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Abstract: Lipedema is a chronic, idiopathic, and painful disease characterized by an excess of adipose tis-
sue in the extremities. The goal of this study is to characterize the gene expression of estrogen receptors
(ERoc and ER), G protein-coupled estrogen receptor (GPER), and ER-metabolizing enzymes: hydrox-
ysteroid 17-beta dehydrogenase (HSD17B1, 7, B12), cytochrome P450 (CYP19A1), hormone-sensitive
lipase (LIPE), enzyme steroid sulfatase (STS), and estrogen sulfotransferase (SULT1E1), which are
markers in Body Mass Index (BMI) and age-matched non-lipedema (healthy) and lipedema ASCs and
spheroids. Flow cytometry and cellular proliferation assays, RT-PCR, and Western Blot techniques
were used to determine the expression of ERs and estrogen-metabolizing enzymes. In 2D monolayer
culture, estrogen increased the proliferation and the expression of the mesenchymal marker, CD73,
in hormone-depleted (HD) healthy ASCs compared to lipedema ASCs. The expression of ERf3 was
significantly increased in HD lipedema ASCs and spheroids compared to corresponding healthy cells.
In contrast, ERoc and GPER gene expression was significantly decreased in estrogen-treated lipedema
spheroids. CYP19A1 and LIPE gene expressions were significantly increased in estrogen-treated
healthy ASCs and spheroids, respectively, while estrogen upregulated the expression of PPAR-Y2
and ER« in estrogen-treated lipedema-differentiated adipocytes and spheroids. These results indicate
that estrogen may play a role in adipose tissue dysregulation in lipedema.
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1. Introduction

Lipedema is a hormone-related disease that affects approximately 11% of adult women
in the United States. This disorder is characterized by the bilateral and symmetrical de-
position of painful nodular subcutaneous fat in the lower extremities [1-3]. The bodily
appearance of lipedema is often confused with obesity and lymphedema. Women with
lipedema experience tenderness, heaviness of affected limbs, and difficulty in losing weight
as the fat tissue is highly resistant to diet and exercise [4,5]. Lipedema patients can be
categorized into four stages based on the severity of adipose tissue accumulation in the
extremities. During the progression of the disease, patients may experience increasing
levels of pain, swelling, and the accumulation of adipose tissue. In Stage 1, the skin appears
smooth with small fat lobules. As the condition advances to Stage 2, indentations become
noticeable with pearl-sized fat nodules beneath the skin’s surface. By Stage 3, the skin ex-
hibits large extrusions and overhanging fat, leading to pronounced tissue deformities. Stage
4 represents a combination of lipedema and lymphedema, known as Lipo-lymphedema.
It is important to note that lymphedema can develop concurrently with lipedema at any
stage, but the presence of lymphedema alone does not qualify a case as lipedema [3,5].
Liposuction is the most effective treatment for decreasing fibrotic lipedema and fat, thereby
improving mobility, which is essential for the quality of life of affected women [6-8]. While
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the etiology of lipedema remains unknown, hormones, genetic factors, inflammation, leaky
dilated blood, and lymphatic vessels all contribute to the pathogenesis of lipedema [9-14].

Estrogen and estrogen receptors (ERs) control the distribution of female body fat
and metabolism. ER«, ERf, and G protein-coupled ER (GPER) proteins are differen-
tially expressed in the upper and lower body fat in overweight-to-obese pre-menopausal
women, indicating that estrogen influences subcutaneous adipose tissue (SAT) distribution
through ER signaling [15,16]. ER« signaling regulates adipose-derived cells (ASCs) in
their development and function [17]. Meanwhile, ER(3 has direct anti-adipogenic effects
on adipocytes, inhibiting the transcriptional activity of peroxisome proliferator-activated
receptor gamma (PPARY) [18]. ERa knockout (KO) mice have shown that a reduction in
estrogen resulted in increased adipose tissue inflammation [19] with the upregulation of
pro-inflammatory genes, namely interleukins (IL-1f3, IL-6) and tumor necrosis factor-alpha
(TNF«); the development of obesity; and insulin resistance. However, ERp KO mice have
shown no change in body weight or fat distribution compared to wild-type mice [18,20].
Estrogen also regulates leptin and lipoprotein lipase genes (LPL) [21] and increases angio-
genesis and vascular endothelial growth factor (VEGF) expression [22], a phenomenon
observed in the SAT of lipedema patients [9,10,23]. The G protein-coupled estrogen re-
ceptor, GPER, has been implicated in regulating body weight, metabolism, inflammation,
and pain [16,24,25]. Studies using mouse models have demonstrated that mice lacking
GPER exhibit increased adiposity (increased fat mass and adipocyte size) and reduced
energy expenditure compared to wild-type mice. Furthermore, research indicates that the
absence of GPER or estrogen receptor alpha (ERx) expression in mice leads to metabolic
syndrome-like characteristics including inflammation, obesity, glucose intolerance, and
insulin resistance [26—-28]. The mechanisms by which estrogen acts through GPER are not
yet fully understood. Investigating the interactions between estrogen receptors (ERs) and
estrogen signaling pathways will contribute to a better understanding of their role in the
development of lipedema.

Adipose-derived cells isolated from SAT have been widely used to study adipocyte
differentiation and function in numerous estrogen-related diseases [29-33]. The biology
of ASCs obtained from lipedema patients may also be regulated via estrogen and/or
ERs, resulting in adipocyte hyperplasia and hypertrophy and increased inflammation and
fibrosis in adipose tissues.

In this study, we defined the expression of ERs and ER-metabolizing enzymes: hy-
droxysteroid 17-beta dehydrogenase (HSD17B1, 7, B12), cytochrome P450 (CYP19A1),
hormone-sensitive lipase (LIPE), enzyme steroid sulfatase (STS), and estrogen sulfotrans-
ferase (SULT1E1), which are markers in Body Mass Index (BMI) and age-matched non-
lipedema (healthy) and lipedema ASCs.

The impact of estrogen treatment (17(3-estradiol; E2) on the proliferation and adi-
pogenic differentiation potential of ASCs at the transcription and translational levels in 2D
monolayer cultures and spheroids was also determined. We hypothesize that hormones
contribute to adipose tissue dysregulation in lipedema. Thus, studying the effect of es-
trogen on adipocyte differentiation will provide researchers insights into the mechanism
involved in the development of the disease and will help direct future studies on hormonal
therapy as a form of treatment for lipedema patients.

2. Materials and Methods
2.1. Cell Culture

Adipose-derived stem cells (ASCs) were cultured in Dulbecco’s Modified Eagles Medium
(DMEM)/F12 (Hyclone, Logan, UT, USA), supplemented with 10% heat-inactivated fetal
bovine serum (FBS, Hyclone, Logan, UT, USA) and 1% antibiotic/antimycotic
(ThermoFisher Scientific, Waltham, MA, USA). The ASCs utilized in this study were
isolated from lipoaspirates of subcutaneous adipose tissue from the thigh obtained from
women undergoing elective liposuction. All subjects provided informed consent for inclu-
sion before they participated in the study. The study was conducted per the Declaration
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of Helsinki and the protocols were approved by the Human Research and Protection Pro-
gram at the University of Arizona (Institutional Review Board (IRB) protocol number:
1602399502) and Tulane University (IRB protocol number: 9189). ASCs isolated from
healthy and lipedema patients were fully characterized individually before being pooled,
as previously reported [34]. ASCs were used in passages 4-7 for the experiments. Table 1
summarizes the biological characteristics of ASCs used in this study.

Table 1. Characteristics of healthy and lipedema patients.

Characteristics Healthy Lipedema
n 5 5
Sex Female Female
Age 45 1 6.42 49.8 £3.97
BMI 29.2+2.77 29.9 £3.34
Stage 2 - 100%

2.2. Treatment of ASCs with 17 B-Estradiol

To study the effect of 173-estradiol (E2; Cat # E2758-1G, Lot #SLCJ5394, Sigma-Aldrich,
St. Louis, MO, USA) on ASC proliferation and adipogenic differentiation, the cells were
cultured in hormone-depleted (HD) medium [(DMEM/F12, no phenol red (Thermo Fisher
Scientific, Cat #21-041-025, Waltham, MA, USA), charcoal-stripped (CS) FBS (ThermoFisher
Scientific, Cat #12-676-029, Lot #2490726R) and 1% antibiotic/antimycotic] for 48 h and then
treated with E2 at 100 nM for 72 h. In all the experiments, four groups were set as follows:
ASCs cultured in DMEM/F12 without E2 as a control [Ctrl]; ASCs cultured in DMEM/F12
with E2 treatment [Ctrl + E2]; ASCs cultured in HD medium without E2 treatment [HD];
and ASCs cultured in HD medium with E2 treatment [HD + E2].

2.3. AlamarBlue Cell Proliferation Assay

ASCs were seeded at a density of 5 x 10% cells/cm? in a 96-well plate. Cell pro-
liferation was assessed in culture on days 1, 7, 14, and 21. Cells were incubated with
20 uL of AlamarBlue reagent (Thermo Fisher Scientific, USA) for 2 h at 37 °C with 5% CO,.
Fluorescence intensity was measured with excitation at 540 nm and emission at 600 nm on
a Synergy™ HTX Multi-Mode Microplate Reader (BioTek, Waltham, MA, USA).

2.4. Flow Cytometry

For phenotypic analysis, cells were blocked with 1% BSA and 1% CD16/CD32 in 1x
PBS and stained with the following antibodies at RT for 15 min: CD73 (Cat #: 550257, BD
Biosciences, San Jose, CA, USA), CD90 (Cat #: 11-0909-42, Invitrogen, Waltham, MA, USA),
and CD105 (Cat #: 17-1057-42, Invitrogen, Waltham, MA, USA). Cells were then fixed with
1% paraformaldehyde (PFA) and a total of 10,000 events were captured and analyzed with
BD Accuri™ C6 Plus (BD Biosciences, USA).

2.5. Adipogenic Differentiation

ASCs were seeded at a density of 2 x 10* cells/cm? and grown in DMEM /F12. Before
differentiation, the medium was replaced with hormone-depleted (HD) media or kept in
DMEM /F12 medium for 48 h, and the cells were either treated or not with E2 for 72 h.
After treatment, the medium was changed to adipogenic differentiation-inducing medium
(AdipoQual, Obatala Biosciences, New Orleans, LA, USA) to differentiate the cells in the
presence and absence of E2. Undifferentiated control cells were kept in the DMEM /F12
medium. The medium was changed every 3 days until day 21 (D21). For staining, control
and differentiated cells were fixed with 4% PFA for 30 min and stained with filtered Oil Red
O (Sigma, USA) for 15 min, followed by multiple rinses with 1x PBS. These cells were then
visualized using EVOS™ M5000 Imaging System (Thermo Fisher Scientific) at 10x and
20x magnification. The absorbance of the Oil Red O eluted by adding 100% isopropanol
was measured at a 584 nm wavelength using spectrophotometry. Differentiation values are
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reported as a percent of undifferentiated control cells. For transcriptional analysis, plates
were washed twice with 1x PBS and stored at —80 °C for RNA extraction.

2.6. Formation of ASC Spheroids

ASCs were seeded at a density of 30 x 10% cells/cm? in 12-well plates coated with
Ultrapure Agarose solution (1.5% w/v, Technologies, Carlsbad, CA, USA) dissolved in
basal medium DMEM/F-12. The plates were placed on an orbital shaker at 50 rpm. ASCs
aggregated in suspension (forming spheroids) and the assembly process was examined
using EVOS™ M5000 Imaging System on days 2 and 10 with images at 10 x magnifica-
tion. The diameter of the spheroids was measured with Image] software (Version 1.54i)
(National Institutes of Health, Bethesda, MD, USA, http://imagej.nih.gov/ij/, accessed on
3 March 2024).

2.7. Quantitative Polymerase Chain Reaction (JPCR)

Total RNA from ASCs was extracted using an RNA extraction kit (Qiagen, German-
town, MD, USA). One microgram of mRNA was used for cDNA synthesis with an Applied
Bioscience purification kit (Thermo Fisher Scientific, USA). qRT-PCR was performed using
the instructions from the SYBR Green qPCR SuperMix (Bio-Rad, Hercules, CA, USA) ac-
cording to the manufacturer’s instructions. Oligonucleotide primers were designed using
the vendor’s software (IDT, Coralville, IA, USA). Table 2 lists the primer sequences used
for qRT-PCR. PCR conditions: 2 min at 95 °C and 40 cycles of 15 s at 95 °C and 30 s at
60 °C. The target and reference genes were amplified in separate wells. All reactions were
performed in duplicate. The 2(-24€T) method was used to quantify gene expressions and
normalized data to GAPDH, which was used as an internal control.

Table 2. List of primers used for qRT-PCR.

Name Forward (5'-3') Reverse (5'-3')
ER«x GCCATGGTGGAGATCTTCGA CCTCTCCCTGCAGATTCATCA
Erp AGAGCTCCTGGTGTGAAGCAA GACAGCGCAGTGAGCATC
GPER1 TTCCGCGAGAAGATGACCATCC TAGTACCGCTCGTGCAGGTTGA
PPARG2 AGGCGAGGGCGATCTTG CCCATCATTAAGGAATTCATGTCATA
GAPDH CGCTGAGTACGTCGTGGAGTC GCAGGAGGCATTGCAGATGA
STS GGACTGGAGTGTGGGGCAGAT GTGCTCCCTGGTCCGATGTG
LIPE AGACTTCCGCCTGGGTGCCT CGGCGCATCGGCTCTGCTAT
CYP19A1 ACTACAACCGGGTATATGGAGAA TCGAGAGCTGTAATGATTGTGC
HSD17B1 GAGCGTGGGAGGATTGATGG AGGCTCAAGTGGACCCCAAA
HSD17B7 TTGACACCATATAATGGAACAGAAG TGATCAGAGGATTGAGAGATTCAG
HSD17B12 GCCAACTTTGGATAAGCCCTCTC AGGCAGGTTTGAGATTATCGAGC
SULT1E1 TGCCACCTGAACTTCTTCCTGC CCAGGATTTGGATGACCAGCCA

2.8. Western Blot Analyses

Capillary Western analyses were performed using the ProteinSimple Jess System
(V 2.5). Cells were lysed with RIPA lysis buffer (Cat #: 89900; Thermo Fisher) supplemented
with 1X protease inhibitor (Cat #: 1862209; Thermo Fisher). Protein samples were quantified
using the bicinchoninic acid assay (BCA, Cat #: 23225; Thermo Fisher), and a total of 0.4 mg
of protein lysate was loaded onto the plate along with the following primary antibodies
for ERx (1:10; Cat #: AF5715, R&D systems, Minneapolis, MN, USA), ER{ (1:10; Cat #:
NB200-305, Novus Biologicals, Bio-Techne, Minneapolis, MN, USA), PPARy (1:100; Cat #:
2443; Cell Signaling Technologies, Danvers, MA, USA), and GAPDH (1:300; Cat #:2118; Cell
Signaling Technologies, Danvers, MA, USA). After loading the plate according to the man-
ufacturer’s instructions, the separation electrophoresis and immunodetection steps occur
in the fully automated capillary system. Jess Western data were analyzed using Compass
for Simple Western software (V 2.5) (ProteinSimple, Bio-Techne, Minneapolis, MN, USA).
The area under curves from chemiluminescence chromatograms was used to determine the
relative number of proteins. Expression levels of all proteins were normalized to GAPDH
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for the 12-230 kDa Separation Modules (ProteinSimple, Bio-Techne, Minneapolis, MN,
USA). Pseudo-blots, generated via the compass software from the high dynamic range 4.0,
are presented with each protein of interest.

2.9. Statistical Analysis

GraphPad PRISM 8 was used for all statistical analyses. The Mann-Whitney
U test was used to determine the differences between the two ASC groups. One-way
ANOVA and Tukey’s post hoc test were used to analyze the differences between the four
groups. Asterisks (*) indicate statistical significance: * p < 0.05; ** p < 0.01; *** p < 0.001;
% p < 0.0001.

3. Results

3.1. Estrogen Increased the Proliferation and the Expression of Stemness Markers in Healthy ASCs
in 2D Monolayer Culture

To study the effect of estrogen (E2) treatment on ASC proliferation and stemness,
ASCs were seeded in HD media before treatment. The data show a significant decrease
in the proliferation rate of both healthy and lipedema ASCs treated with HD media alone
as compared to cells cultured in DMEM-F12 (control) media (Figure 1A). Interestingly,
E2 treatment did not affect the proliferation rate of ASCs cultured in DMEM-F12 media
(Figure 1B); however, it significantly increased the proliferation rate of healthy but not
lipedema ASCs cultured in HD media, indicating that lipedema ASCs are not responsive to
estrogen treatment (Figure 1C).
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Figure 1. Effect of 173-Estradiol on the proliferation and stemness of ASCs in 2D monolayer culture.
(A—C). The AlamarBlue assays show a significant decrease in the proliferation rate of both healthy
and lipedema ASCs treated with HD media (A), no change in cells seeded in DMEM-F12 and treated
with E2 (B), and an increase in the proliferation rate of HD healthy ASCs treated with E2 compared
to lipedema cells (C) at day 12 in culture (1 = 3). RFU: Relative fluorescence unit. The values are
the mean SEM. ** p < 0.01, **** p < 0.0001. (D-F). Flow cytometry analysis of the surface marker
expression shows a significant increase in (D) CD73 in HD healthy ASCs compared to untreated
healthy and lipedema ASCs (n = 3). Values are means + SEM. * p < 0.05.

E2 treatment also increased the expression of mesenchymal stem cell (MSC) markers
(CD73, CDY0, and CD105) in healthy ASCs but not in lipedema ASCs (Figure 1D-F).
Additionally, HD media significantly increased the expression of CD73 in healthy ASCs
compared to lipedema ASCs and cells cultured in control media (Figure 1D).
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3.2. Estrogen Increased the Expression of ERs in ASCs in 2D Monolayer Culture, but It Decreased
the Expression of ERa and GPER in Lipedema Spheroid

E2 treatment significantly increased the gene expression of ERf3 (~3-fold) in both
HD-treated healthy and lipedema ASCs compared to untreated HD cells. In contrast, GPER
gene expression decreased in HD-treated healthy ASCs compared to untreated HD cells
(Figure 2A). It is worth noting that HD media alone significantly increased the expression
of ERs in both healthy (ER«, 3-fold; ERf3, 2-fold) and lipedema (ER«, 3-fold; ERf3, 4-fold)
ASCs compared to untreated control cells. ERx and ER expression is significantly higher
at protein expression level in HD-treated lipedema ASCs (2-fold) than in untreated control
healthy and lipedema ASCs (Figure 2B,C, Supplementary Figure S1).
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Figure 2. Expression of estrogen receptors in ASCs. (A). qRT-PCR shows a significant increase in ER
gene expression in HD-treated healthy and lipedema ASCs (1 = 3). (B). Quantification of Western
Blot gels shows increased ER protein expression in HD-treated healthy and lipedema ASCs (1 = 3).
(©). Capillary Western blot (Jess) assay showing ER«, ERf3, and GADPH protein expression in an
assembled gel-like image view. Values are means & SEM. * p < 0.05; ** p < 0.01.

Interestingly, the expression of ER3 (2-fold) at both the gene and protein levels was
significantly increased in HD lipedema ASCs and spheroids (Figure 3A,B, Supplementary
Figures S2 and S3) compared to untreated control lipedema and healthy cells. In contrast,
ERa and GPER (0.5-fold) gene expression was significantly decreased in estrogen-treated
lipedema spheroids compared to control cells and healthy spheroids (Figure 3A). The
difference in the ER expression in E2-treated ASCs between 2D monolayer and spheroids is
due to differences in culture conditions, the microenvironment, cellular interactions, and
effects of the treatment.

3.3. Estrogen Significantly Increased the Expression of HSD17B7, LIPE, and STS in Lipedema
ASCs and CYP19A1 in Healthy ASCs in 2D Monolayer Culture

E2 treatment significantly increased the gene expression of HSD17B7 in both HD-
treated healthy (~1.7-fold) and lipedema (~2-fold) ASCs compared to untreated control
cells (Figure 4B). Interestingly, HSD17B7 gene expression is higher in HD-treated lipedema
cells than in healthy cells, suggesting a higher conversion of estrone (E1) to estradiol (E2)
in lipedema.
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Figure 4. Expression of estrogen-metabolizing enzymes in ASCs. (A-F). qRT-PCR shows a significant
increase in HSD17B1 (A), HSD17B7 (B), LIPE (C), and SULTEL1 (E) gene expression in HD-treated
healthy and lipedema ASCs (1 = 3). (B). qRT-PCR shows a significant increase in HSD17B7 in
estrogen HD-treated healthy and lipedema ASCs (1 = 3). (C,D). qRT-PCR shows a significant increase
in LIPE (C), STS (D), and CYP19A1 (F) gene expression in estrogen HD-treated lipedema ASCs
(n = 3). (F). qRT-PCR shows a significant increase in gene expression in estrogen HD-treated healthy
ASCs (n = 3). The values are means + SEM. * p < 0.05; ** p < 0.01; *** p < 0.001; *** p < 0.0001.
Abbreviations: HSD17B, hydroxysteroid 17-beta dehydrogenase; STS, steroid sulfatase; SULT1E1,
estrogen sulfotransferase.
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E2 treatment significantly increased the gene expression of LIPE (3-fold) and STS
(1.5-fold) in HD-treated lipedema cells compared to untreated cells (Figure 4C,D).
E2 treatment also significantly increased the gene expression of CYP19A1 (~10-fold) in
HD-treated healthy ASCs (Figure 4F); however, it did not affect lipedema cells. Addition-
ally, HD media significantly increased the gene expression of all the estrogen-metabolizing
enzymes in healthy and lipedema ASCs compared to untreated cells (Figure 4). E2 treat-
ment decreased the expression of LIPE and SULTE1 in HD-treated healthy ASCs but not
STS, suggesting that healthy cells respond to estrogen treatment.

3.4. Estrogen Significantly Increased the Expression of PPAR-Y2 in Differentiated Lipedema
Adipocytes and Spheroids

E2 treatment significantly increased the protein expression of PPAR-y2 in
differentiated lipedema adipocytes both in 2D monolayer culture (1.5-fold, Figure 5B,
Supplementary Figure S4) and spheroids (3-fold, Figure 6B, Supplementary Figure S5)
compared to untreated control lipedema (Figures 5 and 6). Additionally, PPAR-y2 protein
expression in E2-treated lipedema spheroid is significantly higher than in healthy spheroids
(3-fold, Figure 6B).
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Figure 5. Expression of adipogenic marker and ERs in differentiated healthy and lipedema adipocytes.
(A). qRT-PCR shows the expression of PPAR-y2 in differentiated cells (n = 3). (B). gRT-PCR shows
a significant increase in ER gene expression in estrogen HD-treated cells in healthy adipocytes
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(n = 3) and a significant decrease in ER3 gene expression in estrogen HD-treated cells lipedema cells
compared to healthy cells. (C). Quantification of Western Blot gels shows a significant increase of
PPAR-y2 in estrogen-differentiated lipedema adipocytes. (D). Quantification of Western Blot gels of
ER in estrogen-differentiated healthy and lipedema adipocytes. Abbreviation: PPAR-y, peroxisome
proliferator-activated receptor gamma. Values are means + SEM. * p < 0.05; ** p < 0.01.

In 2D culture, E2 treatment significantly increased ERx and ERp gene expression in
estrogen HD-treated healthy adipocytes (~2-fold, Figure 5B) compared to untreated healthy
and lipedema cells. In contrast, E2 treatment significantly increased ERx gene (1.5-fold) and
protein (5-fold) expression in treated differentiated lipedema spheroids compared to un-
treated control cells and healthy spheroids (Figure 6B,D, Supplementary Figures S6 and S7).
E2 treatment also increased ER( protein expression in HD-treated differentiated
lipedema spheroids compared to corresponding healthy cells (~6-fold, Figure 6D,
Supplementary Figures S6 and S7).
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Figure 6. Expression of adipogenic marker and ERs in differentiated healthy and lipedema dif-
ferentiated spheroids. (A). qRT-PCR shows the expression of PPAR-y2 in differentiated spheroids
(n = 3). (B). qRT-PCR shows a significant increase in ERx gene expression in estrogen HD-treated

cells in lipedema-differentiated spheroids (n = 3). (C,D). Quantification of Western Blot gels shows a
significant increase of PPAR-y2 in estrogen-treated differentiated lipedema spheroids. Abbreviation:
PPAR-y, peroxisome proliferator-activated receptor gamma. Values are means £+ SEM. * p < 0.05;
**p <0.01; *** p < 0.001.

4. Discussion

Lipedema manifests during puberty or upon other significant hormonal changes [5,14].
We hypothesized that alteration in sex-specific hormones, in particular estrogen, drives
lipedema pathogenesis. Estrogen and its receptors have been shown to play a role in
adipose tissue development, physiology, and function [35-38]. Studies have shown that
estrogen is protective against abdominal obesity [39] and bone development [40].

In this study, the effect(s) of estrogen treatment (E2) on the proliferation and stemness
of ASCs as well as on the expression of ERs, ER metabolizing enzymes, and adipogenic
markers in ASCs and differentiated adipocytes in 2D monolayer and 3D (spheroid) cultures
were investigated. The data revealed that E2 increased the proliferation and the expression
of stemness markers, CD73, in healthy but not in lipedema ASCs in 2D monolayer culture
(Figure 1), suggesting that lipedema ASCs are not sensitive to estrogen treatment. Our
data also showed that E2 treatment increased ERx and ERf3 expression in healthy and
lipedema ASCs in 2D monolayer culture (Figure 2). In 3D culture, E2 treatment decreased
the expression of ERx and GPER in lipedema but not in healthy spheroids, indicating that
lipedema spheroids are responsive to the E2 treatment (Figure 3). Studies have shown
that cells grown in 3D culture mimic the in vivo microenvironment [41-43], and thus, E2
treatment might be experienced differently by cells grown in 3D compared to 2D monolayer
cultures due to cell-cell and the cell-ECM interactions. In addition to the different culture
conditions, the variability between the cell lines is considered one of the major factors
affecting the experiments conducted in this study.

Furthermore, studies have shown that E2 treatment regulates the expression of
adipogenesis-related transcription factors [44], and contributes to adipocyte hyperplasia [13,45].
In our study, estrogen treatment significantly increased the expression of PPAR-Y2 in differenti-
ated lipedema adipocytes and spheroids (Figures 5 and 6), which correlates with the increase
in adipocyte size observed in lipedema tissue [10].

Hydroxysteroid 17-beta dehydrogenase 7, HSD17B7, is an enzyme that converts
estrone (E1, less active form of estrogen) to estradiol (E2, active form). Studies have shown
that the HSD17B7 gene is highly expressed in breast cancer cells, causing the progression
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of breast cancer [46—-48]. In our study, E2 treatment significantly increased the expression
of HSD17B7 in lipedema ASCs but not in healthy cells (Figure 4), suggesting a role of
estradiol in lipedema pathogenesis similar to breast cancer. Another key enzyme in the
estrogen cycle is hormone-sensitive lipase (LIPE) [35,49,50]. Our data showed that E2
treatment increases LIPE gene expression in HD-lipedema adipocytes and in adipogenic-
differentiated spheroids but not in healthy ASCs (Supplementary Figure S8). Studies
have shown that an increase in LIPE is correlated with increased obesity and adipocyte
hypertrophy [51-53], a phenomenon observed in lipedema [10].

Estrogen sulfatase (STS) and estrogen sulfotransferase (SULTE1) enzymes regulate
estrogen synthesis [54,55]. The data showed that E2 treatment increases STS but not
SULTE1 gene expression in HD-lipedema ASCs but not healthy ASCs (Figure 4). Studies
have demonstrated that in breast carcinoma, there is an increased expression of STS along
with an elevated expression of the HSD17B enzymes. This increased expression leads to
the increased synthesis of estradiol, a potent form of estrogen. Consequently, the inhibition
of STS is now being considered as a potential therapeutic strategy for hormone-dependent
diseases [56-58]. Furthermore, estrogen treatment increased the expression of aromatase
gene CYP19A1, an enzyme that converts androgens to estradiol, in healthy ASCs but not in
lipedema. Studies have shown that alteration in CYP19A1 expression is associated with
adipose tissue inflammation and the development of metastasis in breast cancer [59-61].

Taken together, these findings suggest that estrogen plays a role in the pathogenesis of
lipedema in a similar manner to estrogen-related diseases, such as breast cancer. Addition-
ally, the change we observed is statistically significant based on our current sample size.
The number of samples used in our study is relatively low, which means that there is a
higher chance that our results could be influenced by random variation or other factors. To
ensure the reliability and confirm the biological significance of these findings, it is crucial
to collect a larger and more representative sample size. Gathering additional samples will
strengthen our analysis by reducing the margin of error and increasing the robustness of
our conclusions based on the data.

This study has two main limitations: (1) the small number of samples due to the
limited availability of ASCs from lipedema participants, and (2) the lipedema samples used
in this study were clustered in Stage 2. Therefore, our future studies will include a larger
cohort encompassing all stages of lipedema and menopausal status to comprehensively
investigate the role of estrogen in subcutaneous adipose tissue. This investigation aims to
determine the expression and activity of estrogen in pre- and post-menopausal women
with lipedema, thereby understanding the pathophysiology of lipedema and potentially
characterizing it as a hormonal disease.

5. Conclusions

Lipedema is a complex disease; in addition to hormonal components, inflammation,
fibrosis, and adipose tissue angiogenesis contribute to the disease’s severity. This study in-
dicates that the expression of ERs and several estrogen-metabolizing enzymes are different
in lipedema and suggests that estrogen may play a role in adipose tissue dysregulation in
lipedema. Exploring this possible etiology further could contribute to expanding treatment
options and management available for lipedema. Thus, developing a potential treatment
for lipedema should take into consideration inhibitors of ER-metabolizing enzymes, in-
flammation, and fibrosis.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/biomedicines12051042 /s1: Figure S1. Western Blot showing the
expression of (A) GAPDH (capillaries 2-9) and ERp (capillaries 11-18) and (B) ER« in healthy and
lipedema ASCs in 2D monolayer culture. The samples were run on a 12-230 kDa capillary kit;
Figure S2. Western Blot showing the expression of (A,B) ERx and GAPDH and (C,D) ERf and
GAPDH in healthy spheroids. The samples were run on a 12-230 kDa capillary kit. A-B and C-D are
different exposures of the same run; Figure S3. Western Blot showing the expression of (A) ERx and
GAPDH and (B,C) ERp and GAPDH in lipedema spheroids. The samples were run on a 12-230 kDa
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capillary kit. B,C are different exposures of the same run; Figure S4. A,B. Western Blot showing the
expression of GAPDH (capillaries 2-9), total PPARg (capillaries 10-17), ER (capillaries 18-25), and
C. Western Blot showing the expression of ER« in healthy and lipedema adipocytes in 2D monolayer
cultures. The samples were run on a 12-230 kDa capillary kit. A-B are different exposures of the same
run; Figure S5. Western Blot showing the expression of GAPDH (capillaries 2-9), and total PPARg
(capillaries 10-17) in adipogenic-differentiated spheroids. The samples were run on a 12-230 kDa
capillary kit. A-C are different exposures of the same run; Figure S6. Western Blot showing the
expression of (A,B) ERp and GAPDH and (C,D) ERx and GAPDH in adipogenic-differentiated
healthy spheroids. The samples were run on a 12-230 kDa capillary kit. A-B, C-D are different
exposures of the same run; Figure S7. Western Blot showing the expression of GAPDH, ER«x, and ERf3
in adipogenic-differentiated lipedema spheroids. The samples were run on a 12-230 kDa capillary kit.
A—C are different exposures of the same run; Figure S8. RT-PCR showed increased expression of LIPE
in E2-HD lipedema treated (A) adipocytes in 2D culture and (B) differentiated spheroids compared to
untreated control cells (n = 3, * p < 0.05).
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