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Abstract: Pancreatic cancer (PC) ranks as the seventh leading cause of cancer-related deaths, with
approximately 500,000 new cases reported in 2020. Existing strategies for early PC detection primarily
target individuals at high risk of developing the disease. Nevertheless, there is a pressing need to
identify innovative clinical approaches and personalized treatments for effective PC management.
This study aimed to explore the dysbiosis signature of the fecal microbiota in PC and potential
distinctions between its Intraductal papillary mucinous neoplasm (IPMN) and pancreatic ductal
adenocarcinoma (PDAC) phenotypes, which could carry diagnostic significance. The study enrolled
33 participants, including 22 diagnosed with PDAC, 11 with IPMN, and 24 healthy controls. Fecal
samples were collected and subjected to microbial diversity analysis across various taxonomic levels.
The findings revealed elevated abundances of Firmicutes and Proteobacteria in PC patients, whereas
healthy controls exhibited higher proportions of Bacteroidota. Both LEfSe and Random Forest
analyses indicated the microbiome’s potential to effectively distinguish between PC and healthy
control samples but fell short of differentiating between IPMN and PDAC samples. These results
contribute to the current understanding of this challenging cancer type and highlight the applications
of microbiome research. In essence, the study provides clear evidence of the gut microbiome’s
capability to serve as a biomarker for PC detection, emphasizing the steps required for further
differentiation among its diverse phenotypes.

Keywords: cancer; IPMN; microbiome pancreas; PDAC

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) represents the seventh leading cause of
death due to cancer, and in 2020 there were approximately 500,000 new cases [1]. At the
same time, patient outcomes among the different types of cancer are consistently low [2],
while the survival rates between 1975 and 2011 have only risen from 0.9% to 4.2% for all
stages of the disease [3].

Several reasons have been recognized for these meager survival rates. A key factor is
delayed diagnosis (in the vast majority of cases, symptoms are either absent or non-specific
at early stages), which is typically achieved when metastatic disease is already present in
one out of two patients [4]. Moreover, the therapeutic approaches are also accompanied
by increased morbidity and mortality. Only 20% of patients with pancreatic cancer are
eligible for surgery [5], and pancreaticoduodenectomy, the treatment of choice for PDAC,
in the head of the pancreas has a perioperative morbidity that surpasses 50% [6] and a
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median survival of 25 months [7]. Another important parameter is the complex biology of
the PDAC microenvironment, which is desmoplastic and characterized by hypovascularity,
resulting in hypoxia and thus poor drug delivery [8]. These characteristics explain the lack
of efficiency for both conventional chemotherapeutic approaches and radiation treatments,
which tend to offer marginal benefits [9].

To counter these issues, extensive research in PDAC genetics has been performed for
the identification of diagnostic biomarkers [10,11]. Although a better understanding of the
disease’s pathophysiology has been achieved [12,13], the contribution of genetics in early
diagnosis or more effective treatments has not been translated into a substantial change
regarding its management [14].

Current approaches for PDAC early diagnosis have focused on the identification of
patients with a high risk of developing the disease. These include lesions that serve as
precursors of PDAC, as in the case of intraductal papillary mucinous neoplasms (IPMNs).
Identifying these high-risk lesions offers an invaluable opportunity to treat the patient
who bears these direct PDAC precursors. Even though IPMNs tend to be asymptomatic,
during random abdominal imaging, cysts (the majority of which are IPMNs) are revealed
in almost 1 out of 10 patients [15]. However, not all IPMN cases have an equal chance of
progressing to PDAC; different types of IPMNs have different progression rates to PDAC,
which, in some cases, can be as high as 90% [16]. For that reason, several types of microbiota
(including pancreatic [17], salivary [18], and fecal [19–21]) are currently being investigated
for a possible microbiome signature that would allow the recognition of patients with a
high risk of developing PDAC.

The fecal microbiome offers the advantage of being easily accessible without the need
for any invasive procedure, while it is currently widely accepted that it is involved in
tumorigenesis of various cancers, including pancreatic [22,23] and distant bile ductal [24],
which share developmental origins. Microbiome signatures have already shown promising
results in the early diagnosis of cancers, including hepatocellular carcinoma [25] and
colorectal cancer [26,27] and simpler pancreatic condition like pancreatitis [28]. More
importantly, the fecal microbiome has been already found to play a role in the development
of malignancies from precursor lesions, as in the case of colorectal cancer development
from polyps [29].

However, several parameters need to be considered during the study of the micro-
biome. Fecal microbiota are known to be affected by ethnic differences [30]. Several factors,
including nutrition and geography, affect the microbiota [31] and provide the rationale
for study designs that focus on ethnicity. Moreover, PDAC patients also have other co-
morbidities and risk factors like alcohol consumption, antibiotics use, blood group, BMI,
and oral health, which can affect both PDAC progression [32–36] and the gut microbiota
composition [37–41] and need to be addressed in fecal microbiome research.

In the present study, we aim to investigate the dysbiosis signature of the fecal micro-
biome in PC patients and possible differentiations between PDAC and IPMN. We deem
that these changes could serve as tools in the early detection of the disease, contributing to
the amelioration of PC prognosis.

2. Materials and Methods
2.1. Participants

Thirty-three patients, twenty-two patients diagnosed with PDAC, eleven patients
diagnosed with IPMN, and twenty-four healthy controls, were enrolled in this study.
Patients and controls were prospectively recruited between June 2022 and July 2023 from
the “Attikon” General University Hospital, Athens, Greece. Subjects who were newly
diagnosed with PDAC or IPMN were recruited prior to any cancer treatment. Patients’
PDAC and IPMN diagnosis was based on a histology report, which was preoperative—for
1 patient with IPMN on active surveillance and for 4 patients with either locally advanced
or metastatic PDAC that was inoperable—or postoperative from the surgical resected
tissue, which was the case for 3 patients with intraoperative biopsy that were not able
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to be operated on and 25 that underwent pancreatectomy. Additionally, in all cases, the
diagnosis was confirmed with computed tomography (CT) scan, and, for most, magnetic
resonance imaging (MRI) and/or magnetic resonance cholangiopancreatography (MRCP)
was also performed. For unresectable patients, pathological examinations by endoscopic
ultrasound-guided fine needle aspiration (EUS-FNA) were conducted. Controls were
matched for age, gender, and hospital where inpatients admitted for diagnoses unrelated
to PDACor IPMN were selected from. There were no statistically significant differences
between patient and control’s mean age and gender ratio (p ≥ 0.05). No dietary restrictions
were imposed prior to this study. The inclusion criteria were as follows: age >18 years old,
primary-care treatment-naïve patients. Exclusion criteria for all subjects included irritable
bowel disease, celiac disease, other cancers, pancreatitis, and autoimmune diseases, as well
as any usage of antibiotics, antifungals, probiotics, or prebiotics for at least 3 months prior
to sampling. The clinicopathological characteristics are presented in Table 1.

Table 1. Clinicopathological data of the patients and controls.

Characteristics PDAC (n = 22) IPMN (n = 11) Controls (n = 24)

Mean age ± SD, years 66.75 ± 13.40 67.36 ± 7.67 57.21 ± 17.20

Sex
Male 10 9 13
Female 12 2 11

Smoking
Yes 13 6 Not Available
No 9 5 Not Available

Tumor stage
I 5
II 5
III 7
IV 5

Tumor location
Head 6 2
Tail 3 -
Body 13 9

SD: standard deviation.

The study followed the ethical principles of the World Medical Association Declaration
of Helsinki and was approved by the Institutional Review Board of “Attikon” General
University Hospital (644/25-11-2021). All participants provided written informed consent.

2.2. Fecal Sample Collection and DNA Extraction

Fecal samples from patients and controls were obtained by Fecal Swab Collection
and Preservation System (Norgen BioTek Corp., Thorold, ON, Canada) and stored in the
preservative provided at −20 ◦C until DNA extraction according to the manufacturer’s
instructions. Fecal microbial DNA was purified from the fecal samples using the Stool DNA
Isolation Kit (Norgen BioTek Corp., Thorold, ON, Canada) following the kit’s instructions.

2.3. Sequencing and Read Processing

Sequencing on the samples was carried out by Eurofins Genomics Europe Sequencing
GmbH (Jakob-Stadler-Platz 7, 78467, Constance, Germany) on an Illumina MiSeq platform
producing paired-read samples of 300 bp read length based on the V3-V4 amplicons
(primers 515F [Parada] FWD:GTGYCAGCMGCCGCGGTAA—806R [Appril] REV:GGACT
ACNVGGGTWTCTAAT). Raw sequences (average: 185,000 reads per sample of which
80% were high quality with Q > 30 [average length 283nt]) were quality controlled using
CUTADAPT v2.7 [42], barcodes were removed using fastp v0.20.0 [43], and reads were
merged (97% merging rate) with FLASH v. 2.2.00 [44]. Quality-controlled sequences
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were used as input to QIIME2 v.2023.5 [45], on which they were denoised and clustered
into ASVs (Amplicon Sequence Variants) using DADA2 [46]. Taxonomic classification of
ASVs was conducted using the SILVA database v.139 [47] on 99% similarity. All samples
were included in these steps. Due to multiple sequencing runs, the final ASV table was
processed for batch correction using the “combat” method of the sva R package [48]. All
relevant resulting abundance, metadata, and taxonomic assignment files are provided in
Supplementary File S1.

2.4. Downstream Bioinformatics Analysis

The downstream analysis of the study was twofold. The first analysis grouped the
samples into two categories: pancreatic cancer (PC) samples and healthy control (HC)
samples. The second analysis used only the PC samples categorized according to their
tumor type into IPMN and PDAC samples. All data underwent normalization steps before
subsequent analyses, keeping ASVs with at least 4 counts per sample and a prevalence in at
least 10% of the samples. In addition, all ASV counts were rarified to the minimum library
size of 9358 for the analyses that could benefit from it and were scaled using Total Sum
Scaling (TSS), a method to convert a set of numbers into a single score by adding up all the
values and then dividing by the total number of values, which helps to simplify complex
data and make it easier to compare and analyze.

Alpha-diversity Shannon and Chao1 indices were applied to the raw bacterial counts
to calculate species evenness and observed richness, indicating how many bacterial com-
munities can be detected and how evenly distributed those populations are. Chao1 was
based on richness, where the Shannon index accounted for both. Statistical difference
between groups was calculated with the Mann–Whitney non-parametric test. False discov-
ery rate (FDR) adjusted p-values were calculated with the Benjamini–Hochberg method.
Beta-diversity provides a measure of how different the composition of the microbiome
is in each sample and group, compared to the rest. Dissimilarities between groups were
analyzed and visualized using non-metric multidimensional scaling (NMDS) [49], whereas
their statistical power was calculated using Analysis of Similarities (ANOSIM) [50].

To identify statistically significant differences in the abundance of microbial taxa, linear
discriminant analysis effect size (LEfSe) [51] was employed for both analysis groupings.
LefSe uses the Kruskal–Wallis test to identify taxa that are differentially abundant across
groups and then performs a linear discriminant analysis (LDA) to estimate the effect size
of each taxon’s contribution to the group differences. Random Forest analysis was also
performed to identify features (bacterial genera) with the ability to best distinguish samples
between PC and HC or IPMN and PDAC. A 500-tree iteration was used and a confusion
matrix approach with the calculation of out-of-bag (OOB) error rates was implemented
to evaluate the model. A confusion matrix and OOB error is a method used to measure
the prediction error of Random Forests utilizing bootstrap aggregating (bagging). It is an
estimate of the performance of a Random Forest classifier or regressor on unseen data.
The OOB error is computed using the samples that were not included in the training of
the individual trees, providing a measure of the model’s performance on a validation
dataset by comparing true positive and negative results to the predicted ones. Taxonomic
visualization, alpha- and beta-diversity analyses, LefSe, and machine learning calculations
were carried out using Microbiome Analyst [52], on which data were rarefied to the smallest
library size and scaled using total sum scaling after removing taxa with a low prevalence
(in less than 10% of the samples).

3. Results
3.1. Taxonomic Differences

All three sample groups (controls, IPMN, and PDAC) exhibit distinct microbiome
patterns based on their microbial taxa on different taxonomic levels. These disparities,
overall, are more pronounced between HC and PC samples, while the PDAC and IPMN
groups show similar patterns. On the phylum level, all HC samples are characterized by
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a dominance of Bacteroidota (60% relative abundance), followed by Firmicutes (33%) and
Proteobacteria (5%), while the PC samples show a slight increase in Firmicutes (38%) and
Proteobacteria (11%) and a significant decrease in Bacteroidota (46%), as shown in Figure 1a–c.
The same three phyla are most abundant in the PDAC vs. IPMN comparison, without,
however, exhibiting sizeable differences between the groups (IPMN: Bacteroidota 45%,
Firmicutes 39%, Proteobacteria 12%, PDAC: Bacteroidota 47%, Firmicutes 38%, Proteobacteria
11%), and they are presented in Figure 1d–f. On the family taxonomic level, the different
microbial abundance patterns can be seen with the help of a heatmap representation
(Figure 2), in which it is apparent that families like Sutterrellaceae and Fusobacteriaceae are
almost non-detectable in HC samples but prominent in PC samples. The opposite pattern
can be observed in microbial families like Erysipelotrichaea, Akkermansiaceae, and others,
which are mainly detectable in the HC samples.
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Figure 1. (a) Taxonomic profiles of all samples on the Phylum level. (b) Pie charts of Phylum relative
abundance in healthy control samples. (c) Pie charts of Phylum relative abundance in pancreatic
cancer samples. (d) Taxonomic profiles of all pancreatic cancer samples separated by subtype on the
Phylum level. (e) Pie charts of Phylum relative abundance in IPMN samples. (f) Pie charts of Phylum
relative abundance in PDAC samples.
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Figure 2. Heatmap of microbial family abundance in all samples categorized for cancer presence and
phenotypes.

3.2. Microbial Diversity

Alpha-diversity metrics establish clear dysbiosis patterns between the HC and PC
samples, presenting a clear loss of biodiversity both in raw taxa abundance and distribution.
Chao1 (Figure 3a) and Shannon (Figure 3b) indices present these differences, while the
FDR-corrected statistical significance between HC and PC samples is calculated to be
adjusted-p = 7.4 × 10−14 and adjusted-p = 10 × 10−15, respectively. However, when
comparing IPMN and PDAC samples, both Chao1 and Shannon indices fail to highlight
statistically significant differences (adjusted-p = 0.71477 and adjusted-p = 0.913, respectively)
(Figure 3c,d).
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Concerning beta-diversity, which provides a qualitative insight into the microbial
composition of our samples, it is evident that while the PC samples share some characteris-
tics with the HC samples, they exhibit greater dissimilarity among themselves, distinctly
separating from the HC samples (ANOSIM R: 0.35, p < 0.001), as depicted in Figure 4a.
However, there are no significant differences in microbial composition between the IPMN
and PDAC samples (ANOSIM R: −0.008, p < 0.5, which can effectively be interpreted as
p > 0.05) (Figure 4b).
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3.3. The Microbiome as a Biomarker

Based on the LEfSe and Random Forest analyses performed, there is clear evidence
that the microbiome can be effectively used to distinguish between samples that derive
from pancreatic cancer patients and controls but falls short of differentiating between
IPMN and PDAC. The LEfSe analysis highlights several microbial genera associated with
PC, with the most pronounced being Escherichia_Shigella (two very genetically similar
genera which SILVA cannot distinguish effectively, so it presents as one), Fusobacterium,
Sutterella, Klebsiella, Eubacterium_ventriosum_group, CAG_352, Bifidobacterium, Odoribac-
ter, Eubacterium_ruminantium_group, Ezakiella, and Colidextribacter, while Bacteroides, Fae-
calibacterium, Agathobacter, Akkermansia, Subdoligranulum, Alistipes, Fusicatenibacter, Lach-
nospiraceae_UCG_004, and Lachnospira are more abundant in HC samples (Figure 5a), with
all achieving an effect size > 3 and FDR-adjusted p < 0.01. However, in the case of IPMN and
PDAC, only Lachnospira abundance appears to be associated with IPMN, and Ruminococ-
cus_torques_group, Collinsella, and Family_XIII_AD3011_group are more abundant in PDAC,
without, however, achieving statistical significance (FDR-adjusted p > 0.1) (Figure 5b).
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The outcomes from LEfSe were further reinforced by the Random Forest analysis, which
highlighted elevated abundance of Butyrivibrio, Agathobacter, Hafnia_Obesumbacterium,
Prevotellaceae_NK3B31_group, Methylobacterium_Methylorubrum, Barnesiella, and Ruminococ-
cus_gnavus_group as indicative markers for HC samples, while proposing CAG_352 and
Lactobacillus as potential biomarkers for PC. This analysis demonstrated high accuracy by
correctly predicting all HC samples, with only one mislabeling incident for a PC sample,
resulting in an Out-of-Bag (OOB) error of 0.0175 (Figure 6). However, the Random Forest
model faced challenges in distinguishing and accurately predicting between IPMN and
PDAC samples based on their microbial composition. It consistently characterized all
samples as PDAC, leading to an OOB error of 1.0.
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4. Discussion

As an insidious malignancy, PC remains a difficult challenge that requires extensive
efforts for early detection to diminish its impact. Thus, there is a need to identify and
develop novel clinical approaches and personalized treatments for effective PC manage-
ment. Recently, the use of microbiome analysis has been accepted as a prognostic and
diagnostic marker that holds numerous potential implications and advantages in clinical
practice. As it is acknowledged that ethnicity-related variations in the gut microbiota likely
signify differences in racial and environmental factors [53], our research aimed to explore
the composition of the microbiome in Greek individuals with PC, a generally homogeneous
population that also shares dietary and cultural habits with other Mediterranean people.
In the present study, we found that patients with PC had higher abundances of Firmicutes
and Proteobacteria, while HC had higher proportions of Bacteroidota. We did not, however,
observe significant differences between the PDAC and IPMN groups (Figure 1). Our results
are in agreement with previous studies on fecal and oral microbiota from PDAC and IPMN
patients [18,54]. Interestingly, Mendez et al. [55], using a genetically engineered PDAC
murine model, suggested that the increased abundance of Proteobacteria and Firmicutes in
early PDAC is linked to an upregulation of the polyamine and nucleotide biosynthetic path-
ways, as well as with elevated serum polyamine concentration, findings that also have been
verified in PDAC patients, suggesting a role of these bacteria in pancreatic carcinogenesis.

Another interesting finding of our study is the detection of Akkermansiaceae in PC
samples (Figure 5). Akkermansiaceae has been associated with different cancers like lung
cancer, renal cancer, bladder cancer, and prostate cancer [56,57] and has also been linked to
immunotherapy response [58]. In addition, Kartal et al. [59] have detected an enrichment of
Akkermansia muciniphila in PC samples. Regarding Erysipelotrichaea, which is also prominent
in HC cases, it is known that is related with inflammation-related disorders of the gastroin-
testinal tract, such as colorectal cancer and hepatocellular carcinoma, and also associated
with host lipid metabolism [60,61]. Recently, Half et al. [62] suggested that Erysipelotrichaea
are correlated with enzyme GGT serum levels in PC patients. Even if several studies are
contradictory regarding the gut microbial diversity in PC cases, because of the microbiota’s
multifactorial perturbations, the results of our alpha- and beta-diversity analysis clearly
indicate that the composition of the gut microbial population of PC patients is distinct
from that of HC [19,62–64] (Figures 3 and 4). Regarding the comparison between IPMN
and PDAC cases, the diversity analysis did not show significant accuracy to distinguish
PDAC patients from IPMN cases (Figures 3 and 4). Olson et al. also reported that the
oral microbiome in PDAC cases did not differ in diversity analysis from IPMN cases [18].
However, the current literature lacks multiple studies investigating the microbiome of these
phenotypes, while public databases lack suitable microbiome samples. Furthermore, these
limitations extend to the inability of current approaches to distinguish between PDAC and
IPMN samples, as underscored by our Random Forest results (Figure 6), due to the high
similarities their microbial composition presents.

Our results reveal a PC-associated microbial signature that can potentially be sug-
gested as an effective biomarker (Figure 5). Among them, consistent with previous find-
ings [65,66], bacteria like Escherichia_Shigella, Klebsiella, and Fusobacterium were enriched in
PC-associated gut microbiota among other pro-inflammatory and cancer-promoting genera.
Furthermore, our data confirm previous studies that Lactobacillus and Bifidobacterium are
present in PDAC tumors [59]. Lactobacillus and Bifidobacterium spp, known producers of
indole and/or indole lactic acid [67,68], have been linked to immunity modulation, oncoge-
nesis in animal models, and poor outcomes in human PDAC. In support of this, Hezaveh
et al. [69] suggested that indole-producing bacteria promote an immunosuppressive tumor
microenvironment and correlate with poor response to resection and overall survival in
PDAC. Additionally, Lachnospira appears enriched in IPMN cases compared to PDAC cases
in our study. Members of the Lachnospiraceae family have been involved in carcinogenesis
and it has been reported that they might influence colorectal cancer progression [70]. Also,
in cases of acute pancreatitis, the relative abundance of Lachnospira pectinoschiza decreased
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in on-treatment samples compared with those before the treatment [71]. Finally, Vogtmann
et al. have also reported an increase in the Lachnospiraceae in oral PDAC cases [72].

The high predictive power of the Random Forest analysis (Figure 6) between HC and
PC samples provides promising outcomes on the application of the gut microbiome for
early diagnosis. High abundances of Butyrivibrio and Agathobacter, two types of intestinal
bacteria that produce butyrate, in HC samples versus PC samples further confirm the
previous findings of the postbiotics’ ability to affect pancreatic cancer. Butyrate has been
found to improve intestinal integrity and microbiota composition in pancreatic cancer
mouse models [73,74]. In addition, low levels of butyrate have also been correlated with
high levels of acetate in patients with adenomatous polyp formation and colon cancer [75].
While Butyrivibrio fibrisolvens specifically has been found to suppress cancer-associated
fibroblasts in pancreatic cancer [76], we could not assess the presence of this species in
our samples due to the limitations of the 16S approach, but our results might signify
its existence.

In general, the 16S approach for discerning microbial species is constrained by tech-
nical limitations, despite being a fast and easily accessible testing method for biomarker
discovery. For example, in this study, a moderate amount of reads per sample, with a
typical read length for the technology, hinders high resolution and accurate species-level
identification. In general, high-throughput sequencing of the amplicons of hypervariable
16S rRNA gene regions has been a mainstay for bacterial analysis, but it has limitations in
discerning species and strain-level diversity. While it can be used to identify and compare
bacterial diversity from complex microbiomes, the method’s ability to provide accurate
and complete sequences is essential for its utility in many applications [77,78]. However,
third-generation sequencing platforms which can provide full-length 16S amplification
in microbiome studies have seen rise in recent years, providing several advantages over
short-read sequencing, including higher resolution in terms of diversity and taxonomic
classification and the ability to detect additional taxa that may be missed by short-read
sequencing [79]. Full-length 16S sequencing has been shown to provide species-level res-
olution in human gut microbiota studies [80]. However, full-length 16S sequencing also
has limitations, including a higher cost and longer analysis time, and still may not be able
to discriminate some closely related species [81]. This also hinders our ability to detect
the metabolic contributions of the microbiome to host physiology, without inferences, and
obstructs any assumptions regarding the effects of the microbiome in metabolomics.

Regardless of the issues and complexities of microbiome research, we now know that it
has the potential to have real clinical implications, even from a pharmacological standpoint.
The gut microbiota affects the occurrence and development of cancer, along with the
efficacy and toxicity of chemotherapy, radiotherapy, and immunotherapy [82]. Modulating
the gut microbiota has been proposed as a potential strategy for cancer prevention and
treatment [83–85]. Bacteria can also be used to bypass problems associated with the poor
selectivity and limited tumor penetrability of conventional cancer therapies or can be
engineered to directly express anticancer agents or transfer eukaryotic expression vectors
to cancer cells [82].

Overall, this study, despite its limitations in sample-pool size and the lack of address-
ing confounding factors, provides evidence of the gut microbiome’s ability to serve as a
biomarker of PC detection and outlines the steps needed to further distinguish between its
different phenotypes. The microbiota, as we have already discussed, are very sensitive to a
plethora of factors, and their variability from person to person, even between biological
sexes [86], constitutes the complexity of microbiome studies. Unfortunately, the small
sample size prohibits us from further segmenting the dataset to account for sex, although
we did take measures to collect a balanced number of male and female participants for
PDAC and controls. The same was not possible for IPMN due to the paucity of samples.

A study of this magnitude can only offer insights into microbial variances and is not
a conclusive method for clinical diagnosis. In line with previous studies, investigations
like ours can only provide statistical differences between sample groups. The ability
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of the microbiome to serve as a diagnostic marker relies on those statistical differences
exhibited here, while prognostically it can serve as a biomarker if dysbiosis precedes the
diagnosis. To be certain of that, we would need a much larger cohort with random samples
of people who have not been diagnosed yet; however, the presence of a “cancer”-specific
microbiome might serve as a prognostic indicator. Nevertheless, we maintain that in the
realm of microbiome research, a consensus derived from smaller, more manageable studies
can progressively enhance our comprehension of the microbial underpinnings of these
conditions. Our results further enrich current knowledge of this formidable cancer type,
while showcasing the practical utility of microbiome research.
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