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1. Introduction

Consider an algebra A defined over the complex field C. A map ∗ : A → A is called
an involution if the following conditions hold for all J ,K ∈ A and α ∈ C: (i) (J +K)∗ =
J ∗ + K∗; (ii) (αJ )∗ = ᾱJ ∗; and (iii) (JK)∗ = (K)∗(J )∗ and (J ∗)∗ = J . An algebra
A with involution ∗ is called a ∗-algebra. Let J and K be elements of A. The notation
[J ,K]• represents the bi-skew Lie product defined as [J ,K]• = JK∗ −KJ ∗, while [J ,K]
denotes the Lie product of J and K, defined as [J ,K] = JK−KJ . Lie and bi-skew Lie
products are gaining importance across a number of research fields, and many authors
have been interested in investigating them (see [1–6]). An additive mapping Π : A → A
is termed an additive derivation if it satisfies the condition Π(JK) = Π(J )K+ J Π(K)
for all J ,K ∈ A. If, in addition, Π(J ∗) = Π(J )∗ holds for all J ∈ A, then Π is an
additive ∗-derivation.

The investigation of the additive properties of mappings on rings and algebras, par-
ticularly in relation to their structure, has been a captivating area of research for the past
sixty years. Martindale, in his work [7], addressed the question, “When is a multiplicative
mapping additive?”. He presented a significant technique along with a set of conditions
on a ring that compel a multiplicative isomorphism to be additive. Notably, he demon-
strated that every multiplicative isomorphism from a prime ring containing a nontrivial
idempotent to any ring is necessarily additive.

Building upon Martindale’s work, Daif [8] extended the concept to multiplicative
derivations of rings, establishing their additivity and introducing the notion of multiplica-
tive derivations. Subsequently, various results have been derived in both associative and al-
ternative rings and algebras. In 2009, Wang [9] delved into the additivity of n-multiplicative
isomorphisms and n-multiplicative derivations of rings. Recently, Rehman et al. [10] mixed
the concept of Jordan and Jordan ∗-products and proved that every nonlinear mixed Jordan
triple derivation on an ∗-algebra is an additive ∗-derivation. Motivated by the above
works, in this paper, we mixed the concept of Lie and bi-skew Lie products and accordingly
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defined nonlinear mixed bi-skew Lie triple derivation as follows: let Π : A → A be a map
(without additivity). If

Π([[J ,K]•,L]) = [[Π(J ),K]•,L] + [[J , Π(K)]•,L] + [[J ,K]•, Π(L)]

for all J ,K,L ∈ A, then Π is called a nonlinear mixed bi-skew Lie triple derivation,
proving that every nonlinear mixed bi-skew Lie triple derivation is an additive ∗-derivation
under some conditions.

Before presenting the main result, it is essential to provide an example that satisfies
the condition

Π([[J ,K]•,L]) = [[Π(J ),K]•,L] + [[J , Π(K)]•,L] + [[J ,K]•, Π(L)]

for all J ,K,L ∈ A for which the mapping Π is nontrivial.

Example 1. Consider A = M2(C), and let the algebra of all square matrices of the order 2

over the field of complex numbers C, and let I =

(
1 0
0 1

)
be a unity of M2(C). The map

∗ : A → A given by ∗(A) = Aθ , in which Aθ denotes the conjugate transpose of the matrix A, is
an involution. Hence, A is a unital ∗-algebra with a unity I. Now, define a map Π : A → A such

that Π
(

a b
c d

)
=

(
o ib

−ic o

)
. Note that Π(A) is a derivation on A. So, it also satisfies

Π([[J ,K]•,L]) = [[Π(J ),K]•,L] + [[J , Π(K)]•,L] + [[J ,K]•, Π(L)]

for all J ,K,L ∈ A. Moreover, A contains a nontrivial projection P =

(
0 0
0 1

)
, and Π is also

nontrivial.

2. Main Result

In this section, we will prove the following theorem.

Theorem 1. Let A be a unital ∗-algebra with a unity I containing a nontrivial projection P which
satisfies

XAP = 0 =⇒ X = 0 (1)

and
XA(I − P) = 0 =⇒ X = 0. (2)

Define a map Π : A → A such that if

Π([[J ,K]•,L]) = [[Π(J ),K]•,L] + [[J , Π(K)]•,L] + [[J ,K]•, Π(L)]

for all J ,K,L ∈ A, then Π is additive. Moreover, if Π(iI) = iΠ(I), then Π is also an additive
∗-derivation.

Let P = P1 be a nontrivial projection in A and P2 = I − P1, where I is the unity
of this algebra A. Then, by the Peirce decomposition of A, we have A = P1AP1 ⊕
P1AP2 ⊕P2AP1 ⊕P2AP2, and denote A11 = P1AP1,A12 = P1AP2,A21 = P2AP1 and
A22 = P2AP2. Note that any J ∈ A can be written as J = J11 + J12 + J21 + J22, where
Jij ∈ Aij and J ∗

ij ∈ Aji for i, j = 1, 2.

We use various lemmas in order to prove Theorem 1.
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Lemma 1. Π(0) = 0.

Proof. It is easy to check that

Π(0) = Π([[0, 0]•, 0])

= [[Π(0), 0]•, 0] + [[0, Π(0)]•, 0] + [[0, 0]•, Π(0)]

= 0.

This completes the proof of Lemma 1.

Lemma 2. For any J11 ∈ A11,J12 ∈ A12,J21 ∈ A21, and J22 ∈ A22, we have

Π(J11 + J12 + J21 + J22) = Π(J11) + Π(J12) + Π(J21) + Π(J22).

Proof. Let M = Π(J11 + J12 + J21 + J22)− Π(J11)− Π(J12)− Π(J21)− Π(J22).
It is easy to check that [[J11,P1]•,P2] = [[J12,P1]•,P2] = [[J22,P1]•,P2] = 0, and, using
Lemma 1, we obtain

Π([[(J11 + J12 + J21 + J22),P1]•,P2]) = Π([[J11,P1]•,P2]) + Π([[J12,P1]•,P2])

+Π([[J21,P1]•,P2]) + Π([[J22,P1]•,P2])

= [[Π(J11),P1]•,P2] + [[J11, Π(P1)]•,P2]

+[[J11,P1]•, Π(P2)] + [[Π(J12),P1]•,P2]

+[[J12, Π(P1)]•,P2] + [[J12,P1]•, Π(P2)]

+[[Π(J21),P1]•,P2] + [[J21, Π(P1)]•,P2]

+[[J21,P1]•, Π(P2)] + [[Π(J22),P1]•,P2]

+[[J22, Π(P1)]•,P2] + [[J22,P1]•, Π(P2)]).

On the other hand, we have

Π([[(J11 + J12 + J21 + J22),P1]•,P2]) = [[Π(J11 + J12 + J21 + J22),P1]•,P2]

+[[(J11 + J12 + J21 + J22), Π(P1)]•,P2]

+[[(J11 + J12 + J21 + J22),P1]•, Π(P2)].

By using the last two expressions, we obtain [[M,P1]•,P2] = 0. This means that
−P1M∗P2 − P2MP1 = 0. Multiplying both sides by P1 from the right, we obtain
P2MP1 = 0. Similarly, we can show that P1MP2 = 0. Now, for any X12 ∈ A12, we find

Π([[(J11 + J12 + J21 + J22), X12]•,P1]) = [[Π(J11 + J12 + J21 + J22), X12]•,P1]

+[[(J11 + J12 + J21 + J22), Π(X12)]•,P1]

+[[(J11 + J12 + J21 + J22), X12]•, Π(P1)].

It follows from [[J11, X12]•,P1] = [[J12, X12]•,P1] = [[J22, X12]•,P1] = 0 that
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Π([[(J11 + J12 + J21 + J22), X12]•,P1]) = Π([[J11, X12]•,P1]) + Π([[J12, X12]•,P1])

+Π([[J21, X12]•,P1]) + Π([[J22, X12]•,P1])

= [[Π(J11), X12]•,P1] + [[J11, Π(X12)]•,P1]

+[[J11, X12]•, Π(P1)] + [[Π(J12), X12]•,P1]

+[[J12, Π(X12)]•,P1] + [[J12, X12]•, Π(P1)]

+[[Π(J21), X12]•,P1] + [[J21, Π(X12)]•,P1]

+[[J21, X12]•, Π(P1)] + [[Π(J22), X12]•,P1]

+[[J22, Π(X12)]•,P1] + [[J22, X12]•, Π(P1)]).

By comparing the last two equations, we find that [[M, X12]•,P1] = 0. This means
that MX∗

12 − X12M∗P1 −P1MX∗
12 − X12M∗ = 0. By multiplying P2 from the right, we

obtain X12M∗P2 = 0. By using (1) and (2), we obtain P2MP2 = 0. In a similar way, we
can show that P1MP1 = 0. Hence, M = 0. This completes the proof.

Lemma 3. For any Jij,Kij ∈ Aij with i ̸= j and i, j = 1, 2 , we have

Π(Jij +Kij) = Π(Jij) + Π(Kij).

Proof. First, we prove for i = 1 and j = 2, i.e., we have to show that

Π(J12 +K12) = Π(J12) + Π(K12).

Let M = Π(J12 +K12)− Π(J12)− Π(K12). It follows that

Π([[J12 +K12,P1]•,P2]) = [[Π(J12 +K12),P1]•,P2] + [[J12 +K12, Π(P1)]•,P2]

+[[J12 +K12,P1]•, Π(P2)].

From the other side, using Lemma 2, we obtain

Π([[J12 +K12,P1]•,P2]) = Π([[J12,P1]•,P2]) + Π([[K12,P1]•,P2])

= [[Π(J12),P1]•,P2] + [[J12, Π(P1)]•,P2]

+[[J12,P1]•, Π(P2)] + [[Π(K12),P1]•,P2]

+[[K12, Π(P1)]•,P2] + [[K12,P1]•, Π(P2)].

By using the above two equations, we obtain [[M,P1]•,P2] = 0. Thus, −P1M∗P2 −
P2MP1 = 0. Multiplying both sides by P2 from the left, we obtain P2MP1 = 0. Similarly,
we can show that P1MP2 = 0. Now, for any X21 ∈ A21, we have

Π([[X12, (J12 +K12)]•,P1]) = [[Π(X12), (J12 +K12)]•,P1] + [[X12, Π(J12 +K12)]•,P1]

+[[X12, (J12 +K12)]•, Π(P1)].

On the other side, it follows from [[X12,J12]•,P1] = 0 that

Π([[X12, (J12 +K12)]•,P1]) = Π([[X12,J12]•,P1]) + Π([[X12,K12]•,P1])

= [[Π(X12),J12]•,P1] + [[X12, Π(J12)]•,P1]

+[[X12,J12]•, Π(P1)] + [[Π(X12),K12]•,P1]

+[[X12, Π(K12)]•,P1] + [[X12,K12]•, Π(P1)].

By obtaining the above two equations, we find that [[X12,M]•,P1] = 0. Thus,
X12M∗P1 − MX∗

12 − X12M∗ + P1MX∗
12 = 0. By multiplying P1 from the right, we

obtain (P1 − I)MX∗
12 = 0. Thus, by using (1) and (2), we find that P2MP2 = 0. Simi-
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larly, we can show that P1MP1 = 0. Hence, M = 0. In a similar way, we can prove for
i = 2, j = 1.

Lemma 4. For any Jii,Kii ∈ Aii, 1 ≤ i ≤ 2, we have

1. Π(J11 +K11) = Π(J11) + Π(K11).
2. Π(J22 +K22) = Π(J22) + Π(K22).

Proof. 1. Let M = Π(J11 +K11)− Π(J11)− Π(K11). We have

Π([[J11 +K11,P1]•,P2]) = [[Π(J11 +K11),P1]•,P2] + [[J11 +K11, Π(X12)]•,P1]

+[[J11 +K11,P1]•, Π(P2)]

Since [[J11, X12]•,P2] = 0], and using Lemma 1, we have

Π([[J11 +K11,P1]•,P2]) = Π([[J11,P1]•,P2]) + Π([[K11,P1]•,P2])

= [[Π(J11),P1]•,P2] + [[J11, Π(P1)]•,P2]

+[[J11,P1]•, Π(P2)] + [[Π(K11),P1]•,P2]

+[[K11, Π(P1)]•,P2] + [[K11,P1]•, Π(P2)].

From the above two equations, we have [[M,P1]•,P2] = 0. This yields −P1M∗P2 −
P2MP1 = 0. Hence, P2MP1 = 0. Similarly, we can show that P1MP2 = 0.

Now, for any X12 ∈ A12 and using Lemma 1, we have

Π([[J11 +K11, X12]•,P2]) = [[Π(J11 +K11), X12]•,P2] + [[J11 +K11, Π(X12)]•,P2]

+[[J11 +K11, X12]•, Π(P2)].

On the other hand, we have

Π([[J11 +K11, X12]•,P2]) = Π([[J11, X12]•,P2]) + Π([[K11, X12]•,P2])

= [[Π(J11), X12]•,P2] + [[J11, Π(X12)]•,P2]

+[[J11, X12]•, Π(P2)] + [[Π(K11), X12]•,P2]

+[[K11, Π(X12)]•,P2] + [[K11, X12]•, Π(P2)].

From the above two equations, we obtain [[M, X12]•,P2] = 0. This means that
−X12M∗P2 −P2MX∗

12 = 0. Multiplying P1 from the left, we obtain X12M∗P2 = 0, i.e.,
P1XP2M∗P2 = 0 for all X ∈ A. It follows from (1) and (2) that P2MP2 = 0.

Also, for any X21 ∈ A21, we have

Π([[J11 +K11, X21],P1]) = Π([[J11, X21],P1]) + Π([[K11, X21],P1]).

On the other hand, it follows from Lemmas 2 and 3 that

Π([[J11 +K11, X21],P1]) = Π(−X21J ∗
11 −J11X∗

21 − X21K∗
11 −K11X∗

21)

= Π(−X21J ∗
11) + Π(−J11X∗

21) + Π(−X∗
21K11) + Π(−K11X∗

21)

= Π(−X21J ∗
11 −J11X∗

21) + Π(−X21K∗
11 −K11X∗

21)

= Π([[J11, X21]•,P1]) + Π([[K11, X21]•,P1])

= [[Π(J11), X21]•,P1] + [[J11, Π(X21)]•,P1]

+[[J11, X21]•, Π(P1)] + [[Π(K11), X21]•,P1]

+[[K11, Π(X21)]•,P1] + [[K11, X21]•, Π(P1)].

From the last two expressions, we find [[M, X21]•,P1] = 0. This means −X21M∗P1 −
P1MX∗

21 = 0. By pre-multiplying this by P1, we get P1MX∗
21 = 0. It follows from (1) and
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(2) that P1MP1 = 0 . Hence, M = 0.

2. By using the same technique that was used in the proof of Lemma 4 (1), we can show
that

Π(J22 +K22) = Π(J22) + Π(K22).

This completes the proof.

Lemma 5. Π is an additive map.

Proof. For any J ,K ∈ A, we write J = ∑2
i,j=1 Jij and K = ∑2

i,j=1 Kij. By using Lemmas 2–4,
we obtain

Π(J +K) = Π(
2

∑
i,j=1

Jij +
2

∑
i,j=1

Kij)

= Π(
2

∑
i,j=1

(Jij +Kij)

=
2

∑
i,j=1

Π(Jij +Kij)

=
2

∑
i,j=1

Π(Jij) + Π(Kij)

= Π(
2

∑
i,j=1

Jij) + Π(
2

∑
i,j=1

Kij)

= Π(J ) + Π(K).

Hence, Π is an additive map.

Now in the rest of the paper, we prove that Π is an additive ∗-derivation.

Lemma 6. If Π(iI) = iΠ(I), then

1. Π(I) and Π(I)∗ are central elements of A.
2. Π(J ∗) = Π(J )∗.

Proof. 1. For any K = K∗ and since Π(iI) = iΠ(I), we have

0 = Π([[I,K]•,L]) = [[Π(I),K]•,L]

for all L ∈ A. This implies that

[Π(I),K]• ∈ Z(A).

Taking K = I in the above equation, we obtain

Π(I)− Π(I)∗ ∈ Z(A). (3)

Similarly, taking K = −I, we obtain

Π(I) + Π(I)∗ ∈ Z(A). (4)

It follows from Equations (3) and (4) that Π(I) and Π(I)∗ are central elements of A.

2. It is clear from Lemma 6 (1) that

0 = Π([[J , I]•,K]) = [[Π(J ), I]•,K] (5)
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for all J ,K ∈ A with J = J ∗. This gives that [Π(J ), I]• ∈ Z(A). Therefore, Π(J )−
Π(J )∗ ∈ Z(A) if J = J ∗. It follows that there exists an additive map f : A → Z(A)
such that f (J ) = Π(J )∗ − Π(J ∗). Also, from the other side,

Π([[J ,K]•,L]) = [[Π(J ),K]•,L] + [[J , Π(K)]•,L] + [[J ,K]•, Π(L)]

and

iΠ([JK∗ +KJ ∗,L]) = Π([[iJ ,K]•,L])
= [[Π(iJ ),K]•,L] + [[iJ , Π(K)]•,L] + [[iJ ,K]•, Π(L)]
= i[Π(J )K∗ +KΠ(J )∗,L] + i[J Π(K)∗ + Π(K)J ∗,L]

+i[JK∗ +KJ ∗, Π(L)].

This implies that

Π([JK∗,L]) = [Π(J )K∗,L] + [J Π(K)∗,L] + [JK∗, Π(L)] (6)

and

Π([JK∗,L]) = [Π(J )K∗,L] + [J Π(K∗),L] + [JK∗, Π(L)]. (7)

Replacing K with K∗ in Equation (7), we obtain

Π([JK,L]) = [Π(J )K,L] + [J Π(K),L] + [JK, Π(L)]. (8)

From Equations (6) and (7), we obtain

f (K)[J ,L] = 0

for all J ,K,L ∈ A. Thus, f (K) = 0 for all K ∈ A. Hence, Π(J ∗) = Π(J )∗ for all
J ∈ A.

Proof of Theorem 1. By using Lemmas 5 and 6, we can say that Π is additive and Π(J ∗) =
Π(J )∗ for all J ∈ A. Now, we only have to show that Π is also a derivation. Taking J = I
in Equation (8), we obtain

η([K,L]) = [η(K),L] + [K, η(L)],

where η(X) = Π(X) + Π(I)X for all X ∈ A. Hence, η is an additive Lie derivation. It
follows from [11] (Theorem 2) that η(X) = µ(X) + ζ(X), where µ : A → A is an additive
derivation and ζ : A → Z(A) is an additive map that vanishes at the commutator. It
follows that Π(X) = µ(X) + ζ(X) − Π(I)X for all X ∈ A. Now, from Equation (8),
we obtain

ζ(J )[K,L] + ζ(K)[J ,L]− 2Π(I)[JK,L] = 0. (9)

Taking J = P1,K = X12 = [X12, P2], and L = P2 in Equation (9), we find ζ(P1)X12 −
2Π(I)X12 = 0 for all X12 ∈ A12. This means that

(ζ(P1)− 2Π(I))P1 = 0. (10)

On the other hand, putting J = X21,K = P1, and L = P2 in Equation (9), we obtain
ζ(P1)X21 − 2Π(I)X21 = 0 for all X21 ∈ A21. This means that

(ζ(P1)− 2Π(I))P2 = 0. (11)
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Using Equations (10) and (11), we have ζ(P1) = 2Π(I). Similarly, we can show that
ζ(P2) = 2Π(I). Hence, ζ(I) = 4Π(I). It follows from Π(X) = µ(X) + ζ(X)− Π(I)X that
ζ(I) = 2Π(I). Thus, Π(I) = 0. It follows from Equation (9) that ζ = 0. Hence, Π is an
additive ∗-derivation.

3. Applications

As a direct result of Theorem 1, we have the corollaries described below.
Let H be a Hilbert space over a field F of real or complex numbers, and B(H) denotes

the algebra of all bounded linear operators on H. The rank of an operator is the dimension
of its range. Thus, an operator of a finite rank is one which has a finite dimensional range.
We denote F (H), the subalgebra of all bounded linear operators on H of a finite rank.

Let H be a Banach space over a field F of real or complex numbers. A subalgebra S(H)
of B(H) is called a standard operator algebra if F (H) ⊆ S(H).

Corollary 1. Let A be a standard operator algebra on an infinite, dimensional, complex Hilbert
space H containing an identity operator I. Suppose that A is closed under adjoint operation. Define
Π : A → A such that if

Π([[J ,K]•,L]) = [[Π(J ),K]•,L] + [[J , Π(K)]•,L] + [[J ,K]•, Π(L)]

for all J ,K,L ∈ A , then Π is additive. Moreover, if Π(iI) = iΠ(I), then Π is also an additive
∗-derivation.

Proof. It is a fact that every standard operator algebra A is a prime algebra, which is a
consequence of the Hahn–Banach theorem. Then, by the definition of primeness, A also
satisfies (1) and (2). Hence, by Theorem 1, Π is an additive ∗-derivation.

A von Neumann algebra M is a weakly closed self-adjoint subalgebra of B(H) con-
taining the identity operator. Equivalently, a von Neumann algebra M is a self-adjoint
subalgebra of B(H) which satisfies the double commutant property, i.e., M′′ = M.

A von Neumann algebra M is called a factor von Neumann algebra if its center is
trivial, i.e., Z(M) = M∩M′ = CI. If Z(M) = M, then M is called abelian.

Corollary 2. Let M ba a factor von Neumann algebra with dimM ≥ 2. Define Π : M → M
such that if

Π([[J ,K]•,L]) = [[Π(J ),K]•,L] + [[J , Π(K)]•,L] + [[J ,K]•, Π(L)]

for all J ,K,L ∈ A, then Π is additive. Moreover, if Π(iI) = iΠ(I), then Π is also an additive
∗-derivation.

Proof. It follows from [12] (Lemma 2.2) that every factor von Neumann algebra M satisfies
(1) and (2). Hence, using Theorem 1, Π is an additive ∗-derivation.

An algebra A is called prime if JAK = {0} for J ,K ∈ A implies either J = 0 or
K = 0.

Corollary 3. Let A be a prime ∗-algebra with a unit I containing a nontrivial projection P. If a
map Π : A → A satisfies

Π([[J ,K]•,L]) = [[Π(J ),K]•,L] + [[J , Π(K)]•,L] + [[J ,K]•, Π(L)]

for all J ,K,L ∈ A, then Π is additive. Moreover, if Π(iI) = iΠ(I), then Π is also an additive
∗-derivation.
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Proof. By the definition of the primeness of A, it is easy to see that A also satisfies (1) and
(2); hence, by Theorem 1, Π is an additive ∗-derivation.
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