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1. Introduction

The manufacturing and energy industry are typical complex large systems which
cover a long cycle such as design [1], production chain [2], production or operation [3],
after-sales [4], etc. A lot of scholars have shown great concerns for different reasons due
to the industry’s huge body and the vital role of economic society. Liu et al. [5] selected
31 manufacturing industries, used the stochastic frontier analysis (SFA) method to measure
R&D efficiency, and used the Tobit regression method to examine the relationship between
direct government subsidies, preferential tax policies and manufacturing R&D efficiency.
An innovative islanding detection technique was proposed based on active frequency drift
(AFD) and the analysis revealed that the proposed method reduced harmonics by 68%
compared to conventional AFD and had a larger chopping factor [6]. A technology with a
manufacturing working environment extending underwater was proposed for lowering
the cost of installing new submarine pipelines, polluting the ocean less, and improving
recycling efficiency [7]. Except for studies on policy, safety and technology, a large number
of scholars, researchers and engineers have focused on the optimization problems with the
goal of increasing profits and reducing costs, which are beneficial for enhancing market
competitiveness to manufacturing industries and the energy system.

2. Optimization Model

An optimization process follows three steps: modeling, solving, and analyzing. An
optimization model [8] is generally shown as Formulas (1)–(4):

min/maxz = f (x) (1)

s.t. gi(x) ≤ 0 i = 1, 2, · · · , m (2)

hj(x) = 0 j = 1, 2, · · · , n (3)

x ∈ X (4)

where z and f (x) are the objective function and an expression for the objective function;
gi(x) and hj(x) are an inequality and an equality expression of constraint conditions,
respectively. x is a variable vector that represents the solution to an optimization problem
and X is the range of variable values. Note x can be continuous, discrete, integer, or mixed,
which represent continuous optimization, discrete optimization, integer optimization and
hybrid optimization.
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3. Solution of Optimization

An optimization problem is essentially used to find a global optimal point (or an area
for multiple goals) within the feasible domain. The solving algorithm makes a compromise
between accuracy and efficiency in the optimization process. The optimization algorithms
are usually categorized as traditional optimization algorithms [9] and the intelligent opti-
mization algorithms [10].

Traditional optimization algorithms are divided into analytical methods and direct
search methods. The former obtains the extreme point as the optimization point using a
mathematical method after converting constraint conditions into non-constraints such as
the relaxation variable. The latter obtains a better goal continuously by direct searching,
which includes the simplex method, the gradient descent, Tabu search, etc. Analytical
methods cannot distinguish the global optima and the local extremum points due to
the limitation of mathematical derivation. Direct search methods can only approach the
extreme point due to the limitation of searching step length.

A typical optimization problem in the manufacturing industry is called a workshop,
which describes how machine resources are used on the production lines [11,12]. A two-
stage hybrid flowshop scheduling problem with identical parallel machines in each stage
was addressed. To minimize the makespan of the jobs while considering product quality,
Shim et al. formulated mathematical programming, developed two dominance properties
for this problem, and proposed three heuristics with the suggested dominance properties
to solve the considered problem [13].

In the energy community, a wind–hydrogen integrated multi-time scale energy schedul-
ing model was established to optimize the energy consumption scheduling problem of the
system [14].

Intelligent optimization algorithms provide another way to improve search efficiency
and accuracy by learning or simulating various optimization behaviors and phenomena in
the natural world, which include evolutionary and population algorithms [15–18], nature-
inspired algorithms [19], metaheuristic algorithms [20], learning-based algorithms [21], etc.
A large number of applications [22–24] show that intelligent methods have the abilities
to achieve excellent results, especially for complex optimization, which is difficult for
traditional optimization algorithms.

A fault diagnosis method using an enhanced fireworks algorithm (EnFWA) was
proposed to train and optimize the deep belief network (DBN) network to obtain the best
structure with a successful application of the aviation generator [25].

Mistarihi et al. [26] considered the use of the Moth–Flame Optimization (MFO) al-
gorithm and the Salp Swarm Algorithm (SSA), as well as the Whale Optimization Al-
gorithm (WOA), to provide efficient cluster-head selection decisions. Compared to a
reference scheme using the Low-Energy Adaptive Clustering Hierarchy (LEACH) pro-
tocol, the simulation results showed that integrating the MFO, SSA or WOA algorithms
into WSN clustering protocols could significantly extend the WSN lifetime, which im-
proved the nodes’ residual energy, the number of live nodes, the fitness function and the
network throughput.

In [27], an adaptive particle swarm optimization with a state-based learning strat-
egy (APSO-SL) was put forward. In APSO-SL, in contrast to using iterations to just the
population state, using the population spatial distribution was more intuitive and accurate.

4. Constrain Conditions

Key to the optimization model is the establishment of constraint conditions. The most
complex constrain conditions in manufacturing industries and the energy system is the
process model, which shows the obeyed laws and the mutual influence between variables.
Therefore, some different representations of the causal relationship [28], the generative
system [29], the graph theory [30] and so on have been imported to reveal the rules of
the process in addition to equality constraints and inequality constraints of traditional
optimization models.
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Rahman et al. introduced some new logarithm operational laws for intuitionistic fuzzy
sets and developed some structure properties with more effectiveness compared with the
existing methods from the comparison and sensitivity analysis [31].

Mistarihi et al. conducted an experiment utilizing the DMAIC (define, measure,
analyze, improve, and control) and simulation technique and its application in reducing
waiting time and enhancing overall system efficiency in Jordan’s Princess Rahma hospital’s
pediatric emergency department. The cycle time of the process was reduced by 73% from
the previous value, while simultaneously enhancing the total performance of the emergency
department by 83% [32]. Though this successful deployment was explored in a healthcare
sector, the idea of changing organization for optimization will have a great heuristic effect
on process optimization in the manufacturing industry and the energy system.

5. Data-Driven Optimization and Deep Leaning Methods

Thanks to the wide application of a supervisory control and data acquisition (SCADA)
system and a significant improvement in computing power, data-driven optimization
methods [33] and machine learning technology [34] are showing great promise.

Typical data-driven optimization is approximate dynamic programming which inte-
grates dynamic programming and reinforcement learning. Much success has been reported
in this field [35–37]. Data-driven optimization inevitably involves the problems of observa-
tion windows and multi-scale information fusion issues. A multivariate data alignment
method [38] was proposed to follow different time scales and different role effects, in which
data modeling can comply with a data observation window of physical variables behind
the data.

Reference [39] surveys machine learning for big data processing. Deep learning is
regarded as an excellent tool for simulating the structure and thinking of the human
brain. To effectively manage the quality of iron ore, a deep learning scheme for mining
the necessary information in sintered image processing [40] was proposed to replace
manual labor and realize intelligent inspection. Experiments showed that the improved
semantic segmentation model can effectively segment the sintered surface, achieving 98.01%
segmentation accuracy with only a 5.71 MB size.

6. Conclusions

This Special Issue took a glimpse at the expansion of manufacturing and energy
systems on optimization technologies. On the basis of traditional optimization frameworks,
intelligent optimization technology still holds a dominant position, within which the main
research focuses on the improvement in the method itself and its integration with the scene.

Process models of constrain conditions are no longer limited to traditional differential
equations. Instead, some non-numerical models such as rule-based and graph theory
are introduced into manufacturing and energy systems, which enhances the consistency
between theory and practical processes. A feasible approach to overcome difficulties caused
by introducing complex process models as the constraint is following a virtual simulation
by using the powerful processing power of computers.

Data-driven optimization is still in its early stages. However, it has been showing
a rapid trend with the development of artificial intelligence technology. Optimization
methods based on multi-scale and different dimensional data fusion have great potential
prospects in manufacturing and energy systems.

Author Contributions: Investigation, D.Z.; writing—original draft preparation, D.Z.; writing—review
and editing, D.Z., Q.Y. and Y.Y. All authors have read and agreed to the published version of the
manuscript.
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