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Abstract: The accurate calculation of the hotspot temperature of the cable intermediate joint can
effectively guarantee the safe operation of the transmission and distribution network. This paper
addresses the limitations of the current method of estimating hotspot temperature solely from
surface temperature measurements. Specifically, we focus on a 110 kV single-core cable as our
subject of study. We started by establishing a simulation model for the temperature field at the
intermediate joint to generate data samples. Subsequently, the NCA (neighborhood component
analysis) algorithm was employed to select the optimal measurement points on the cable’s surface.
This allowed determination of the quantity and location of characteristic points. Finally, we developed
a cascading inversion model, which consists of a radial inversion model and an axial inversion model,
based on the extreme learning machine algorithm. The example results show that the mean squared
error of hotspot temperature obtained by cascade inversion and direct inversion is 6.95 and 24.71,
respectively, indicating that cascade inversion can effectively improve the inversion accuracy.

Keywords: cable joint; hotspot temperature; axial inversion; radial inversion; cascade inversion

1. Introduction

As a basic component of the power system transmission and distribution network, the
insulation health status of power cables is directly related to the safe and stable operation
of the power supply system. Due to the complexity of the process, material dispersion, and
concentration of electrical stress during cable production and installation, the intermediate
joints are prone to insulation breakdown under the action of electrical and thermal stresses,
which becomes the weakest point in the insulation of the cable system [1,2]. To ensure the
safe and stable operation of the transmission and distribution network, the temperature of
the cable intermediate joints must be accurately calculated.

At present, the methods used for simulating the temperature field of cable bodies
and intermediate joints mainly include analytical methods and numerical computation
methods. The former often relies on the IEC 60853 standard [3], combined with thermal path
models [4,5], comparative analysis [6], etc., to study the temperature rise issues in cables.
However, these methods yield conservatively calculated results that may not fully meet the
actual engineering demands for the power supply capacity of electrical cables. On the other
hand, numerical computation methods can simulate the complex operating environments
of cables and produce more accurate temperature field simulation results. Researchers
like Tang Ke and others [7] have used the finite element method (FEM) to simulate the
temperature fields of single cables and three-phase cables, fitting the temperature difference
functions between the two to enhance simulation accuracy. Pu Lu and others [8] have
established an electromagnetic–thermal coupled simulation model for the intermediate
joints of single-core cables, studying the relationships between surface temperature and
core temperature of the joint under various environmental temperatures, load currents,
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and operational conditions, which affirmed the effectiveness of this method. Zhao Xuefeng
and others [9] have applied finite element numerical algorithms to simulate soil-direct-
buried cable bodies and joints, analyzing the impacts of temperature-dependent conductor
resistance and moisture migration on the temperature and current-carrying capacity of
intermediate joints. Gao Yunpeng and others [10] have established simplified transient
thermal path models for cable joints and proposed an inversion algorithm for the conductor
core temperature of cable joints, deriving the real-time temperature of the conductor.

Currently, many of the methods for inversing hotspot temperatures of intermediate
joints in single-core cables are directly based on surface measurement temperatures. These
methods overlook axial heat transfer within the joint to the cable core and radial heat
transfer from the cable core to the external surface, resulting in low inversion accuracy and
large errors. Therefore, this paper uses a 110 kV single-core cable as a research subject. By
obtaining data samples from steady-state temperature field simulations of the intermediate
joint, a cascading inversion model comprising radial and axial inversion models was
constructed based on the extreme learning machine algorithm. Case study results indicate
that cascading inversion can effectively enhance inversion accuracy.

1.1. Simulation Model of Intermediate Joint

Single-core cable joints and the actual structure of the body are shown in Figure 1; this
paper takes FY-YJLW03-Z 64/110 kV 1 × 1200 mm2 cable as a reference and simplifies the
actual structure of the cable body and intermediate joints. The body of a single-core cable
is composed of the cable core, insulation (including conductor shielding layer), insulation
shielding layer, water-blocking tape, copper tape, and outer sheath from the inside out in
sequence and single-core cable intermediate joints, including the cable core, compression
tube, prefabricated silicone rubber, copper mesh, metal protective shell, sealant, and
fiberglass-reinforced plastic shell.

Figure 1. Diagram of the actual connector of the single-core cable. (a) Schematic diagram of the
overall structure of the intermediate connector. (b) Cross-sectional structure of single-core cable body.

As shown in Figure 2, the single-core cable simulation model mainly consists of
two parts: the body and the intermediate joint. Among them, the body part includes the
cable core, insulation (including conductor shielding layer), insulation shielding layer,
water-blocking tape, copper tape, and outer sheath; the intermediate joint part includes
joints, prefabricated silicone rubber, copper mesh, metal protective shell, and fiberglass
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shell. The material parameters [11–16] of the single-core cable intermediate joint simulation
model are shown in Table 1.
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Table 1. Material parameter of cable body and joint.

Material Structure Density/
(kg/m3)

Thermal Conductivity/
(W/m·K)

Copper

Conductor, insulation
shield, copper tape,

copper mesh, contact
resistance

8900 401

Cross-linked
polyethylene Insulation 920 0.4

Semi-conducting
water tape Water barrier 1150 0.23

Polyethylene Outer sheath 920 0.3

Prefabricated
silicone rubber Joint insulation 1100 0.27

Fiberglass-reinforced
plastic

Fiberglass-reinforced
plastic shell 1850 0.4

Polyurethane
waterproof adhesive Sealant 1200 0.357

1.2. Temperature Field Boundary

The analysis of cable thermal problems based on the finite element method includes
both steady-state and transient analysis [17–19], and its temperature field control equation
is shown in the following equation:

∂2T
∂x2 + ∂2T

∂y2 + ∂2T
∂z2 + Φ

λ = 0 (steady state)

ρc ∂T
∂t = λ ∂2T

∂x2 + λ ∂2T
∂y2 + λ ∂2T

∂z2 + Φ (transient analysis)
(1)

In this equation, T represents the temperature in Kelvin (K); c is the specific heat
capacity of the material, expressed in Joules per kilogram-Kelvin (J/(kg·K)); t is time,
expressed in seconds (s); ρ is the density of the material, expressed in kilograms per cubic
meter (kg/m3); λ is the thermal conductivity of the material, expressed in Watts per meter-
Kelvin (W/(m·K)); Φ is the heat generation per unit volume, expressed in Watts per cubic
meter (W/m3).

There are three types of boundaries related to heat transfer [20,21]: The first type of
boundary condition is known as boundary temperature function, which can be expressed
as the following formula:

T|Γ = TW (2)

Here, Γ represents the external boundary of the cable; TW is the known boundary
temperature in Kelvin (K).

The second type of boundary condition involves known boundary normal heat flux
density, represented as follows:

−λ
∂T
∂n

|Γ = q (3)
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In this equation, q is the known heat flux density, expressed in Watts per square
meter (W/m2).

The third type of boundary condition is the convective boundary condition, which
involves known convective heat transfer coefficients and fluid temperature, expressed
as follows:

−λ
∂T
∂n

|Γ = α
(

T − Tf

)
|Γ (4)

Here, α is the convective heat transfer coefficient, expressed in Watts per square
meter-Kelvin (W/(m2·K)); Tf is the ambient fluid temperature in Kelvin (K).

In this study, the third type of boundary condition is employed on the outer surfaces
of the cable and its joints, where the ambient temperature is 25 ◦C, and the convective heat
transfer coefficient is 10 W/(m2·K).

1.3. Heat Source Loading

Under normal operation of the cable, there are mainly conductor core heat sources,
dielectric loss heat sources, and grounding layer sheath ring current heat sources [22].
Considering the existence of contact resistance, the generation of cable heat source in
this paper mainly includes the core heat source and contact resistance heat source during
current flow [23], corresponding to the heat generation rate G1 and G2 in Figure 3, and its
calculation formula is shown in the following equation:

G1 =
P1

V1
=

I2R1

SL1
= I2 ρ1L1

S2L1
= I2 ρ1

π2R4
0

(5)

G2 =
P2

V2
=

I2R2

SL2
= I2 ρ2L2

S2L2
= I2 k · ρ2

π2R4
0

(6)

where P1 is the power corresponding to the heat source of the cable core, W; P2 is the power
corresponding to the heat source of the contact resistance, W; V1 indicates the volume
of the cable core, m3; V2 indicates the volume of the contact resistance, m3; I is the load
current, A; L1 indicates the corresponding length of the cable core, m; L2 indicates the
length of the contact resistance, m; R0 is the radius of the cable and the contact resistance,
i.e., 2.1 × 10−2 m; ρ1 and ρ2, respectively, indicate the resistivity of the cable and the
contact resistance copper, and in this paper, they are all the electrical resistivity of copper,
i.e., 0.018 Ω-mm2/m; k is the relative equivalent resistivity of the contact resistance, which
can simulate a variety of crimping conditions in the joints of the actual project [24–26].
Calculated by Equations (5) and (6), it can be seen that the heat source G1 loaded by the
cable is I2 × 0.0094 W/m3, and the heat source G2 loaded by the contact resistance is
k × I2 × 0.0094 W/m3.
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2. Feature Point Selection Based on NCA Algorithm

After the simulation modeling of the temperature field of the cable body and inter-
mediate joints is successfully completed, a critical step is to effectively screen the skin
temperature measurement points. This involves determining the precise number and
location of the feature points that exhibit the strongest correlation with the temperature of
the cable joints. These data are crucial, as they provide valuable samples for the subsequent
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process of cascade inversion, which aims to further analyze and interpret the temperature
distribution across the cable system.

To facilitate this analysis, the neighbor component analysis (NCA) algorithm is em-
ployed. NCA is a well-regarded unsupervised learning algorithm that primarily focuses
on dimensionality reduction and feature selection. The central aim of NCA is to maximize
the difference in features of the samples while preserving the local neighbor relationships
among them. This is achieved through learning a linear transformation, which not only
helps in simplifying the data but also enhances the interpretability of the results.

The NCA algorithm functions by determining an optimal linear mapping, which
adjusts the objective function in a way that the distances between the samples either
maximize their similarities or emphasize their contrasts. This approach is particularly
effective in contexts where the feature relationships within the data need to be clearly
understood and accurately represented, such as in the analysis of temperatures along a
cable system.

In the context of cable temperature analysis, the NCA algorithm uses both cable
skin temperature data (treated as features) and joint temperature data (treated as labels)
obtained from simulation. The first step in the process involves the application of K-
fold cross-validation technique in regression prediction. This technique divides the data
into “K” subsets and then iteratively uses one subset as the test set and the others as the
training set, thereby ensuring that each subset is used for both training and testing. This
helps in minimizing the prediction error across models and enhances the reliability of the
regression outcomes.

By varying simulation conditions such as the load current, ambient temperature, and
convective heat transfer coefficient, fresh sets of data on cable skin temperature and joint
temperature are generated. Utilizing the NCA algorithm, each measurement point’s temper-
ature is analyzed to compute the weights that indicate the strength of their correlation with
the joint temperatures. Measurement points with higher weights are identified as having a
stronger correlation and are, therefore, selected as key feature points for further analysis.

Through this methodical application of the NCA algorithm and careful manipulation
of the simulation parameters, the most effective skin temperature measurement points are
selected. These points provide reliable and representative data samples that are critical for
the subsequent steps of cascade inversion, ultimately leading to a better understanding and
management of the thermal dynamics in cable systems. Such detailed analysis not only
aids in predictive maintenance but also ensures safer and more efficient cable operation.

3. ELM Cascade Inversion Model
3.1. ELM Algorithm

In this paper, the extreme learning machine (ELM) algorithm is used to construct
the radial and axial inversion models in the cascade inversion model and to establish
the ELM joints hotspot temperature cascade inversion model. ELM is a kind of fast and
effective single-layer feed-forward neural network, which can be used to solve regression
and classification problems, and the principle of it is to train the network by solving pseudo-
inverse solutions with randomly generated input weights and biases; the network is trained
by solving pseudo-inverse solutions for the output weights. This approach avoids the
cumbersome backpropagation algorithm in traditional neural networks, thus improving
training speed and efficiency.

For a training dataset X, the input of each sample is x(i), and the output is y(i). Assume
that X has n samples, each with m inputs and h outputs for the categories. The goal of ELM
is to learn to make the function such that f(x) approximates y as closely as possible. The
specific steps are as follows:

(1) Randomly generate the input weights w and bias b and compute the hidden layer
output Y:

Y = G(Xw + b) (7)
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(2) Pseudo-inverse solving for the output weights β is used:

β = pinv(Y) (8)

where β is the output weight, and pinv(Y) denotes the pseudo-inverse of Y.
(3) For a new input sample, the output of the ELM is solved by the following equation:

f (x) = G(xw + b) (9)

where G is a sigmoid function.
The specific implementation steps of the ELM algorithm are shown in the Figure 4.
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In this Figure 4, circles represent neurons; the lines from the input layer to the hidden
layer represent the weights w and bias b; the lines from the hidden layer to the output layer
represent the output weights β.

3.2. Structure of Cascade Inversion Model

This paper, considering the characteristics of axial and radial heat conduction, designs
a cascading inversion model for the hotspot temperature of intermediate joints in single-
core cables. The structure of this model, as shown in Figure 5, includes two parts: (1) the
radial inversion model (first-level model), which inverses the core temperature of the cable
body from the surface temperature, and (2) the axial inversion model (second-level model),
which continues to invert the predicted cable core temperature from the radial inversion
model to deduce the hotspot temperature at the intermediate joint. The radial inversion
model incorporates two sub-models, namely sub-model 1 and sub-model 2, each used
to train and learn the relationship between the temperatures at the surface measurement
points and their corresponding core temperatures.
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4. Experimental Results and Analysis
4.1. Experimental Flow

The process of implementing the cascade inversion model is illustrated in Figure 6,
which outlines a structured approach to understanding the thermal behavior of a single-core
cable’s intermediate joint. This methodology begins by constructing a detailed simulation
model of the middle joint of the single-core cable. This model serves as the foundation
for generating critical data, specifically the samples of cable skin temperature and joint
temperature, which are essential for subsequent analysis.
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Once the necessary temperature data has been simulated, the next crucial step involves
utilizing the neighborhood component analysis (NCA) algorithm. This sophisticated tool
screens the temperature measurement points on the cable’s skin, effectively determining
both the number and precise location of the most informative feature points. The selection
of these feature points is based on their strong correlation with the fluctuations in the
temperature of the cable joint. Through the application of the NCA algorithm, not only is
the skin temperature at these selected measurement points accurately obtained, but the
corresponding temperature of the cable core is also precisely determined.

With these critical temperatures identified, the collected data then feed into a compre-
hensive training process. This training is designed to develop and fine-tune two specialized
radial inversion sub-models and one axial inversion sub-model. The purpose of these
sub-models is multifold: They function to refine the prediction of the joint temperature by
leveraging the relationships delineated within the radial and axial dimensions of the cable.

Each sub-model applies the trained data to predict the joint temperature under various
simulated conditions, thereby allowing for the calculation of potential errors in temperature
predictions. These predictions and their associated errors are subsequently analyzed to
adjust the models for improved accuracy. This iterative process enhances the sub-models’
ability to forecast joint temperature with increasing precision, ultimately leading to a robust
cascade inversion model.
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4.2. Results of NCA Selection of Feature Points

To analyze the impact of the number and location of feature points on the inversion
model, it is first necessary to introduce quantitative indices to measure the model’s per-
formance. Fitting accuracy is a primary consideration, which can be described by the
coefficient of determination, R2. The closer R2 is to 1, the higher the fitting accuracy. Sec-
ondly, the sensitivity coefficient Se is used to reflect the model’s robustness; the smaller the
sensitivity coefficient Se of the inversion model, the smaller the fitting error. The sensitivity
coefficient Se of the inversion model is defined as follows:

Tj =
n
∑

i=1
aiTi

Se = max
i

(|ai|)
(10)

In the formula, ai represents the fitting coefficient corresponding to the temperature
of the ith conductor. The sensitivity coefficient Se is the absolute value of the largest first-
degree coefficient in the inversion model. Clearly, the larger Se is, the poorer the model’s
ability to resist disturbances. To optimize the number and positions of feature points, with
a relative equivalent resistivity k = 48 and a distance of 6 m from the joint to one end
of the cable body, temperature measurement points T1~T9 are set on the surface of the
body at end A and T10~T18 at end B. The temperatures at these 18 different axial positions
are then analyzed using neighbor component analysis (NCA). The distance between each
measurement point is 0.5 m, with T1 located 1.5 m from the center of the joint and T10
1.75 m from the center of the joint, as shown in Figure 7a,b.

Figure 7. Temperature measurement point distribution of single-core cable skin. (a) Distribution of
the location of the skin temperature measurement points at the A end of the body. (b) Distribution of
the location of the skin temperature measurement points at the B end of the body.

The results after screening according to the NCA feature selection algorithm are shown
in Figure 8. It can be seen that measurement points 1 (i.e., T1, 1.5 m from the center of the
joint) and 3 (i.e., T3, 2.5 m from the center of the joint) have the strongest correlation with
the temperature of the cable joints and can be used as effective feature points to provide
temperature data for the subsequent cascade inversion model.
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4.3. Analysis of Cascade Inversion Model Results

Based on the results of the number and location of feature points in 4.2, it is determined
to select the location of measurement point 1 and measurement point 3 as the skin measure-
ment points and then carry out the simulation calculation of the steady-state temperature
field of single-core cable.

By changing the current I, convective heat transfer coefficient hc, and ambient temper-
ature of the model loading, the hotspot temperature of the joints Tj, the skin temperatures
Tb1 and Tb2 corresponding to measuring point 1 and measuring point 3, and the core
temperatures Tl1 and Tl2 corresponding to measuring point 1 and measuring point 3 are
extracted; the current I of the model loading is taken as {100, 200, 300, 400, 500, 600, 700, 800,
900, 1000}, and the temperature of the core temperature of the single-core cable is taken as
{100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}. 800, 900, 1000}, the convective heat transfer
coefficient hc takes the value of {5, 8, 10, 13, 16, 20}, and the ambient temperature takes the
value of {5, 10, 15, 20, 25, 30, 35, 40}, and only one of the loading conditions is changed each
time, so the total number of samples is 480, and each sample contains {Tj, Tb1, Tb2, Tl1, Tl2}.

Divide the 480 samples into a training set and a test set; the number of samples in
the training set is 430, and the number of samples in the test set is 50. Then, train an ELM
model (i.e., sub-model 1 in the radial inversion model) using 430 sets of Tb1 and Tl1 data in
the training set, and train an ELM model (i.e., sub-model 2 in the radial inversion model)
using 430 sets of Tb2 and Tl2 data in the training set. An ELM model (i.e., axial inversion
model) is trained using 430 sets of joints hotspot temperature Tj, Tl1, and Tl2 data in the
training set.

After the training is completed, 50 sets of Tb1 and Tb2 from the test set are input into
the first-level radial inversion model (including sub-model 1 and sub-model 2), and the
corresponding 50 sets of Tl1 and Tl2 core temperature data are obtained by inversion, which
are finally input into the second-level axial inversion model, and 50 sets of joints hotspot
temperature Tj data are obtained by inversion. Combined with the original 50 sets of
test samples of the core temperature data and the joints hotspot temperature data, the
intermediate joints hotspot temperature data are calculated. Combined with the core tem-
perature data and joints hotspot temperature data from the original 50 test samples, the
mean square error MSE and goodness-of-fit R2 of the intermediate joints hotspot tempera-
ture cascade inversion model are calculated, and the results are compared with those of
the joints hotspot temperature inversion method directly through the skin temperature
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to verify the superiority of the intermediate joints hotspot temperature cascade inversion
model proposed in this paper. The training effects and results of the models at all levels in
the example simulation experiments are shown in Figure 9.

Figure 9. Training effect of the first-level model and the second-level model. (a) Radial inversion
model 1 prediction error. (b) Radial inversion model 2 prediction error. (c) Axial inversion model
prediction errors.
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According to the results in Figure 9 and Table 2, it can be seen that the training effect of
the radial inversion models 1 and the radial inversion models 2 is good, with errors of 0.23
and 0.43, respectively, providing an accurate inversion prediction of cable core temperature
for subsequent axial inversion models; the error of the axial inversion model is 4.79, and
the inversion prediction accuracy is relatively good.

Table 2. Training model error index of the first-level model and the second-level model.

Models MSE R2

Radial Inversion Model 1 0.22933 0.99872
Radial Inversion Model 2 0.42671 0.9974

Axial Inversion Model 4.7898 0.99319

According to the results in Figure 10 and Table 3,when the ELM model is established
with the skin temperature of measurement points 1 and 3, the error is 24.71; when the
cascade inversion model proposed in this paper is used, the error is 6.95, which is about
3.56 times lower, and the effect is better than the direct inversion of the hotspot temperature
of the middle joint.

Figure 10. Comparison of direct inversion and cascade inversion results. (a) Direct inversion modeling
results. (b) Cascade inversion modeling results.
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Table 3. Direct inversion versus cascade inversion error comparison.

Methodology MSE R2

Direct Inversion 0.22933 0.99872
Cascade inversion 6.9502 0.98963

5. Conclusions

To ensure the safe and stable functioning of power cables, it is essential to accurately
calculate the temperature at the intermediate joint locations of these cables. Our research
focuses on 110 kV single-core cable joints, leveraging both axial and radial heat flow
dynamics to develop a sophisticated hotspot temperature cascade inversion model. The
findings from this study are presented in detail below:

(1) A refined temperature field simulation model was developed using a simplified
heat flow-equivalent structure approach. This model incorporates finite element techniques
to simulate the steady-state temperature field effectively. By meticulously mapping hotspot
temperatures and strategic skin temperature measurement points, we created a compre-
hensive dataset. Utilizing the neighborhood component analysis (NCA), we carefully
calculated the significance of each temperature measurement point. This analysis assisted
in pinpointing the most effective skin temperature measurement points, enhancing the
accuracy of our temperature assessment framework;

(2) The study introduces a cascade inversion model that utilizes the extreme learning
machine (ELM) algorithm to construct detailed radial and axial inversion sub-models.
By modifying various model parameters, including those influencing the selection and
evaluation criteria of training and test sets, substantial improvements in modeling accuracy
and reliability were achieved. The training of the radial and axial inversion sub-models
using selected samples from the training set significantly refined the model’s predictive
capability. The overall effectiveness of the cascade inversion model was confirmed by
evaluating its performance using metrics such as the mean square error (MSE) and the
coefficient of determination (R2). These metrics, calculated using both core temperature data
and intermediate joint hotspot temperatures from the test set samples, show that the model
not only fits well with the observed data but also accurately predicts joint temperatures;

(3) A comparative analysis between the proposed cascade inversion method and a
direct inversion method based solely on skin temperature measurements underscores the
superiority of our approach. Firstly, the radial inversion errors of model 1 and model 2
are controlled within a small range, providing greater fault tolerance for subsequent axial
inversion. The NCA algorithm significantly improves the robustness of the axial inversion
model by screening skin temperature measurement points, preventing the errors generated
by radial inversion from being significantly amplified. This makes the cascade inversion
model achieve significantly lower mean square errors, specifically decreasing from 24.71
in the direct method to 6.95 in the cascade model. This improvement highlights the
cascade model’s capacity to enhance the accuracy and reliability of hotspot temperature
predictions substantially.

The thorough investigation and application of both extreme machine learning al-
gorithms and finite element methods in this study point to the potential for significant
advancements in predictive monitoring and maintenance of power cable systems. This
study not only verifies the enhanced predictive accuracy of the cascade inversion model
but also sets a foundation for future research in this critical field of electrical engineering.
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