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Abstract: In the context of carbon trading, energy conservation and emissions reduction are the
development directions of integrated energy systems. In order to meet the development require-
ments of energy conservation and emissions reduction in the power grid, considering the different
responses of the system in different time periods, a wind-hydrogen integrated multi-time scale energy
scheduling model was established to optimize the energy-consumption scheduling problem of the
system. As the scheduling model is a multiobjective nonlinear problem, the artificial fish swarm
algorithm–shuffled frog leaping algorithm (AFS-SFLA) was used to solve the scheduling model to
achieve system optimization. In the experimental test process, the Griewank benchmark function and
the Rosenbrock function were selected to test the performance of the proposed AFS-SFL algorithm.
In the Griewank environment, compared to the SFLA algorithm, the AFS-SFL algorithm was able to
find a feasible solution at an early stage, and tended to converge after 110 iterations. The optimal
solution was −4.83. In the test of total electric power deviation results at different time scales, the
maximum deviation of early dispatching was 14.58 MW, and the minimum deviation was 0.56 MW.
The overall deviation of real-time scheduling was the minimum, and the minimum deviation was 0
and the maximum deviation was 1.89 WM. The integrated energy system adopted real-time scale
dispatching, with good system stability and low-energy consumption. Power system dispatching
optimization belongs to the objective optimization problem. The artificial fish swarm algorithm and
frog algorithm were innovatively combined to solve the dispatching model, which improved the
accuracy of power grid dispatching. The research content provides an effective reference for the
efficient use of clean and renewable energy.

Keywords: carbon trading; integrated energy system; time scale; dispatch

1. Introduction

The world’s energy is gradually declining and environmental problems are growing.
Effective exploration of new energy is an important strategy to solve development problems.
The carbon trading mechanism is an effective strategy to give consideration to economic and
environmental development, to analyze regional carbon emissions on the basis of the carbon
trading theory, and to seek ways to reduce carbon emissions on the premise of safeguarding
regional economy. The wind-hydrogen integrated energy system is a user oriented new
microenergy system. On the basis of meeting low-carbon transactions, the integrated
energy system (IES) has been applied in some parts of China as a demonstration. Wind-
hydrogen integrated energy systems are a kind of IES system, and their energy is mainly
wind energy and hydrogen energy. The key point lies in the mutual supplementation of
multiple energy sources. Through the complementary role of multiple energy sources,
the potential and the advantages of various energy sources can be fully exerted, thus
improving the stability and security of the power system. The goal of integrated energy
systems is to realize the conversion and storage of multiple energy sources and meet
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the flexible dispatching requirements of renewable energy power systems. Under the
theory of carbon trading, the optimization of integrated energy-system scheduling can
effectively balance the relationship between system energy consumption, economy, and
system stability. Simultaneously, integrated energy-system scheduling optimization is
beneficial to minimizing system energy consumption and carbon emissions, which is
critical to fostering sustainable economic growth. The scheduling mechanism of wind-
hydrogen integrated energy systems directly affects the stability and energy-consumption
effect of the system. Comprehensive analysis of the relevant factors affect the energy
system and establishment of a multi-time scale optimal scheduling model. Considering the
multiobjective optimization problem, neural network technology was innovatively used to
solve the model so as to achieve the energy conservation and emissions reduction goal of
power grid dispatching.

2. Literature Review

In recent years, global environmental issues have attracted the attention of the public.
In the context of carbon energy saving, new green energy such as wind energy and hydro-
gen energy has received a lot of interest with both national and international experts have
presenting effective analyses on the topic. Rezaei et al. studied the prospects of wind energy
and hydrogen energy, including the cost of wind power generation, the cost of hydrogen
fuel, rates of return, and other parameters. Considering the inclusion of many uncertainties
in the study, both the performance-related degradation rates of wind turbines and the mon-
etary value-related degradation rates were investigated. From this research, it was found
that the hydrogen production system’s use time was generally between 3.91–8.41 years,
and each target’s matching rate of return was calculated [1]. Solomin et al. conducted
research on the power grid project in the Arctic region. The construction goals of the project
mainly considered wind energy and hydrogen energy. The hydrogen module was used
as an uninterruptible power supply and can be obtained in all regions of the world. The
environmental protection characteristics and reliability of hydrogen energy enable it to
meet the environmental protection objectives as well as the power demand of the region.
The project realized the management and monitoring of power generation and hydrogen
storage through a remote terminal system. The final results of the project showed that the
project could provide reliable, stable, and environmentally friendly functional requirements
while also maintaining its affordability for consumers in the region [2]. Akhavan Shams and
Ahmadi emphasized that the world is in an energy crisis, and renewable energy will be the
key to solve the problem. Therefore, they proposed a grid-connected photovoltaic system
for educational buildings, and the relationship model of renewable energy generation cost
was established. They considered the environmental penalties and examined the link be-
tween important influencing elements and prices. Their experimental results showed that
renewable energy did not meet the economic requirements, and if households use storage
systems to store electricity, battery packs have advantages over combustion batteries [3].
Ozturk and Dincer found that intermittent fluctuations are common in renewable energy. A
hydrogen battery is a kind of renewable energy with potential for development. In order to
improve the renewability of fuel, Ozturk and Dincer compared several hydrogen produc-
tion methods from the aspect of cost efficiency and the environment. The results showed
that the use of polymer electrolyte membrane electrolyzers for hydrogen production has
more obvious advantages, and at the same time, the overall cost of hydrogen production
based on geothermal energy was the lowest [4]. Ishaq et al. found that developing new
energy will be the key to solving the problem. Research on traditional hydrogen production
and the hydrogen production from wind energy and solar energy is intermittent. Therefore,
Ishaq et al. constructed an evaluation model based on cost, infrastructure, and efficiency,
etc., to compare various hydrogen production systems. Finally, Ishaq et al. summarize
the opportunities and challenges faced by hydrogen production [5].. Ishaq and Dincer
proposed a hybrid photovoltaic structure for system function analysis, which is used to
solve the high-energy consumption of hydrogen production and optimize the hydrogen
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production process. Considering that the power of a wind farm is affected by wind speed,
solar energy depends on the intensity of solar radiation, then the designed system mainly
met the relevant requirements of hydrogen production and adopted the cascade hydrazine
synthesis system to achieve a high conversion. The final experiment showed that the
proposed method was feasible [6].

Reasonable scheduling optimization of the energy system can achieve the balance of
power-grid-energy consumption and performance. Lin et al. studied the virtual power
plant technology that can better integrate power resources. They analyzed the dispatch-
ing relationship between the distributed generation units and the power grid system to
optimize system energy consumption, and they proposed a virtual power plant economic
dispatching scheme. Neural network technology was used to train and optimize the cor-
relation number to achieve a more economical scheduling scheme. Finally, experimental
verification showed that the scheme has good performance [7]. Xu et al. proposed a power
dispatching scheme based on time distribution, taking the energy hub center as the system’s
decision-making center. Through this scheme, the power supply, transmission and cou-
pling relationship were effectively optimized to better realize the synergy of multienergy
networks. However, the distributed time scheduling strategy faced optimization problems,
so the problem was transformed into mixed integer second-order cone programming, and
the problem was handled by sequential second-order cone programming. Finally, the
scheme was confirmed to have an excellent performance effect and reduce system energy
consumption [8]. Pan et al. found that the renewable integrated energy system had a
good development trend and they constructed a comprehensive energy planning model
based on hydrogen production and hydrogen storage technologies. A robust strategy
was adopted to optimize the system load problem, and the feasibility of the scheme was
verified by experiments [9]. Dou et al. studied the existing integrated energy system and
found that the traditional fixed-time scheduling scheme was not suitable for the relevant
characteristics of the transient network and would lead to uneconomic problems in the
energy system. So, a scheduling scheme based on model predictive control was proposed.
First of all, the model of the integrated energy subsystem of electric power, gas, and heat
and the multienergy load was built, and then an optimization method was proposed to
optimize the scheduling model through the trajectory deviation control and energy control
in MPC. Finally, the experiment proved that the proposed optimal scheduling scheme could
be applied to various scenarios and could effectively save system energy consumption and
reduce costs [10,11].

It is evident that the world is facing environmental problems and petrochemical
depletion and the development of renewable energy will be the key to solving the energy
crisis. However, the integrated energy system is faced with problems such as scheduling
and unstable performance output. Compared with the scheme proposed by Rezaei et al.
and Solomin et al., using a more intelligent multiobjective AFS-SFLA algorithm model
for an optimal solution could better achieve the balance of system energy consumption
and performance [1,2], and achieve the goal of system energy conservation and emissions
reduction.

3. Construction of a Multi-time Scale Optimal Dispatch Model for a Wind-Hydrogen
Integrated Energy System
3.1. Construction of Energy System Equipment Model

The optimization of integrated energy-system dispatching is one of the important
tasks for power grids to achieve energy conservation and emissions reduction. Due to the
instability of energy transmission during the acquisition of wind and hydrogen energy,
this specific randomness and uncertainty has led to instability and excessive energy con-
sumption in the energy scheduling process of an integrated energy system. Therefore, the
construction of wind and hydrogen systems needs to meet the requirements of carbon emis-
sions and environmental protection. The storage of electric energy and heat energy should
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be fully considered in the system construction, as shown in Figure 1, which illustrates the
schematic diagram of the system structure.
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Figure 1. Structural diagram of wind-hydrogen integrated energy system.

Under the low-carbon emission policy, the Chinese government actively advocates
for the development of energy-saving and environmentally friendly new energy sources,
among which wind energy and hydrogen energy are rich in resources and have high-
development potential [12]. A variety of distribution strategies are used to describe the
random distribution relationship of wind speed and since there is no unified hydrogen
production plan, the relevant factors are quantified. [13]. This research proposes a carbon
emission method of progressive mixed allocation based on the above-mentioned distribu-
tion decision making. Progressive mixed allocation refers to the allocation method that
combines free and paid allocation schemes with its distinctive characteristic that the scheme
can increase its allocation ratio over time. The typical distribution curve of wind speed
probability is shown in Equation (1).

Fweibull(v) = 1− exp[−(v
c
)

k
] (1)

In Equation (1), c represents the distribution parameter, v represents the wind speed,
k represents the shape parameter of the wind, k ∈ [1.8, 2.3]. In the Weibull distribution
description, the wind trajectory is expressed as shown in Equation (2).

k = (
σ

µ
)
−1.086

(2)

In Equation (2), σ represents the approximate operator, µ represents the average
speed of the wind, and the output relationship of wind power is expressed as shown in
Equation (3).

pwt(v) =


0 0 ≤ v ≤ Cci

(A + Bv + Cv2) Vci ≤ v ≤ Vr
pr Vr ≤ v ≤ Vco

0 v ≥ Vco

(3)

In Equation (3), Vco represents the cut-out wind speed, Vci represents the cut-in wind
speed, pr represents the rated power of the unit, and Vr represents the rated wind speed.
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A, B, and C represent the characteristic parameters of the wind curve, and the value
will have a direct impact on the performance of the wind turbine [14]. In order to better
describe the economic benefits of wind power generation, factors such as cost, income, and
environmental protection benefits were comprehensively considered, and the operating
life of the wind turbine was calculated.

Cwt =
NwtCwB + ∑20

Y=1

[
(1− βCPI)

Y−1CWME

]
20× NwtTwmax pw N

− Bsubsidy (4)

In Equation (4), CwB represents the unit cost of the fan, Nwt represents the total number
of fans, βCPI represents the price increase coefficient, Twmax represents the annual load
time of the fan, CWME represents the annual use cost of the fan, Bsubsidy represents the
state subsidy, and Y represents the life of the fan. In addition, the cost of wind curtailment
should also be considered, as shown in Equation (5).

Cwd(t) =
Nwt

∑
i=1

[pwt(t)− pwtu(t)]× Cwt × t (5)

In Equation (5), pwt(t) represents the total power of the wind turbine at the moment
t, Nwt represents the total number of fans, and pwtu(t) represents the power used at the
moment t.

Although the use of renewable energy has reduced the use of carbon-emitting units
in the wind-hydrogen comprehensive energy system investigated in this study, thermal
power still occupied a major source of output. The energy output of thermal power plants
mainly relies on the combustion of nonrenewable energy sources to generate heat for power
generation. The unit power generation model of a thermal power plant is shown below.

Pf h(t) = δCco(t) (6)

In Equation (6), Pf h(t) represents the total output power of the thermal power gener-
ating set at a moment t, δ represents the energy conversion rate of the motor, and Cco(t)
represents the fuel consumption at a given moment t.

In addition to the thermal power generation unit, the carbon emission unit model in
the wind-hydrogen comprehensive energy system studied here also included a gas turbine
device that converted natural gas into electrical energy. The power model of the gas turbine
is shown below.

Pgt(t) = fgSgE

(
1− 1/γ

ri−1
ri

i

)
σi (7)

In Equation (7), Pgt(t) represents the total output power of the gas turbine at that
moment t, fg represents the flow rate of the gas, Sg represents the average value of the
specific heat capacity of the fuel at constant pressure, E represents the gas temperature at
the outlet of the gas turbine, γi represents the turbine expansion ratio, and ri represents the
average specific heat ratio of the gas.

In a wind and hydrogen integrated energy system, the storage system needs to main-
tain the uninterrupted power supply demand of the integrated system and its stability is
key. Generally, the storage system adopts a lead storage battery, which is safer, more stable,
and less expensive, as the preferred equipment for the basic unit of the distributed power
supply [15]. The energy storage relationship is expressed in Equation (8).

Eees(t) = 1− aesEees(t− 1) + (pes,c(t)βes,c − pes , f (t)/βes, f )∆t (8)

In Equation (8), aes represents the self-discharge rate, Eees represents the battery energy
storage, pes,c represents the charging power of the charging group, pes , f is the charging
power of the discharging group, βes,c represents the charging efficiency, and βes, f represents
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the discharging efficiency. In a storage system, the energy and power of the system change
with time. By dynamically absorbing and releasing energy, the storage system can reduce
the dispatch risk caused by the incorrect prediction of wind and hydrogen energy and
ensure system stability [15].

The heat storage tank is a key part of the system and it ensures the balance of the heat
energy of the system by processing the heat source. The schematic is shown in Figure 2.

Processes 2023, 11, x FOR PEER REVIEW  6  of  18 
 

 

In Equation (7), 
( )gtP t
  represents the total output power of the gas turbine at that 

moment  t ,  gf   represents the flow rate of the gas,  gS
  represents the average value of the 

specific heat capacity of the fuel at constant pressure,  E   represents the gas temperature 

at the outlet of the gas turbine,  i   represents the turbine expansion ratio, and  ir   repre-
sents the average specific heat ratio of the gas. 

In a wind and hydrogen integrated energy system, the storage system needs to main-

tain the uninterrupted power supply demand of the integrated system and its stability is 

key. Generally, the storage system adopts a lead storage battery, which is safer, more sta-

ble, and less expensive, as the preferred equipment for the basic unit of the distributed 

power supply [15]. The energy storage relationship is expressed in Equation (8). 

, , , ,( ) 1 ( 1) ( ( ) ( ) / )ees es ees es c es c es f es fE t a E t p t p t t      
 

(8)

In Equation (8),  esa
represents the self-discharge rate,  eesE

represents the battery en-

ergy  storage,  ,es cp
 represents  the  charging power of  the  charging group,  ,es fp

   is  the 

charging power of  the discharging group,  ,es c
represents  the charging efficiency, and 

,es f
represents the discharging efficiency. In a storage system, the energy and power of 

the system change with time. By dynamically absorbing and releasing energy, the storage 

system can reduce the dispatch risk caused by the incorrect prediction of wind and hy-

drogen energy and ensure system stability [15]. 

The heat storage tank is a key part of the system and it ensures the balance of the heat 

energy of the system by processing the heat source. The schematic is shown in Figure 2. 

        Heat storage tank (water)

System 
conversion heat 

generation

Use electricity to 
generate heat

Evaporato
r of heat 
storage 
system

Water 
make-
up port

Steam inlet

Hot water inlet

Thermostat

G
eo

th
er

m
al

 s
tr

uc
tu

re

Cold water pump  

Figure 2. Structural diagram of a heat storage tank. 

The absorbing capacity of the heat storage tank is related to its placement. When the 

integrated energy system is under a high load, a large amount of heat will be generated. 

At this moment, the heat storage tank needs to be used to balance the heat energy. The 

heat storage expression of the heat storage tank is as shown in Equation (9). 

, , , ,( ) (1 ) ( 1) ( ) ( ) ( ) /hs hs hs hs in hs in hs out hs outQ t Q t H t t H t t           
(9)

In Equation (9),  hs represents the heat dissipation loss rate,  hsQ
represents the heat 

storage capacity,  ,hs inH
represents the heat absorption power,  ,hs outH

represents the heat 

Figure 2. Structural diagram of a heat storage tank.

The absorbing capacity of the heat storage tank is related to its placement. When the
integrated energy system is under a high load, a large amount of heat will be generated. At
this moment, the heat storage tank needs to be used to balance the heat energy. The heat
storage expression of the heat storage tank is as shown in Equation (9).

Qhs(t) = (1− γhs)Qhs(t− 1) + [Hhs,in(t)µhs,in(t)− Hhs,out(t)/µhs,out]∆t (9)

In Equation (9), γhs represents the heat dissipation loss rate, Qhs represents the heat
storage capacity, Hhs,in represents the heat absorption power, Hhs,out represents the heat
release power, Hhs,out represents the heat absorption efficiency, and µhs,out represents the
heat release efficiency.

3.2. Hybrid Algorithm Model Construction

The scheduling of a wind-hydrogen integrated energy system is a multiobjective,
nonlinear problem, and effective system scheduling is the key to solve the problem. The
general optimization algorithm could not solve the multiobjective calculation problem, so
the hybrid artificial fish school shuffled frog leading algorithm (AFS-SFLA) was used to
solve the high-latitude problem of the system [16]. The fish swarm algorithm is a kind of
swarm intelligence optimization method, which simulates the foraging behavior of fish.
The principle of the fish swarm algorithm is shown in Figure 3.
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The state of the artificial fish is defined as Xi, in the foraging behavior, any arbitrary
state is defined within the range that it can forage Xj, the goal of the fish school is to seek
the maximum value (Yi < Yj), and the fish school moves in the Xj direction, or selects
a Xj state arbitrarily. It repeats m times, and if the requirements are not met, it moves
forward arbitrarily. In the clustering behavior, the current range is studied. The number of
peers in the research range is n f , and the central location is Yj. If it exists Yc/n f > δYi, it δ
indicates the degree of crowding, which means that the central area is not crowded and
there is more food. The rear-end behavior mainly refers to testing the number of partners
in the current range and the n f largest partner in Xj the center of the area Yj. If there is
Yi/n f > δYi, it means that there is more food in the companion position, and it is not
crowded. In the random behavior of artificial fish swarms, the fish shoals are randomly
selected within the range, and they can move forward in this direction. The expression is
shown in Equation (10).

Xi ln ex = Xi + r + Vi (10)

In Equation (10),Vi represents the perceivable distance of the artificial fish, and the r
value is [−1, 1]. In the artificial fish swarm, any fish is a solution, and the best foraging area
can be found by means of fish swarm communication, and then the global optimal solution
can be found.

The leapfrog algorithm is a new swarm intelligence algorithm, which is a particle
swarm optimization method that combines genetic behavior and animal behavior. The
classification and exchange of information were realized through the behavior of frog
populations, and a global optimal solution was sought [17,18]. It defined the number of
SFLA population groups as m, and the number of frogs in each group as n. In the initialized
frog population, the number of frogs generated is F, denoted as P = (P1, P2, . . . , PF), where
Pi is the number of solutions, the value is (0 ≤ i ≤ F), and pi = (p1, pi2, . . . , pid), d
represents the number of solutions, and each frog represents a solution. In the global
optimization, the fitness value is f itness(pi), the calculated first fitness value corresponds
to the Pi global optimal frog, and the frogs were sorted into p the middle, p the first frog
was placed into one group, and the frogs were sorted in turn m into groups. A local search
was performed on each subgroup that had been divided, and the set maximum number of
iterations was satisfied, then the search was ended. Because of the local optimal problem in
the survey of artificial fish stocks, the AFS-SFLA algorithm was proposed by combining
the above two algorithms. The specific flow of the algorithm is shown in Figure 4.
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Figure 4. Schematic diagram of AFS-SFLA algorithm.

The main idea of the AFS-SFLA algorithm was to use the artificial fish swarm to obtain
the fish swarm as the initialization parameter of the frog leaping algorithm, and k assign
the times of the total number of frogs to the frog population, among which 0 < k < 1. Then
the fitness of each frog was calculated, the optimal solution frog was recorded, the position
of the worst frog was grouped and adjusted, if it exists ii > maxgen2, and training was
completed. The ii loop variable maxgen2 represents the maximum iteration.

3.3. Scale Scheduling Model for a Wind-Hydrogen Integrated System

System consumption is a key indicator of a system. Considering the interference
of the renewable energy load and various factors of system scheduling, the AFS-SFLA
algorithm was used to determine the optimal scheduling scheme of the system and build a
multi-time scheduling model of the system [19]. Among them, in the objective calculation
of the objective function, the carbon-transaction-cost based on the ladder-type carbon
trading price mechanism is defined as Ctp(t), the equipment maintenance fee is defined
as Com(t), the environmental pollution fee Cet(t) is Cwc(t) as C f u(t). Adding wind energy
and hydrogen energy disposal costs into the objective function will allow a more intuitive
analysis of the electricity consumption capacity of the integrated energy system.

minF =
T

∑
t=1

(C f u(t) + Cet(t) + Cwe(t))∆t (11)
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In Equation (11), T represents the total time period of the system scheduling, where F
represents the operating cost of the system for one day, ∆t is the scheduling change time,
and the equipment maintenance cost is expressed in Equation (12).

Com(t) =
Nom

∑
t=1

Kom,j|pi(t)| (12)

In Equation (12), Kom,j represents the maintenance cost of the equipment unit, Nom
represents the number of equipment units, and pi(t) the output power of the equipment
category i at the moment t.The expression of environmental pollution cost is shown in
Equation (13).

Cet =
m

∑
j=1

Vj pi,t (13)

In Equation (13), j = 1 represents carbon dioxide, j = 2 represents sulfide, j = 3
represents nitrogen oxide, pi,t represents the amount of pollutant discharge of equipment
items i, Vj represents the penalty of the first pollutant, and j represents the type of pollutant.
In an integrated energy system, constraints such as power coefficients and equipment
operation need to be fully considered.

In the IES system investigated in this study, each carbon emission system contained
the limit constraints of each production machine. The output limit constraint expression of
each unit can be seen in Equation (14).

Pf irek,min ≤ Pf irek(t) ≤ Pf irek,max
Phk,min ≤ Pf ire(t)− Pf ire(t− 1) ≤ Phk,max

Pwind,min ≤ Pwind(t) ≤ Pwind,max
Pnig,min ≤ Pnig(t) ≤ Pnig,max
Pgtk,min ≤ Pgtk(t) ≤ Pgtk,max

(14)

In Equation (14), Pf irek,min, Pf irek,max represent the minimum and maximum value of
the thermal power unit at the time of k, respectively. Phk,min, Phk,max represent the minimum
and maximum ramp rate of the thermal power group at the time of k, respectively. Pwind,min,
Pwind,max represent the minimum and maximum output of the wind turbine, respectively.
Pnig,min, Pnig,max represent the minimum and maximum value of the photovoltaic output,
respectively. Pgtk,min, Pgtk,max represent the minimum and maximum value of the gas
turbine output at the time of k, respectively. At the same time, in the energy storage system,
it was usually necessary to ensure the life and working efficiency of the battery, and the
battery charging limit and discharge depth are shown in Equation (15).

EcSOCmin ≤ Eees(t) ≤ Eesocmax (15)

In Equation (15), EeSOCmax represents the maximum state of charge of the battery,
EcSOCmin represents the minimum state of charge of the battery, and Ec represents the
rated capacity of the battery. In the operation of the heat storage tank, it was also necessary
to fully consider the heat storage range in each period, and the operational constraints of
the heat storage tank are shown in Equation (16).

Qmin < Qhs(t) ≤ Qmax (16)

In Equation (16), Qmax represents the maximum thermal storage energy of the thermal
storage tank, Qmin represents the minimum thermal storage energy of the thermal storage
tank, and Qhs(t) represents the heat stored in the thermal storage tank at the moment t. In
the integrated energy system, it was also necessary to consider the electrical power balance
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constraints, including the load balance of the wind turbines, hydrogen generating units,
and electrical energy storage equipment.

pload(t) = phs(t) + pEES(t)− pWT,use − pH(t) (17)

In Equation (17), pEES(t) means that the battery is producing electricity at the moment
t, phs(t) is the system use of the electricity load at the moment t, pWT,use is the wind power
that the system is consuming, and pH(T) represents the hydrogen electricity that the system
is consuming.

A real-time scheduling plan was established on the basis of the above. The first step
was to add a real-time carbon emission feedback link to the intraday scheduling plan.
The real-time environmental assessment model of carbon emission in IES is shown in
Equation (18). 

Qmin(t) ≤ QHP(t) + QRP(t) ≤ Qtarget(t)
Qrealtime(t) = QHP(t) + QRP(t) + QWG(t)

Qrealtime(t) ≤ Qp(t)
(18)

In Equation (18), Qmin(t) represents the emission amount of the carbon emission unit
at a moment under the condition of stable operation of the system, Qtarget(t) represents
the real-time carbon emission target of the carbon emission unit at a given moment t,
Qrealtime(t) represents the real-time carbon emission of the IES system of the system at a
given moment t, and Qp(t) represents the IES system in engraved carbon emission targets
at the moment t.

The purpose of the system optimization scheduling model is to optimize parameters
such as system electrical output, system electrical power consumption, and system heat
dissipation power within 1 to 24 h. The real-time scheduling is mainly based on the daily
scheduling, dynamic data adjustment and monitoring according to the forecast data set
as expected, that t = t1 is to say, the correction is the t = t1 + 1 effect [20,21]. The final
scheduling target is shown in Equation (19).{

−∆pmax ≤ (preal(t)− proll(t)) ≤ ∆pmax

∆pmaxεpmax (19)

In Equation (19), preal represents the real-time dispatching output of the system equip-
ment, pmax represents the maximum value of the system output, and ε represents the
constraint multiplier. Then the system multi-time scale optimization is shown in Figure 5.
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4. Performance Test of Optimal Dispatch Model for Wind and Hydrogen Integrated
Energy Systems

In the experiment, a green renewable integrated energy system was selected as the
experimental object, and the recorded parameters were selected as the experimental data.
MATLAB and Yalmip were used to complete the experimental simulation test. In the
algorithm performance test, the number of fish groups was set to 180, the number of
population groups to 10, the step size to 0.1, and the constraint multiplier was set to
0.3 [22–24]. Considering the random interference of the integrated system, the algorithm
interference was suppressed by different dimensions d. The Rosenbrock and Griewank
benchmark functions were used to test the convergence performance of the algorithm.
Figure A1 shows the test results under the two benchmark functions.

Figure A1a is the test result under the Griewank function. From the data in the figure,
it can be seen that the SFLA algorithm has a clear trend of change in the first 100 iterations
of the test. After 100 times, it tends to converge and falls into a local optimal solution, and
the output value at this moment is −3.82. The AFS-SFL algorithm is different from the
SFLA algorithm. It can find a feasible solution in the early stages, and it tends to converge
after 110 iterations. At that moment, the optimal solution is −4.83. Figure A1b shows the
test results under the Rosenbrock function. The SFLA algorithm did not perform well in the
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early stage of iterative effects, there were obvious iterative changes at 180 iterations, and
the optimal solution was obtained at 190 iterations. Compared with the SFLA algorithm,
the AFS-SFLA algorithm performed better in the early iteration and tended to converge
after 120 iterations. The output value of the function that found the optimal solution was
−0.436. It can be seen that the AFS-SFLA algorithm had a better iterative performance and
optimization ability than the SFLA algorithm. At the same time, the algorithm performance
was tested in dimension d. The results are shown in Table A1.

It can be seen from the data in Table A1 that the results of the two algorithms under
the two benchmark functions were basically consistent, and the test accuracy is better
when the dimension d is 50. At the same time, the AFS-SFLA algorithm used is better than
the AFS algorithm. Therefore, d was taken as 50 and a further test was conducted [25].
Therefore, the AFS-SFLA algorithm was used to predict the typical daily electricity load
power, thermal load power, and air intake power, as shown in Figure A2.

Figure A2 shows the typical daily load power prediction results. Figure A2a is the
forecast result of the daily electricity load. The peak forecast of the daily electricity load was
mainly at 8–12 h, reaching the peak at 17–20 h at night, and the electricity load power was
147 MW at 17 h. Figure A2b refers to the daily thermal load power results, from the data in
the figure, the thermal power was mainly concentrated in 8–7, the power was 149–140 MW
at that moment, and the thermal load power had a maximum value of 23, which was
151 MW. Figure A2c shows the power prediction results. From the prediction curve, it
can be seen that the wind power was maintained in a high-energy consumption range
between 0–8:00 in the morning and 22–24:00 in the evening, and the maximum value at
24:00 was 41 MW. During the daytime, the overall wind power was small and maintained
in the range of 1–20 MW. During the integrated energy system operation of the system, it
was necessary to consider the electric energy and thermal energy consumption caused by
the operation of various equipment, including heat storage consumption, energy storage
consumption, and operation consumption of wind and hydrogen equipment. The error
results under different time periods are shown in Table A2.

Table A2 shows the forecast errors for different time periods. From the data in Table A2
it can be seen that in the short-term forecast, the forecasts of thermal load, electrical
load, and wind power output power consumption were all high, with 5%, 4%, and 19%,
respectively. In the short-term expansion, the forecasts for thermal load, electrical load,
and wind power output and power consumption were 1%, 2%, and 8%, respectively,
and the three forecast indicators for ultra-short-term forecasts were 0.4%, 0.3%, and 2.1%,
respectively. It can be seen that although the AFS-SFLA algorithm has excellent prediction
performance, the overall prediction accuracy decreases with the extension of the prediction
time. Therefore, adopting a real-time scheduling strategy to dynamically adjust the system
scheduling in a short time is more in line with the requirements of the integrated energy
system [26–28]. Figure A3 shows the output results of combined heat and power and wind
power consumption in each period.

Figure A3a shows the output power results of the CHP. The overall difference between
day-to-day scheduling, rolling scheduling, and real-time scheduling was not large. Espe-
cially in the time interval between 18 and 24, the three different types of scheduling data
were basically consistent. However, in general, the output power of day-ahead scheduling
was higher than that of rolling scheduling and real-time scheduling, with the error between
rolling scheduling and real-time scheduling being about 0.05%, indicating that both rolling
scheduling and real-time scheduling had better scheduling performance. Figure A3b shows
the output power results of the fans. The power variation curves of the fans at different
time periods under the rolling scheduling and real-time scheduling were basically the
same, the error was about 0.06%, and the overall curve fluctuation was small. However, the
day-to-day scheduling fluctuated greatly between the time period 0–3 and the time period
20–22, and the overall output of power consumption of the day-to-day scheduling scheme
was relatively high. At 12:00, the output power of day-ahead dispatch, rolling dispatch,
and real-time dispatch were 14.6 MW, 2.3 MW, and 2.2 MW, respectively. It can be seen



Processes 2023, 11, 344 13 of 17

that the time-scale scheduling scheme had lower power consumption and stronger system
stability than the traditional day-ahead scheduling scheme. Table A3 shows the electrical
consumption test results of the multiperiod integrated energy system.

From the data in Table A3, it can be concluded that the wind power consumption
of different time-scale dispatching schemes was different. The daily power dispatch,
rolling dispatch, and real-time dispatch of wind power consumption were 341.45 MW·h,
342.54 MWh, and 350.64 MW·h, respectively. The power consumption performance of the
dispatching scheme was improved by 3.145% compared with the previous dispatching
scheme. Among them, the electricity consumption of multiple time scales was 350.64 MW,
which was 9.19/MW·h more than the previous dispatch, indicating that the multi-time
scale scheme had better wind power consumption performance. Figure A4 shows the
deviation results of the total electrical power and total thermal power deviation of the
system at each time scale.

Figure A4a shows the results of the total electric power deviation for each time period.
It can be seen from the graph data that the overall deviation of day-ahead scheduling
was relatively large compared with the rolling scheduling and real-time scheduling. The
simulation test of AFS-SFLA algorithm shows that the maximum deviation of day-ahead
scheduling was 9.85 MW, the maximum deviation of rolling scheduling was 5.95 MW,
and the real-time scheduling deviation was the smallest, and the maximum deviation
was 4.25 MW. Figure A4b shows the results of the total thermal power deviation in each
time period. The overall deviation of the scheduling was relatively large, the maximum
deviation was 14.58 MW, the minimum deviation was at 6 o’clock, and the deviation was
0.56 WM at that moment. The smallest deviation was the real-time scheduling scheme, the
maximum deviation was 1.89 WM, and the minimum deviation was 0 WM. It can be seen
that the use of multi-time scale scheduling had an excellent performance regardless of the
system power consumption or stability, which meets the requirements of wind-hydrogen
integrated energy-saving development.

5. Conclusions

In the context of carbon trading, the impact of integrated energy-system scheduling
on the ecological environment and on energy conservation was analyzed. The traditional
wind-hydrogen integrated energy system has randomness and uncertainty in its operation
which cannot meet the requirements of energy consumption and the economy. There-
fore, the wind-hydrogen integrated system was analyzed and a multi-time scale optimal
scheduling model of the system was established. Considering that the scheduling model
is a multiobjective and nonlinear problem, the AFS-SFLA algorithm was combined with
the frog leap algorithm to solve the scheduling model. The performance simulation test
shows that in the multialgorithm test of the Rosenbrock function, the AFS-SFLA algorithm
was better than the SFLA algorithm in the early iteration effect and tended to converge
after 120 iterations. At that moment, the best solution was −0.436. In the output power
results of the integrated energy system in different periods, the daily scheduling, rolling
scheduling, and real-time scheduling were basically consistent among the output power of
the cogeneration. However, in the output power of the fan, the daily scheduling fluctuated
greatly between the time period 0–3 and the time period 20–22, and the total output of
power consumption of the daily scheduling scheme was relatively high. At 12:00, the
output power of day ahead dispatching, rolling dispatching, and real-time dispatching was
14.6 MW, 2.3 MW, and 2.2 MW, respectively. In the multiperiod total thermal power devia-
tion test, the overall deviation of the day ahead dispatching was large, with a maximum
deviation of 14.58 MW. The real-time dispatching scheme had the smallest deviation, with
a maximum deviation of 1.89 WM. It can be seen that the time-scale scheduling scheme had
lower power consumption and stronger system stability than the traditional scheduling
scheme. In the context of carbon trading, improving the comprehensive energy scheduling
performance is of great significance for improving the stability of the energy system and
reducing the energy consumption of the energy system. Therefore, this research established
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a scheduling model with multiple time scales by analyzing the existing integrated energy
system, and innovatively used the fish school algorithm and leapfrog algorithm to solve
the problem. Finally, the stable operation of the integrated energy system was realized.
However, considering the economic principle, the equipment used was mainly from the
perspective of environmental protection and low carbon, without considering the impact
of more comprehensive scheduling factors. Further improvement and optimization are
required in the future to meet the needs of power grid development.
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Table A1. Testing the algorithm performance in dimension d.

Function
Type Result AFS (d = 20) AFS (d = 50) AFS-SFLA

(d = 20)
AFS-SFLA

(d = 50)

Griewank
Optimal

value 0.0015 0.0082 0.0010 0.0008

Average
value 0.0041 0.0112 0.0014 0.0004

Rosenbrock
Optimal

value 0.0017 12.115 0.0013 0

Average
value 0.0265 18.735 0.0016 0
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Figure A2. Typical daily load power forecast results (a). Electric load power prediction, (b). Thermal
load power prediction, (c). Wind power prediction.
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Figure A3. The results of the power data of the comprehensive energy system in different periods (a).
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Table A3. The results of the electricity consumption test of the multiperiod integrated energy system.

Time Scale Wind Power Consumption
(/MW·h)

Consumption Rate of Wind
Power/%

Day-ahead scheduling 341.45 93.54%

Rolling scheduling 342.54 94.65%

Real-time scheduling 350.64 97.45%
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