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Abstract: This study employs a meshless computational model to investigate the impacts of compres-
sion and traction on angiogenesis, exploring their effects on vascular endothelial growth factor (VEGF)
diffusion and subsequent capillary network formation. Three distinct initial domain geometries
were defined to simulate variations in endothelial cell sprouting and VEGF release. Compression
and traction were applied, and the ensuing effects on VEGF diffusion coefficients were analysed.
Compression promoted angiogenesis, increasing capillary network density. The reduction in the
VEGF diffusion coefficient under compression altered VEGF concentration, impacting endothelial
cell migration patterns. The findings were consistent across diverse simulation scenarios, demonstrat-
ing the robust influence of compression on angiogenesis. This computational study enhances our
understanding of the intricate interplay between mechanical forces and angiogenesis. Compression
emerges as an effective mediator of angiogenesis, influencing VEGF diffusion and vascular pattern.
These insights may contribute to innovative therapeutic strategies for angiogenesis-related disorders,
fostering tissue regeneration and addressing diseases where angiogenesis is crucial.

Keywords: angiogenesis; computational modelling; compression loading; traction loading; radial
point interpolation method

1. Introduction

Angiogenesis, the process of new blood vessel formation from pre-existing ones, plays
a critical role in various physiological and pathological conditions [1]. It ensures an ade-
quate blood supply to growing tissues, supporting their proper function and development.
The interplay between mechanical and biological factors in promoting angiogenesis adds
complexity to our understanding of this phenomenon.

In physiological scenarios, mechanical cues from the surrounding environment guide
angiogenesis. For instance, during tissue development or repair, the mechanical forces
generated by contracting muscles [2,3] or the need for increased blood flow [4,5] can trigger
angiogenesis to ensure an adequate supply of nutrients and oxygen to the affected area.
Conversely, in pathological conditions, the mechanical microenvironment of tissues can
be altered, influencing angiogenesis. For example, tumour-associated mechanical forces,
arising from increased interstitial pressure or altered extracellular matrix stiffness [6],
can promote angiogenesis within the tumour microenvironment [7]. As presented, an-
giogenesis holds paramount importance in maintaining physiological homeostasis and
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contributing to the progression of several diseases [8]. The interplay between biological
and mechanical factors in angiogenesis highlights the complexity of this process and opens
ways for innovative therapeutic approaches that consider both aspects in the treatment of
angiogenesis-related disorders.

Mechanical forces, such as compression and traction, exert profound effects on angio-
genesis [9–11]. The application of mechanical forces can influence the release of angiogenic
growth factors, like vascular endothelial growth factor (VEGF) [12], and modulate the
behaviour of endothelial cells [13], which are essential for blood vessel formation. The
mechanical forces of compression and traction are inherent to physiological environments,
arising from factors such as muscle contractions, mechanical loading, and pressure from
adjacent tissues [11,14,15]. These forces significantly impact the behaviour of blood vessels
and the cells involved in angiogenesis, particularly endothelial cells.

Our study focuses on the computational simulation of these mechanical forces, using
a model that incorporates the chemical diffusion of VEGF to regulate endothelial cell mi-
gration. In our previous studies, we developed a computational model that mimics in vivo
angiogenesis. This model proves to be an effective tool for the analysis of the impact of
VEGF diffusion on endothelial cell migration and the subsequent formation of capillary net-
works [16,17]. Computational simulation offers cost-effective and time-efficient approaches
for studying complex phenomena such as angiogenesis [18,19]. Moreover, computational
simulations enable the exploration of a wide range of scenarios and conditions, offering
a high-throughput approach that allows researchers to efficiently explore numerous pos-
sibilities and to predict outcomes based on different scenarios, allowing them to guide
experimental design and optimise resource utilisation. Additionally, in the context of angio-
genesis [20–23], where the process is highly dynamic and influenced by numerous factors,
computational simulation proves invaluable in deciphering the underlying mechanisms,
exploring therapeutic interventions, and advancing our understanding of how mechanical
forces, such as compression and traction, impact this vital biological phenomenon.

The impact of compression on angiogenesis has been explored in experimental stud-
ies [11,24–27]; however, the specific influence on the VEGF diffusion coefficient has re-
mained largely unexamined. Our computational simulations, presented in this study,
bridge this gap by providing a detailed analysis of the effect of compression and traction
on capillary morphology and angiogenesis. Based on our simulations, it was demonstrated
a notable promotion of angiogenesis through compression, resulting in enhanced cap-
illary network density. Conversely, traction showed no significant effect on promoting
angiogenesis. Nevertheless, our observations indicated that traction elevates the VEGF
diffusion coefficient, fostering the migration of endothelial cells toward the region experi-
encing traction. These findings underscore the critical role of computational simulations in
elucidating the mechanical aspects of angiogenesis, providing insights that complement
experimental studies.

In summary, our study demonstrates the relationship between mechanical forces,
specifically compression, and angiogenesis. By employing computational simulations,
we contribute to the understanding of how these forces influence the VEGF diffusion
coefficient and, consequently, capillary network formation. This knowledge not only
advances our understanding of angiogenesis but also underscores the significance of
integrating computational approaches to study the complexities of biological processes.

2. Materials and Methods
2.1. Numerical Method

In this study, the discretisation method used was the Radial Point Interpolation Method
(RPIM) [28,29]. RPIM has previously proven its efficacy in modelling angiogenesis [16,30],
and the comprehensive RPIM formulation can be found in the literature [31].

After identifying the problem domain and its essential natural boundary conditions,
the domain can be discretised using a nodal set N = {n0, n1, . . . , nN}. An integrated
grid, either structured or unstructured, is subsequently established. Integration points
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within each grid cell are distributed according to a Gauss–Legendre integration scheme.
Each integration point represents a partial volume of the problem complete volume, and
this partial volume is defined by its associated weight, denoted as ω̂. The background
integration mesh serves the purpose of numerically integrating the integro-differential
equations that govern the physical phenomena being studied. Importantly, there are no
predefined relationships between nodes and integration points, or even among nodes
and integration points. RPIM stands out as a meshless method due to its lack of pre-
established connectivity.

In meshless techniques, connectivity is determined by the influence domain concept.
Every integration point xI searches radially for its n nearest nodes. According to the
literature, it is advisable to maintain between 9 and 16 nodes within the influence domain of
each integration point [31]. Connectivity between nodes is established through overlapping
influence domains. Subsequently, shape functions are developed. RPIM employs the radial
point interpolators method for shaping these functions [28,29]. For an integration point xI ,
with n nodes within its influence domain, the interpolation function uh(xI) can be defined
as follows:

uh(xI) =
n

∑
i=1

Ri(xI)·ai(xI) +
m

∑
j=1

pj(xI)·bj(xI) =
{

R(xI)
T, p(xI)

T
}{a(xI)

b(xI)

}
(1)

The interpolation involves radial basis functions, denoted as R(xI), and a polynomial
basis function, denoted as p(xI). The polynomial p(xI) is composed of m monomials, and
the non-constant coefficients of each basis functions are represented by a(xI) and b(xI),
respectively. These vectors can be expressed as follows:

R(xI) = [R1(xI)R2(xI) . . . Rn(xI)]
T (2)

P(xI) = [p1(xI)p2(xI) . . . pm(xI)]
T (3)

aT(xI) = [a1(xI)a2(xI) . . . an(xI)] (4)

bT(xI) = [b1(xI) b2(xI) . . . bm(xI)] (5)

The presented study employs the Multiquadrics Radial Basis Function (MQ-RBF) [28,31],
defined as: RiI(xI) =

(
d2

Ii + c2)p. The MQ-RBF shape parameters, c and p, have been
previously tested and optimised for efficiency in prior research [31]. In this study, we
adopt the recommended values: c = 0.0001 and p = 0.9999. Furthermore, dIi characterises
the Euclidean norm between the integration point xI = {xI , yI}T and node xi = {xi, yi}T ,

dIi =
√
(xi − xI)

2 + (yi − yI)
2. Concerning the polynomial basis function, p(xI), this work

uses its linear version:
p(x)T = [1, x, y] (6)

Consequently, m = 3. An additional equation system must be included to obtain an unique
solution [30]:

n

∑
i=1

pj(xi)ai(xi) = 0 (7)

Applying Equations (1) and (7) for every node within the influence domain of xI , the
following system of equations is achieved:{

us
0

}
=

[
R P
PT 0

]{
a
b

}
= G

{
a
b

}
(8)
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The radial moment matrix is defined by R, the polynomial moment matrix by P, and
the vector of the nodal values by us :

R =


R(r11) R(r21) . . . R(r1n)
R(r21) R(r22) . . . R(r2n)

...
R(rn1)

...
R(rn2)

...
. . . R(rnn)

 (9)

P =


1 x1 y1
1 x2 y2
...

...
...

1 xn yn

 (10)

us = {u1, u2, . . . un}T (11)

Thus, the non-constant coefficients can be derived as follows:{
a
b

}
= G−1

{
u
0

}
(12)

Substituting the result from Equation (12) into Equation (1):

uh(xI) =
{

RT(xI)pT(xI)
}

G−1
{

u
0

}
= {φ(xI), Ψ(xI)}

{
u
0

}
(13)

where φ(xI) is the RPI shape function vector that is defined as follows:

φ(xI) = {φ1(xI) φ2(xI) . . . φn(xI)} (14)

And, Ψ(xI) the residual vector defined as follows:

Ψ(xI) = {Ψ1(xI) Ψ2(xI) . . . Ψm(xI)} (15)

The spatial partial derivatives of φ(xI) are readily acquired, as detailed in [31]. More-
over, φ(xI) features the Kronecker delta property δij, allowing to impose the essential
boundary conditions within the stiffness matrix, similar to other interpolation techniques
like the finite element method [32]. Additionally, the compact support of φ(xI) facilitates
the creation of banded stiffness matrices [31], thereby reducing computational costs.

2.2. Reaction–Diffusion System

Modelling endothelial cell migration during angiogenesis, as described in previous
studies [16,30], entailed accounting for the chemical diffusion of VEGF within a homoge-
neous medium. Additionally, numerical simulation of VEGF diffusion as a field problem
is feasible [33]. Utilising the meshless formulation, the discrete equation system for the
variable field being analysed can be established through the general formulation of the
Helmholtz equation (Equation (16).

Dx
∂2ϕ

∂x2 + Dy
∂2ϕ

∂y2 − gϕ + Q = 0 (16)

where ϕ is the field variable that corresponds to the VEGF concentration, Dx and Dy repre-
sent the VEGF diffusion coefficient along dimensions x and y, respectively, g represents the
matrix of chemical infusibility (in this work g is neglected, g = 0) and Q is the VEGF release
rate. Using the weighted residual approach, the following meshless system equations can
be formulated: [

KD + Kg
]
Φ − fq = 0 (17)
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where KD, after the manipulation of Equation (16), can be represented as

KD =
∫

A
BT

GDBGdA (18)

being BG and D, respectively, defined as

BG =

[
∂φ
∂x
∂φ
∂y

]
=

[
∂φ1
∂x

∂φ2
∂x . . . ∂φn

∂x
∂φ1
∂y

∂φ2
∂y . . . ∂φn

∂y

]
(19)

D =

[
Dx 0
0 Dy

]
(20)

Additionally, Kg can be defined as

Kg =
∫

A
g
{

φ1 φ2 . . . φn
}T{

φ1 φ2 . . . φn
}

dA (21)

and fq, the discrete VEGF release rate vector, is defined as

fq =
∫

A
Q
{

φ1 φ2 . . . φn
}TdA (22)

Using this methodology, and upon solving Equation (17), the final VEGF concentration
in the medium, denoted as Φ, can be determined. This VEGF concentration governs
endothelial cell migration and angiogenesis.

The resulting equation system can be represented as follows:

KΦ − fq = 0 (23)

being K = KD + Kg.
Due to the delta Kronecker property inherent in RPIM shape functions, the direct

imposition method is employed to impose periodic boundary conditions. Consequently,
by imposing identical VEGF concentrations at node ni (associated with the left essential
boundary) and node nj (associated with the right essential boundary), modifications are
applied to the stiffness matrix in the ith degrees of freedom.

Kim = 0 −→ m = 1, . . . , N
Kii = 1 ∧ Kij = −1

(24)

and in jth degree of freedom as

Kjm = 0 −→ m = 1, . . . , N
Kjj = 1 ∧ Kji = −1

(25)

where N represents the total number of degrees of freedom (in this case, the only vari-
able is the VEGF concentration, n is equal to the total number of nodes discretising the
problem domain).

2.3. Mechanical Loading Application

To simulate the domain stress–strain interactions, the elasticity theory was included
into the algorithm. Considering linear elastostatic relations, the following equilibrium
equations are considered at domain Ω:

∇Λ + b = 0 in Ω
Λ n = t on Γt
u = u on Γu

(26)
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where ∇ represents the gradient operator, u the displacement field, Λ the Cauchy stress
tensor, b the body force per unit volume, and Γ the contour containing the essential and the
natural boundaries, Γu and Γt, respectively. Note that Γ ∈ Ω : Γu ∪ Γt = Γ

∧
Γu ∩ Γt = ∅

and u represents the prescribed displacement on Γu, t the traction on Γt and n the unit
outward normal to Γ.

Applying the weak form of Galerkin, the following equation is obtained:

δL =
∫

Ω
δεTσdΩ −

∫
Ω

δuTbdΩ −
∫

Γt
δuTt dΓt = 0 (27)

where ε is the strain vector and σ is the stress vector, both in Voigt notation. The strain
vector, ε, and the stress vector, σ, using the Hooke’s law, can be defined, respectively,
as follows:

ε = Lu =


∂

∂x 0
0 ∂

∂y
∂

∂y
∂

∂x

 ·
{

u
v

}
(28)

σ = cε = cLu =

 1−υ2

E − υ+υ2

E 0
− υ+υ2

E
1−υ2

E 0
0 0 1

G


−1

·




∂
∂x 0
0 ∂

∂y
∂

∂y
∂

∂x

 ·
{

u
v

} (29)

where c is the material constitutive matrix, E is the Young’s modulus, υ is the material
Poisson’s coefficient and G is the elastic shear modulus (G = E/(2 + 2υ)). Upon manipula-
tion [31], Equation (27) can be written as

Ku = fb + ft (30)

being,

K =
∫

Ω
BT · c · BdΩ =

nQ

∑
i=1

BT
I · cI · BI · ω̂I (31)

fb =
∫

Ω
HT · bdΩ =

nQ

∑
i=1

HT
I · bI · ω̂I (32)

and,

ft =
∫

Ω
HT · tdΩ =

nq

∑
i=1

HT
I · tI · ω̂I (33)

Matrices BI and HI are defined as

BI =


∂φ1(xI)

∂x 0 ∂φ2(xI)
∂x 0 · · · ∂φn(xI)

∂x 0
0 ∂φ1(xI)

∂y 0 ∂φ2(xI)
∂y · · · 0 ∂φn(xI)

∂y
∂φ1(xI)

∂y
∂φ1(xI)

∂x
∂φ2(xI)

∂y
∂φ2(xI)

∂x · · · ∂φn(xI)
∂y

∂φn(xI)
∂x

 (34)

and,

HI =

[
φ1(xI) 0 φ2(xI) 0 · · · φn(xI) 0

0 φ1(xI) 0 φ2(xI) · · · 0 φn(xI)

]
(35)

nQ is the number of integration points discretising the problem domain, nq is the number
of integration points at the traction boundary and cI is the constitutive matrix of integration
point xI .

2.4. Model Parameters
2.4.1. Domain Geometry

The simulation of capillary network growth was conducted within 5 × 5 mm2 square
domain, discretised with 2601 nodes to create a regular nodal mesh. In this study, three dif-
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ferent initial domain geometries were defined, as illustrated in Figure 1, aligning with
approaches from previous works [16,30,34]. In the performed simulations, the location of
the capillary lumen, the endothelial cell monolayer and the VEGF release region change in
each model under analysis.
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Figure 1. Initial domain geometries used in this study. The location of the capillary lumen, the
endothelial cell monolayer and the VEGF release region change in the performed simulations. Label
in red represents the capillary lumen, label in dark red represents the endothelial cell monolayer, label
in light pink represents the extracellular matrix, and label in grey represents the VEGF release region.

2.4.2. Boundary Conditions

Concerning the essential boundary conditions, a VEGF basal concentration of
2.35 × 10−13 g mm−3 was applied in the capillary lumen and a concentration of
6.43 × 10−13 g mm−3 was applied in the VEGF release region [35]. Regarding the nat-
ural boundary conditions, a VEGF flux from the VEGF release region was applied. The
VEGF chemical diffusion coefficient used was 1.16 × 10−6 mm2 s−1 [36]. With this method-
ology, the VEGF gradient concentration that rules the endothelial cell migration during
angiogenesis was obtained (Figure 2). This gradient goes from dark blue to yellow. The
dark blue zone is located near the endothelial cell monolayer and has a VEGF concentration
of around 2.35 × 10−13 g mm−3. The yellow zone is located near the VEGF release region
and has the highest VEGF of around 6.43 × 10−13 g mm−3.
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In this study, the impact of applying mechanical loading on angiogenesis was investi-
gated, specifically examining its influence on the VEGF diffusion gradient. The details of
this effect are expounded below.

A hydrostatic pressure of pH = 0.0067 MPa (50 mmHg) [37] was applied to a specific
zone within the domain, which in this work corresponds to the central circle in Figure 3.
Considering a positive hydrostatic pressure will enable the analysis of the influence of
the VEGF diffusion gradient under tensile stress applied to the medium, while assuming
negative hydrostatic pressure will allow the study of the effect of compressive stress.
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To incorporate the effect of hydrostatic pressure in the medium, a mathematical model
was assumed. In this work, it was hypothesised that the VEGF diffusion coefficient in the
medium is influenced by the pressure within its domain. Consequently, a medium subjected
to compression stress is anticipated to exhibit a lower diffusion coefficient compared to the
basal value, as compression results in a more compact medium. Conversely, a tensile stress
is expected to elevate the diffusion coefficient above the basal level. Additionally, it was
assumed that the pressure decreases in a parabolic manner from the centre of the circle to
its periphery:

f = α ·
(

1 − dii
2/rc

2
)

(36)

where rc is the centre of the circle where hydrostatic pressure is applied and dii represents

the distance to the centre of the circle, and it is defined as dIC =
√
(xI − xc)

2 + (yI − yc)
2,

with xc and yc being the circle centre coordinates and xI and yI the coordinates of the
interest point. If dii > rc, then f = 0.

Regarding the alpha parameter, it was defined as follows:

α =
pH
pH

(37)

where pH is the hydrostatic pressure calculated by the mathematical code in the interest
point. In this study, different alpha values were analysed (0.5, 1.0 and 1.5).

Then, the VEGF diffusion coefficient within the circle was modified accordingly to the
following expression:

DVEGFH = DVEGF + (DVEGF · f ) (38)

with DVEGF being the basal VEGF diffusion coefficient.

2.5. Angiogenesis Modulation

In our model, angiogenesis initiation involves identifying the initial sprouting cells
within a designated sub-domain, using Cartesian coordinates. The initial number of
sprouting cells and its location vary in each simulation. Following this, an iterative loop is
initiated. At each time step, tip cells are sequentially marked to facilitate capillary network
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growth. Each time step corresponds to the duration for capillaries to migrate a small cluster
of endothelial cells. The direction of endothelial cell movement is determined by vector
u, which follows the gradient vector from the VEGF concentration field toward the VEGF
source. Consequently, the gradient of the VEGF concentration field (n = ∇Φ) is obtained,
with n being oriented towards the VEGF source, opposite to its support cell.

Accordingly, nmod =

[
cosθ sinθ
−sinθ cosθ

]
n. Then, the unit vector of nmod is calculated as

follows: u = nmod/||nmod||. Hence, utilising the directional vector u, the average cell-to-
cell distance is factored in to determine the new position of the tip cell. This is achieved
by adding the old tip cell position to the product of vector u and the average cell-to-
cell distance. If a node occupies the new tip cell position, it transforms into a tip cell.
Conversely, if no nodes are present at the new position, a new node is introduced into the
domain, subsequently becoming a tip cell. During each iteration, the VEGF concentration is
computed, and the tip cell’s new position is updated accordingly. Additionally, the VEGF
concentration at the boundary domain is enforced. The iterative process stops when the tip
cell reaches the domain boundary, reaches the VEGF release region, or approaches another
endothelial cell closely (half of the internodal distance).

The methodology for implementing the branching process is outlined in a previous
work [16]. Subsequently, capillary network observed in an in vivo angiogenesis assay was
analysed to establish a phenomenological law linking the distance between consecutive
branches and the capillary order. Capillary order was categorised based on capillary calibre,
with the first order representing capillaries of larger calibre and the third order representing
those of smaller calibre. Accordingly, a new branch occurs if the distance to the previous
branch is greater than the calculated distance for the capillary order considered.

2.6. Compression and Traction Effect on Angiogenesis Implementation

Most experimental studies indicate that compression has a more predominant role
than traction in promoting angiogenesis [11,24,25,37]. Thus, in this study, the effect of
compression on branching is analysed and the obtained numerical results were compared
with experimental data.

To achieve this, a modification in the phenomenological law governing branching
occurrence was implemented into the algorithm. Accordingly, when the tip cell enters
the zone where compression is applied, the distance required for a new branching, as
calculated by the previously described phenomenological law, is updated and reduced by
half. Utilising this approach within the computational model, we simulated the impact
of compressive loading on angiogenesis. To assess this impact, we the total number and
length of vessels were calculated from all traced vessels. Subsequently, the numerical
findings were juxtaposed with experimental findings sourced from the literature.

Given the scarcity of experimental studies evaluating the effect of traction on angiogene-
sis, particularly on endothelial cell migration, the occurrence of branching remained unaltered
and was simulated as in previous studies [16,17]. For the same reason, the comparison of
numerical results obtained for traction with experimental data was compromised.

3. Results
3.1. Effect of Compression and Traction in VEGF Diffusion Coefficient

Compression and traction are two crucial mechanical forces that play a significant role
in angiogenesis. Compression, as a mechanical force, is primarily exerted on tissues and
blood vessels in response to external factors. This force can arise from various sources, such
as muscle contractions, mechanical loading, or the pressure applied by adjacent tissues.
When blood vessels experience compression, it initiates a series of cellular responses
resulting in the activation of endothelial cells.

In our model, endothelial cell migration is regulated by the chemical diffusion of VEGF.
Accordingly, the influence of compression on the VEGF diffusion coefficient was analysed
and, consequently, in the VEGF gradient. Figure 4 demonstrates that compression leads to a
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reduction in the VEGF diffusion coefficient. Notably, this reduction is directly proportional
to the increment in the alpha parameter value. This reduction, in turn, impacts the VEGF
concentration within the region where compression is applied. As a consequence of this
change, endothelial cell migration is directed away from the area subjected to compression.
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Several simulations were conducted with distinct values for the alpha parameter to
fine-tune its optimal setting. Notably, when alpha was set to 1.5, it was observed with a
degree of instability in the results. Therefore, in our subsequent simulations, an alpha value
of 1.0 was adopted.

Traction is generated within cells and tissues due to the mechanical forces applied
to them. It is a result of the interaction between cells and the extracellular matrix and
can induce endothelial cell migration and alignment. Accordingly, analysing the effect
of traction in cell behaviour and in angiogenesis is a difficult task and there is a lack of
experimental results in this matter. Nevertheless, in this study, it was assumed that traction
would have an opposite effect on the VEGF diffusion coefficient compared to compression.
Employing this hypothesis, we conducted a numerical analysis to explore the impact of
traction on the VEGF diffusion coefficient and, consequently, its influence on endothelial
cell migration. Figure 5 reveals that traction leads to an increase in the VEGF diffusion
coefficient. As in the previously case, this increase is directly proportional to the increment
in the alpha parameter value. This increase, in turn, affects the VEGF concentration within
the region where traction is applied. As a consequence of this change, endothelial cells
migrate closer to the region where traction is being applied.

3.2. Effect of Compression and Traction in Angiogenesis

The impact of compression on angiogenesis has been explored in some experimen-
tal studies [11,24,25,37]. However, the impact of traction on angiogenesis has not been
previously investigated, and the precise influence of both compression and traction on
the VEGF diffusion coefficient remains unexplored. Therefore, in this study, four distinct
simulations were performed aiming to study the impact of compression and traction on
capillary morphology and angiogenesis. These simulations involved variations in the
parent vessel location and the region of VEGF release. Furthermore, the initial number of
sprouting cells differed across these simulations.
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Upon examination of Figure 6, it becomes evident that compression indeed promotes
angiogenesis. In the region subjected to compression, there is a noticeable augmentation
in the capillary network density. To substantiate this observation, we quantified both
the total vessel length and the number of branches (Figure 7). Traction does not seem to
have an effect on promoting angiogenesis. Analysing the capillary pattern obtained in
the simulations (Figure 6), there does not appear to be an increase in capillary density.
However, it seems that the migration of endothelial cells toward the region under traction
is promoted, and this effect is more pronounced in Example 1.
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Figure 6. Final simulation results obtained for angiogenesis, using a regular nodal discretisation
mesh. In Examples 1 and 2, the parent vessel is located at the lower domain boundary, while the
VEGF release region is situated at the upper boundary. These examples feature one and two initial
sprouting cells, respectively. In Example 3, the parent vessel is located at the lower domain boundary,
the VEGF release region is positioned in the upper right corner, and there is a single initial sprouting
cell. In Example 4, two parent vessels are found at the lower and upper domain boundaries, the
VEGF release region is situated in the middle domain, and four initial sprouting cells are presented.
The images are sized at 5 mm × 5 mm.
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Upon analysing Figure 7, it becomes evident that compression significantly enhances
angiogenesis. In Example 1, compression resulted in a 68% increase in vessel length and
a 70% increase in the number of branches. Similarly, in Example 2, compression led to a
15% increase in vessel length and a 31% increase in the number of branches. In Example 3,
compression increased vessel length by 19% and the number of branches by 45%. Finally, in
Example 4, compression brought about an 18% increase in vessel length and a 35% increase
in the number of branches. The quantitative results obtained for traction are similar to
those obtained for the situation without mechanical stimulation.

4. Discussion

Endothelial cells and blood vessels inhabit environments characterised by contin-
ual mechanical activity. Previous studies have demonstrated the significant influence of
factors such as fluid shear stress, stretching, compression, and hydrostatic pressure on
various cellular processes, including signal transduction, cytoskeletal organisation, gene
expression, as well as in endothelial cell migration, proliferation, and extracellular matrix
remodelling [37–40]. Understanding the response of endothelial cells to mechanical triggers
is essential for enhancing tissue vascularisation and advancing the prospects of wound
repair and tissue engineering.

In this study, one of the goals was to explore the impact of mechanical forces, specifi-
cally compression and traction, on angiogenesis using a meshless computational method.
To achieve this, three distinct initial domain geometries were defined, each varying the
initial location for sprouting endothelial cells and VEGF release region in alignment with
established methodologies from prior works [16,30,34]. Then, based on experimental find-
ings [37], a hydrostatic pressure of 0.0067 MPa (50 mmHg) was applied to a specific zone
within the domain. Subsequently, we analysed the effects of applying both tensile and
compressive loads on the VEGF diffusion coefficient, and its consequent influence on the
final VEGF diffusion gradient (Figures 4 and 5).

The presented documented numerical findings showed that compression results in a
proportional reduction in the VEGF diffusion coefficient, impacting VEGF concentration
in the compressed region. Consequently, endothelial cell migration shifts away from
the compressed area. The findings align with experimental results demonstrating that
compression decreases the diffusion coefficient. This alignment is corroborated by studies
on the rate of self-diffusion in zinc single crystals [41] and on the effects of compression
on macromolecular diffusion in articular cartilage, which indicate a notable reduction in
diffusivity under high strains in the surface zone [42]. Additionally, there is evidence of
a significant decrease in glucose diffusivity with increasing static compressive strain [43].
Moreover, in an ex vivo culture model of rabbit vertebral endplate, the application of
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constant compressive load led to a gradual reduction in the number of vascular buds and a
significant decrease in both VEGFA and VEGFR2 protein concentrations [44].

Analysing traction, generated by mechanical forces within cells and tissues, presents
a challenge due to a scarcity of experimental results. While existing numerical studies
have concluded that cell-generated traction forces influence the migration, proliferation,
and differentiation of various cell phenotypes, including endothelial cells and pericytes
involved in angiogenesis [45–47], none have explored the impact of traction on tissue and
its subsequent effects on endothelial cell behaviour and blood vessel formation. However,
our numerical analysis reveals that traction increases the VEGF diffusion coefficient, influ-
encing VEGF concentration and prompting endothelial cells to migrate towards the region
experiencing traction. This observation is intriguing and should be further explored in
future studies, given its potential to affect angiogenesis in scenarios like wound healing
or the vascularisation of scaffolds. Considering the number of vessels and branches, we
did not observe in our simulations that traction promotes angiogenesis. However, this
may have occurred because due to the scarcity of experimental studies, angiogenesis was
simulated as in previous studies. We did not have robust data to modify our computational
model in this respect.

This study focused on analysing the effect of compression on branching and its
subsequent impact on the capillary network. To achieve this, a modification was intro-
duced to the phenomenological law governing branching occurrence described in previous
works [16,17]. This modification involved updating and halving the distance required for a
new branching when the tip cell entered the zone experiencing compression. Employing
this approach within the proposed computational model allowed the simulation of the
impact of compressive loading on growth of blood vessels from the existing vasculature.
While previous experimental studies have explored the impact of compression on angiogen-
esis [11,24,25,37], this study provides a distinctive contribution by specifically examining
the influence of compression on the VEGF diffusion coefficient. Through four distinct
simulations that varied in parent vessel location, VEGF release region, and initial sprouting
cell numbers, the obtained results (Figure 6) demonstrated that compression significantly
promotes angiogenesis. The region subjected to compression exhibited an increase in
capillary network density. This observation was further corroborated through quantitative
analyses of total vessel length and the number of branches (Figure 7). For instance, in
Example 1, compression led to a 68% increase in vessel length and a 70% increase in the
number of branches. Similar trends were observed in Examples 2, 3, and 4, confirming the
consistent angiogenic promotion facilitated by compression in diverse simulation scenarios.
The present documented findings are consistent with the experimental findings reported by
Ruehle et al. [11]. In their study, gels containing microvascular fragments were subjected
to compressive indentation using platens with a smaller diameter than that of the gel.
Specifically, for a 10% strain, they observed a 52% increase in microvascular network length
and a 76% increase in the number of branch points in microvascular fragments under
continuous loading over the final 5 days of culture. Additionally, Yoshino et al. [37] found
that exposure to hydrostatic pressure (+50 mmHg) increased the formation of tube-like
structures by endothelial cells by 32% and enhanced the number of branch points by 147%.

Despite these valuable insights, this study has its limitations. The simplified represen-
tation of mechanical loading, absence of blood flow considerations, and the static nature
of the mechanical environment pose challenges in fully capturing the dynamic and het-
erogeneous conditions observed in vivo. The need for experimental validation, especially
in the analysis of traction forces in tissue, and the potential impact of varying loading
conditions over time demand further investigation. The findings of this study contribute to
the growing knowledge on the mechanical aspects of angiogenesis, offering a possibility
for future research. Refinements in computational models, incorporation of blood flow
dynamics and validation of numerical results with experimental studies are crucial steps to
enhance the reliability and applicability of our results. The observed effects of compression
on angiogenesis have implications for fields such as tissue engineering, wound healing,
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and regenerative medicine, where understanding the mechanical regulation of vascular
development is pivotal.

5. Conclusions

In summary, this study provides a comprehensive computational exploration of inter-
play between mechanical forces, specifically compression and traction, and angiogenesis.
We observed that compression significantly promotes angiogenesis, as evidenced by in-
creased capillary network density and validated through quantitative analyses of vessel
length and branching number. The reduction in the VEGF diffusion coefficient under
compression, influencing VEGF concentration and altering endothelial cell migration pat-
terns, underscores the mechanical regulation of angiogenesis. The approach outlined in
this work offers valuable insights for devising innovative therapeutic methods to address
angiogenesis-related disorders. By unravelling the mechanical cues governing angiogene-
sis, researchers and clinicians can unlock innovative approaches to enhance blood vessel
formation and improve the overall health and well-being of individuals.
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