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Abstract: The possible relationship between Subjective Cognitive Decline (SCD) and dementia needs
further investigation. In the present study, we explored the association between specific biomarkers
of Alzheimer’s Disease (AD), amyloid-beta 42 (Aβ42) and Tau with the odds of SCD using data from
two ongoing studies. In total, 849 cognitively normal (CN) individuals were included in our analyses.
Among the participants, 107 had available results regarding cerebrospinal fluid (CSF) Aβ42 and Tau,
while 742 had available genetic data to construct polygenic risk scores (PRSs) reflecting their genetic
predisposition for CSF Aβ42 and plasma total Tau levels. The associations between AD biomarkers
and SCD were tested using logistic regression models adjusted for possible confounders such as age,
sex, education, depression, and baseline cognitive test scores. Abnormal values of CSF Aβ42 were
related to 2.5-fold higher odds of SCD, while higher polygenic loading for Aβ42 was associated with
1.6-fold higher odds of SCD. CSF Tau, as well as polygenic loading for total Tau, were not associated
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with SCD. Thus, only cerebral amyloidosis appears to be related to SCD status, either in the form of
polygenic risk or actual CSF measurements. The temporal sequence of amyloidosis being followed
by tauopathy may partially explain our findings.

Keywords: subjective cognitive decline; genetics; Alzheimer’s disease; biomarkers

1. Introduction

Recently, complaints regarding cognitive function have shown an increasing ten-
dency in the general population leading to the conception of Subjective Cognitive Decline
(SCD) [1], a medical term used for the description of self-reported experience of cognitive
worsening. Throughout the last decade, many research efforts have focused on describing
SCD types and characteristics; nevertheless, to date, no clinical instrument is able to differ-
entiate individuals with and without SCD. More specifically, there are no widely accepted
scales or questionnaires to estimate SCD, as existing questionnaires present problems of in-
ternal consistency and content validity [2]. Consequently, SCD has not yet been recognized
as a medical entity in the Diagnostic and Statistical Manual of Mental Disorders [3]. SCD is
considered an early pre-dementia stage [4], as existing evidence suggests that SCD might
precede objective memory decline. In fact, self-reported or partner-reported subjective
memory complaints (SMCs) have been associated with an increased risk of cognitive de-
cline [5], while self-reported subjective cognitive complaints (SCCs) have also been related
to increased rates of Alzheimer’s and non-Alzheimer’s disease (AD) dementia [6].

Abnormal values of cerebrospinal fluid (CSF) biomarkers of Alzheimer’s disease
(AD) have appeared to precede the development of objective cognitive decline [7]. This
underscores why CSF biomarkers might be considered sensitive indicators of underlying
pathophysiology in preclinical dementia stages [8] and probably useful in determining
whether SCD is indeed linked to AD-related pathological changes. More specifically, CSF
amyloid-beta 42 (Aβ42) pathology in SCD individuals has been consistently associated with
worsening cognitive decline [9] and clinical progression to dementia [10], with Aβ42 being
one of the strongest predictors of clinical conversion in individuals with SCD [11]. Moreover,
SCD individuals with amyloid-positive profiles according to the ATN classification have
been related to higher dementia risk in comparison to amyloid-negative profiles [12].
Regarding Tau, only one study found a significant association between CSF Tau levels (as
an independent predictor) and the development of cognitive impairment [13].

Taking all the above into consideration, the existing literature has provided clear
conclusions regarding the association between CSF biomarkers and clinical progression
in individuals with SCD, as those with amyloid pathology are more likely to develop
objective cognitive decline longitudinally. However, it remains unknown whether people
who complain about their memory or cognition have abnormal measurements of AD
biomarkers at the moment of complaining (cross-sectionally) and, thus, belong in the AD
biological continuum. Associations between SCD status and low CSF Aβ42 have been
reported [14], as well as high Aβ42 levels in positron emission tomography (PET), either as
a continuous [15] or a categorical variable, as depicted by amyloid positivity [16]. However,
cross-sectional data relating Aβ42 and Tau with the odds of SCD prevalence are limited.
We are aware of no study associating CSF biomarkers of neurodegeneration, such as Tau,
with SCD. Additionally, studies relating SCD with a genetic predisposition for Aβ42 or
tauopathy have not been conducted.

Therefore, in the current study, we sought to investigate whether the values of AD
biomarkers are abnormal in individuals complaining about their memory or cognitive
status. To achieve this aim, we explored whether AD biomarkers (i.e., Aβ42 and Tau) may
affect the odds of SCD, combining data from two ongoing studies: the Hellenic Longitudinal
Investigation of Aging and Diet (HELIAD) and the Aiginition Longitudinal Biomarker
Investigation of Neurodegeneration (ALBION). The HELIAD study is population-based,
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including individuals over 64 years old, in which genetic propensity for AD biomarkers
is evaluated through relevant polygenic risk scores (PRSs). The ALBION study includes
individuals 40–75 years old worrying about their cognitive status in whom CSF biomarker
measurements are obtained. To our knowledge, our study is the first to examine the
association of AD risk factors (Aβ42 and Tau) with SCD using two proxies, including CSF
measurements as well as common variant polygenic risk estimation.

2. Materials and Methods
2.1. Participants and Study Design

Data for the analyses were drawn from the HELIAD and the ALBION, two ongoing
studies examining cognitive disorders. Study procedures were approved by the Institu-
tional Ethics Review Boards of the National and Kapodistrian University of Athens and the
University of Thessaly.

HELIAD participants were individuals older than 64 years old, randomly recruited
from local municipality registries of Marousi, an Athens suburb, and the city of Larissa
and rural surroundings. Overall, 1986 individuals completed the baseline evaluation of
HELIAD. In the present analyses, we only included participants with available genetic data
through blood sampling (n = 1189). Participants with a medical history of neurological
disorders with a risk of cognitive impairment (cerebrovascular disease and stroke, severe
traumatic brain injury, hydrocephalus, epilepsy, extrapyramidal disorders such as Parkin-
son’s disease, Huntington’s disease), psychiatric disorder (psychosis, major depression, or
anxiety), alcoholism or drug abuse were not included in our analyses (n = 239), as well as
participants with MCI or dementia at baseline (n = 208). Moderate depression, which is
common in old age, as well as the use of antiepileptic or anxiolytic drugs at a steady dosage
for years, were allowed. In total, 742 cognitively normal (CN) individuals were included.
Extensive details about the design and key features of the HELIAD study design and data
collection procedure have been described previously [17].

The ALBION study sample consisted of individuals aged >40 years old, referred to
the cognitive disorders’ outpatient clinic of Aiginition Hospital (Athens, Greece). Patients
with a dementia diagnosis were excluded from ALBION, as well as patients with medical
conditions associated with a high risk of cognitive impairment or dementia (including
Parkinson’s disease, severe stroke, multiple sclerosis, hydrocephalus, epilepsy, Hunting-
ton’s disease, Down syndrome, active alcohol or drug abuse or major psychiatric conditions
such as major depressive disorder, schizophrenia, and bipolar disorder). The baseline evalu-
ation was completed by 198 individuals from 2019 to 2023. In the present analyses, we only
included ALBION participants in their baseline evaluation with available CSF biomarker
results (n = 185). Among these, 13 participants were excluded due to prior history of stroke
or severe traumatic brain injury, while 65 individuals were excluded due to Mild Cognitive
Impairment (MCI). Overall, 107 cognitively normal (CN) individuals were included in our
study. More details about the study design and data collection procedures can be found
elsewhere [18].

2.2. Neurological and Neuropsychological Evaluation

HELIAD and ALBION participants underwent a comprehensive neuropsychological
evaluation during their baseline assessment, conducted by licensed neuropsychologists.
The following tests were used to assess participants’ cognition: the Mini Mental State
Examination [19], the Greek Verbal Learning Test [20], the Medical College of Georgia
Complex Figure Test (copy condition, recognition, immediate and delayed recall and
recognition) [21], a semantic and phonological verbal fluency test [22], subtests of the
Greek version of the Boston Diagnostic Aphasia Examination short form and selected items
from the Complex Ideational Material Subtest [23], the Greek Trail Making Test [24], an
abbreviated form of Benton’s Judgment of Line Orientation [25], and the Clock Drawing
Test [26], as well as a graphical sequence task and motor programming [27].
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Then, we constructed a composite neuropsychological score based on the results of all
the aforementioned test in order to assess global cognition. A higher neuropsychological
score indicates a better cognitive performance. The specific score, which is a non-weighted
average of the individual tests, was used as a covariate in the statistical analyses.

A comprehensive neurological examination was performed by certified neurologists,
while participants were also asked to provide information concerning medical and family
history and lifestyle as well as demographic data during the baseline evaluation. Finally,
neurologists established a clinical diagnosis, taking all the above-mentioned information
into consideration. In fact, MCI diagnosis in both studies was based on standard interna-
tional criteria (Petersen criteria [28], i.e., presence of SMC as well as objective impairment
in at least one cognitive domain with preserved activities of daily living and absence of de-
mentia), while the NINCDS/ADRDA criteria [29] were used to establish an AD diagnosis.

2.3. Subjective Cognitive Decline (SCD) Assessment

In the absence of widely accepted scales or questionnaires to assess SCD [30], we com-
bined information from a series of single questions derived from relevant questionnaires
such as the Blessed Dementia Scale, the Lawton IADL scale, and the CARE Subjective
Memory subscale and then grouped similar questions together. Answers were obtained
based on the self-reporting of relevant complaints.

We created dichotomous variables reflecting Subjective Cognitive Decline (SCD) based
on the participant’s response to two questions assessing SCC. Each question had a possible
rating of (0) “I don’t have this complaint” or (1) “I have this complaint”, while a positive
answer to at least one of them resulted in a score of 1 (dichotomous variable). The questions
used in each study are presented in detail in Table 1.

Table 1. Subjective Cognitive Decline (SCD) assessment.

Questions Regarding Subjective Cognitive Complaints

HELIAD 1. Do you have symptoms of memory loss?
2. Do you have difficulty in recalling recent events?

ALBION 1. Do you feel that your memory is worse than 5 years ago?
2. Do you feel that your memory is worse than peers?

2.4. Cerebrospinal Fluid (CSF) Analysis in ALBION

CSF was collected and stored according to widely accepted guidelines [31], while each
participant underwent a lumbar puncture in the context of the first ALBION evaluation. The
collected CSF samples were analyzed using automated Elecsys assays (Roche Diagnostics),
mainly for AD biomarkers such as amyloid Aβ42, Tau, and P-Tau. A positive result was
noted according to the following reference ranges: Aβ42 ≤ 1000 pg/mL, Tau > 300 pg/mL,
and P-Tau > 27 pg/mL.

2.5. Genotyping and Imputation in HELIAD

Genome-wide genotyping in HELIAD was performed at three different centers (the
Centre National de Recherche en Génomique Humaine [CNRGH, Evry, France] and the
Life and Brain Center [Bonn, Germany], as well as the Erasmus Medical University [Rot-
terdam, The Netherlands]) using the Illumina Infinium Global Screening Array, as part
of the European Alzheimer & Dementia Biobank (EADB) project. Genotyping in HE-
LIAD has been described in detail elsewhere [32]. More information is provided in the
Supplementary Materials.

2.6. Polygenic Risk Score (PRS) Calculation in HELIAD

Genetic predisposition for CSF Aβ42 and plasma total Tau levels were based on two
specific PRSs that were formed by aggregating the effect of common variants associated
with Aβ42 and Tau levels, respectively. The PRS Aβ42 was constructed based on the
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summary statistics results of a genome-wide association study (GWAS) for CSF Aβ42 [33],
while the PRS Tau was calculated based on summary statistics results of a GWAS meta-
analysis for circulating total Tau levels [34].

In the GWAS summary statistics, each SNP is associated with CSF Aβ42 or total Tau
levels at a certain p-value threshold. For each participant, we computed different PRSs
based on a prior set of 10 p-value GWAS thresholds (PT) (i.e., 5 × 10−5, 0.0001, 0.001, 0.05,
0.01, 0.1, 0.2, 0.3, 0.4, 0.5) for Aβ42 and 11 PT for total Tau (the aforementioned thresholds
plus the 5 × 10−8 threshold). The numbers of SNPs at each GWAS PT included for PRSs
calculation are provided in Tables S1 and S2, while additional information regarding the
methods of calculation can be found in the Supplementary Materials. Given that Aβ42
levels in CSF are inversely related to brain Aβ42 concentration, PRS values were multiplied
by –1 to align a higher score with increased Aβ42 levels in the brain.

2.7. Statistical Analysis

The statistical analyses were performed using SPSS 29.0. Participants’ characteristics
were expressed as mean values ± standard deviation (SD) for continuous variables or as
percentages for categorical variables. Groups according to presence of SCD (SCD and non-
SCD group) were compared using analysis of variance (ANOVA) for continuous variables
such as age, education years, and neuropsychological score, and Fisher’s exact test for
categorical variables such as sex and depression. The significance level was set at p < 0.05.

For our analyses, we selected the PRS thresholds with the best classification accuracy
of amnestic MCI (aMCI) or AD versus non-aMCI or AD cases, assuming that individuals
with aMCI or AD at follow-up were the most likely to have pathologic levels of CSF
Aβ42 as well as pathologic plasma total Tau levels. For this specific purpose, logistic
regression models were used with the different PTs as predictors and incident aMCI or
AD at follow-up as outcome. The first two principal components (PC1, PC2) of genetic
ancestry were used as covariates in order to eliminate the possibility of cryptic relatedness
between participants [35] or unexpected errors related to genotyping batch [36]. PTs, which
were better able to discriminate between the presence versus absence of Aβ42 and Tau
pathology, were chosen based on the area under the receiver operator characteristic (ROC)
curves constructed for each model (i.e., PT < 0.0001 for Aβ42 consisting of 57 SNPs and
PT < 5 × 10−8 for Tau consisting of 21 SNPs). The results for all the thresholds analyzed
can be found in Tables S1 and S2.

CSF biomarkers were treated as dichotomous variables according to the above-mentioned
Elecsys assay cut-offs (0: negative/normal result and 1: positive/abnormal result). PRSs
were also treated as dichotomous variables, with the median used as a cut-off (0: low PRS
and 1: high PRS). The values of the medians were 0.025 for PRS Aβ42 and −0.017 for PRS
Tau, respectively.

The association of CSF biomarkers and the PRSs with SCD was investigated with logis-
tic regression analyses. SCD was selected as the outcome variable (No-SCD: 0 and SCD: 1).
CSF measurements as well as PRSs were introduced into the models as dichotomous pre-
dictor variables (normal as reference for CSF and low as reference for PRSs, respectively).
Our logistic regression analyses were adjusted for possible confounding factors such as
age, sex (male vs. female), years of education, neuropsychological score, and depression
(presence vs. absence), which were also inserted as predictors in our models.

3. Results
3.1. Descriptive Statistics and Participants’ Demographics

The baseline demographic, clinical, and genetic characteristics of HELIAD partici-
pants are presented in Table 2. In HELIAD, 186 participants had SCD at baseline (25.1%).
Individuals with SCD had more education years and lower neuropsychological scores in
comparison to individuals not complaining about their memory (p < 0.001). Moreover, a
higher percentage of SCD individuals had high PRS Aβ42 (p = 0.028) as well as depression
(p = 0.030). The prevalence of high PRS Tau did not differ between the two groups.
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Table 2. Descriptive statistics for HELIAD participants in groups according to presence of SCD.

All SCD 1 Group Non-SCD

n = 742 n = 186 n = 556 p-Value

Age, years, mean ± SD 2 73.7 ± 5.2 73.6 ± 5.4 73.7 ± 5.1 0.819
Sex, female (%) 438 (59.0) 115 (61.8) 323 (58.1) 0.390

Education, years, mean ± SD 7.2 ± 4.4 8.5 ± 4.7 6.8 ± 4.3 <0.001
Neuropsychological score, mean ± SD −0.17 ± 0.72 −0.24 ± 0.73 0.02 ± 0.69 <0.001

Depression, yes (%) 47 (6.3) 21 (11.3) 26 (4.7) 0.030
PRS 3 Aβ42, high (%) 371 (50.0) 106 (57.0) 265 (47.7) 0.028

PRS Tau, high (%) 371 (50.0) 89 (47.8) 282 (50.7) 0.498
1 Subjective Cognitive Decline, 2 Standard Deviation, 3 Polygenic Risk Score. Bold values indicate statistically
significant differences between the two groups.

The baseline demographic, neuropsychological, and clinical characteristics of ALBION
participants are presented in Table 3. In ALBION, 78 participants had SCD at baseline
(72.9%). ALBION participants with SCD at baseline were more likely to have abnormal
CSF Aβ42 values (p = 0.038) compared to those belonging in the non-SCD group. Other
participant characteristics (including CSF Tau and CSF P-Tau) did not significantly differ
between the two groups.

Table 3. Descriptive statistics for ALBION participants in groups according to presence of SCD.

All SCD 1 Group Non-SCD

n = 107 n = 78 n = 29 p-Value

Age, years, mean ± SD 2 62.6 ± 9.2 62.3 ± 9.5 63.2 ± 9.3 0.644
Sex, female (%) 75 (70.1) 55 (70.5) 20 (69.0) 0.877

Education, years, mean ± SD 14.2 ± 3.6 13.8 ± 3.7 14.8 ± 3.3 0.238
Neuropsychological score, mean ± SD 0.266 ± 0.533 −0.003 ± 0.534 0.099 ± 0.577 0.391

Depression, yes (%) 28 (26.2) 24 (30.8) 4 (13.8) 0.076
CSF 3 Aβ42, abnormal (%) 48 (43.9) 40 (51.3) 8 (27.6) 0.038

CSF Tau, abnormal (%) 18 (16.8) 12 (15.4) 6 (20.7) 0.671
CSF P-Tau, abnormal (%) 14 (13.1) 11 (14.1) 3 (10.3) 0.595

1 Subjective Cognitive Decline, 2 Standard Deviation, 3 Cerebrospinal Fluid. Bold values indicate statistically
significant differences between the two groups.

3.2. Factors Associated with the Odds of Prevalent SCD

High PRS Aβ42 increased the SCD odds up to 68.9% (p = 0.035) in HELIAD participants,
while abnormal CSF Aβ42 values increased the odds for SCD by more than 2.5 times
(p = 0.045) in ALBION participants. Neither high values of PRS Tau nor abnormal CSF Tau
values were related to increased odds of SCD. Among other factors, age (2.7%, p < 0.001)
and depression (13.3%, p = 0.027) increased the odds for SCD only in HELIAD participants.
The results of the adjusted logistic regression models for the association of different factors
with the odds of prevalent SCD in HELIAD and ALBION are shown in Table 4. ORs plots
for SCD with 95% CIs in HELIAD and ALBION are shown in Figure 1.

Table 4. Logistic regression results for factors affecting the odds of SCD in HELIAD and ALBION.

HELIAD, OR 1 (95% CI 2) ALBION, OR (95%CI)

Age, years 1.027 (1.017, 1.037), p < 0.001 1.012 (0.984, 1.040)
Sex (male as reference) 1.203 (0.858, 1.548) 1.195 (0.789, 1.601)

Education, years 1.047 (0.988, 1.106) 0.967 (0.871, 1.073)
Neuropsychological score 0.626 (0.118, 1.134) 0.667 (0.274, 1.060)

Depression (no as reference) 1.133 (1.044, 1.222), p = 0.027 1.464 (0.891, 2.037)
PRS 3 Aβ42 (low as reference) 1.689 (1.487, 1.891), p = 0.035 -

PRS Tau (low as reference) 1.144 (0.954, 1.334) -
CSF 4 Aβ42 (normal as reference) - 2.583 (1.020, 4.047), p = 0.045

CSF Tau (normal as reference) - 1.521 (0.805, 2.236)
CSF P-Tau (normal as reference) - 1.149 (0.407, 1.891)

1 Odds Ratio, 2 Confidence Intervals, 3 Polygenic Risk Score, 4 Cerebrospinal Fluid. Bold values indicate
statistically significant differences between the two groups.
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Figure 1. Odds Ratio Plots for SCD in HELIAD (upper plots) and ALBION (lower plots) with 95%
confidence intervals (asterisks indicate statistically significant values).

4. Discussion

In our study, we found that, among CN individuals, abnormal values of CSF Aβ42
were related to 2.5-fold higher odds of SCD, while higher genetic predisposition to CSF
Aβ42 was associated with 1.6-fold higher odds of SCD. Tau was not associated with the
odds of SCD (neither actual CSF measurements nor total Tau PRS). Hence, the higher
genetic risk for CSF Aβ42 deposition significantly increases SCD odds, a result which was
independently validated in the context of real-time CSF measurements of Aβ42, with SCD
odds being even higher.

The existing literature on the utility of AD biomarkers in the recognition of SCD as a
preclinical stage of AD appears to be relatively limited. In particular, studies conducted in
CN individuals have shown significant associations between SCD and lower CSF Aβ42 [17].
In these specific studies, neither CSF Tau nor CSF P-Tau levels were related to SCD. Lower
CSF Aβ42 levels were also associated with cognitive decline in specific cognitive domains
(i.e., memory and language) in the CN participants of the DELCODE study [37]. Further-
more, PET amyloid studies have related both amyloid-beta cortical binding as a continuous
variable [15], as well as amyloid positivity as a categorical variable, with SMC [16]. Only
one PET study [38], with a relatively small sample size (40 CN participants), has associated
memory and organization decline with amyloid load in the frontal cortex, as well as decline
in everyday planning with amyloid cortical binding in the parietal cortex.

Regarding Tau, the specific AD biomarker has been associated with SCD in only two
studies. One of these showed statistically significant results, but included only individuals
with preclinical autosomal dominant AD [39]; thus, the results have limited generalizability.
Another PET study found that SCD was related to early tauopathy in the medial temporal
lobe, specifically in the entorhinal cortex [40] of clinically healthy older adults. Nevertheless,
the vast majority of studies conducted found no relationship. Apart from Aβ42 and Tau,
several AD biomarker ratios have been associated with SCD, such as lower Aβ42/Tau
ratio [38] and Aβ42/p-Tau ratio, both in CSF and PET measurements [41].

As far as the polygenic risk for AD biomarkers are concerned, relevant research re-
garding SCD is still in its infancy. To our knowledge, no study has examined the association
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between a PRS (either Aβ42 or Tau-specific) and SCD. Only a PRS including 39 genetic loci
related to AD has been related to amyloid positivity in individuals with SCD [42].

Thus, our findings confirm the results of most studies regarding the association of
CSF Aβ42 with SCD, as well as the absence of a relationship between Tau and SCD. Our
results also expand existing knowledge by presenting the association of a PRS for Aβ42
and odds for SCD. These findings are in accordance with the ‘amyloid cascade’ hypothesis,
which states that amyloid aggregation is the first event related to the neuropathology of
AD [43] and, therefore, CSF Aβ42 becomes abnormal in the early stages with the patient still
being CN without objective impairment. The accumulation of Tau might start emerging
preclinically too, but later than amyloid [44]. Consequently, an increase in CSF Tau and total
Tau plasma levels occurs in the later stages of the disease. A recent study concluded that
CSF amyloid-beta (Aβ)42 preceded clinical diagnosis for 18 years, while total Tau preceded
AD diagnosis for 10 years [45].

Taking the above into consideration, it appears that SCD might be an intermediate
pre-clinical stage, between clinically normal older adults and MCI individuals, and possibly
a pre-MCI condition [46]. A recent meta-analysis investigating the prevalence of amyloid
pathology in older people on the AD continuum reported that amyloid pathology was
more prevalent in SCD individuals (12%) than in CN individuals (10%) and less prevalent
than in individuals with MCI (27%) and those aged 50 years [47]. Adding to this, our study
suggests that, in this intermediate stage, AD-related pathophysiological changes might
have already occurred (amyloid is already accumulated while Tau is not); however, these
changes might not yet affect objective cognitive performance. Hence, SCD might reflect
amyloid-induced sub-symptomatic decline, something that current neuropsychological
test batteries are not sensitive enough to capture.

The present study has several strengths. To our knowledge, this is the first study to
examine the link between SCD and genetic predisposition for Aβ42 and Tau, adding the
PRS approach for AD biomarkers and combining it with actual CSF measurements in two
different populations in order to replicate the observed results. Instead of relying solely on
CSF results or a PRS, the results of our PRS approach were validated by actual assessments
in clinical practice. Furthermore, well-established international criteria were used for
clinical diagnosis, which was also supported by a comprehensive neuropsychological
assessment. Finally, our analyses were adjusted for many potential confounders, which
have been shown to be important risk factors for SCD [48], such as baseline global cognition
as well as age, depression, and education.

Nevertheless, this specific study is not without limitations. Firstly, due to the inconsis-
tency of SCD definitions and the lack of standard assessment tools, as well as of widely
acceptable cut-offs to diagnose SCD, the content validity of our questionnaires (which are
different than other studies) needs to be further assessed. Notably, there is a risk of selection
bias in the ALBION study, as some participants were self-referred to the outpatient clinic.
Except for this, by using PRSs based on GWASs to estimate genetic predisposition for Aβ42
and Tau, we were able to explore only the effect of the most common SNPs (and conse-
quently variants), while other types of genetic variation and epigenetic influences, such as
methylation [49] or metabolomics [50], could not be examined. Finally, CSF biomarkers
were treated as categorical variables with the above-mentioned diagnostic cut-offs, which
might be different to the cut-off points used in other studies. Additional studies performed
in different ethnic groups and larger population-based groups of individuals are required
to confirm our findings.

5. Conclusions

Although SCD has been reported in many studies as an early pre-dementia stage, it
remains unknown whether AD-related pathology is, indeed, present in that early phase
of the disease. Our study highlighted that changes in CSF Aβ42 increase the odds of
prevalent SCD, while Tau (neither CSF nor total) does not appear to be related to SCD odds.
Hence, SCD might be an intermediate stage between CN and MCI in which amyloidosis is
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present, while tauopathy is not. This is the first study to combine genetic predisposition for
Aβ42 with actual CSF Aβ42 measurements, providing a more comprehensive approach to
examining the association of Aβ42 with SCD, as well as new clues for the early identification
of subjects in the preclinical AD stage. Further prospective research is needed to improve
our understanding of the evolution of SCD over time.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biomedicines12051053/s1. Table S1: Number of SNPs included
at each PRS Aβ42 calculated at different GWAS p-value thresholds. AUC area together with p-value
of each PRS derived from a logistic regression with SCD as outcome, adjusted for PC1 and PC2. Table
S2: Number of SNPs included at each PRS Tau calculated at different GWAS p-value thresholds.
AUC area together with p-value of each PRS derived from a logistic regression with SCD as outcome,
adjusted for PC1 and PC2. References [33,51–62] are cited in the supplementary materials.
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