and for neurons from 7 to 13, the initial value was (45, 0.9, 0.9, 0.9). Synchronization
is observed for all cases. See Section 4.2 for a more elaborated discussion.

5. Conclusions

In this article, we considered a network of HH RD systems. The network has a
specific topology inspired by recent developments in neuroscience, in which the location
of periodic stimulations appeared to be crucial. After a description of the effect of the
variation in the frequency of the periodic input on a single HH equation, we focused
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on the synchronization phenomenon both theoretically and numerically. The numerical
simulations indicate that the synchronized solution, whose existence is theoretically stated,
attracts, in fact, different initial conditions. This extends previous results on ODEs where
networks of Hindmarsh–Rose with similar coupling were considered. As far as we know, it
is the first time that evidence of the synchronization phenomenon is provided for spatially
extended Hodgkin–Huxley equations for such a periodically forcing and hierarchical
network with space-dependent coupling interactions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math12091382/s1, Video S1: Wave propagation for c = 0.1,
Video S2: Wave propagation for c = 10.
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