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Abstract: The transformation of the states of polarization of electromagnetic waves through their
interaction with polarimetrically linear media can be represented by the associated Mueller matrices.
A global measure of the ability of a linear medium to modify the states of polarization of incident
waves, due to any combination of enpolarizing, depolarizing and retarding properties, is introduced
as the distance from the Mueller matrix to the identity matrix. This new descriptor, called the
polarizing power, is applicable to any Mueller matrix and can be expressed as a function of the degree
of polarimetric purity and the trace of the Mueller matrix. The graphical representation of the feasible
values of the polarizing power provides a general view of its main peculiarities and features. The
values of the polarizing power for several typical devices are analyzed.
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1. Introduction

There are certain well-known descriptors that can be derived from the Mueller matrix
M and provide information on specific features related to enpolarizing (diattenuation and
polarizance [1–6]), depolarizing [7–19], retarding [8,20,21] and other properties [22,23].

The definitions of such parameters (some of them summarized in Section 2) rely
strongly on the algebraic characterization of Mueller matrices through the combination
of two sets of inequalities, namely, the covariance conditions derived from the fact that
any Mueller matrix can be considered as a convex sum, or ensemble average, of nonde-
polarizing Mueller matrices [24–34] and, on the other hand, the restrictions derived from
the impossibility of amplifying the intensity of the interacting light through natural linear
polarimetric transformations (passivity conditions) [33,35–39]. The covariance conditions
can be formulated either through the nonnegativity of the eigenvalues of the Hermitian
positive semidefinite coherency matrix associated with the Mueller matrix M [24,33,40]
or equivalently by means of the eigenvalue analysis of the normal form of M [28–32].
Regarding the pair of passivity conditions, they are formulated in a very simple way as
shown in Section 2.

Furthermore, several representations of Mueller matrices have been developed as
products (serial decompositions) or convex sums (parallel decompositions) of simpler matri-
ces [5,8,20,41–43], leading to the identification and definition of certain parameters that ac-
count for respective polarimetric properties of the medium or interaction represented by M.

Nevertheless, from the point of view of the analysis and exploitation of the information
held by M, it still lacks the definition of a parameter giving an overall measure of the ability
of the medium to transform the states of polarization of incident electromagnetic waves
regardless of the origin and nature of the features involved (enpolarization, depolarization
or retardation), which usually appear in a combined manner. Such an ability can be
characterized through the distance from M to the 4 × 4 identity matrix I (which represents
a completely neutral polarimetric effect).

Thus, the aim of this work is to introduce a properly defined measure of the polarizing
power associated with M, which in no way replaces other known descriptors. The contents
of this communication are organized as follows. Section 2 summarizes the theoretical con-
cepts and notations necessary to describe the original results presented. Section 3 is devoted

Photonics 2024, 11, 411. https://doi.org/10.3390/photonics11050411 https://www.mdpi.com/journal/photonics

https://doi.org/10.3390/photonics11050411
https://doi.org/10.3390/photonics11050411
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0003-1740-2244
https://doi.org/10.3390/photonics11050411
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics11050411?type=check_update&version=1


Photonics 2024, 11, 411 2 of 11

to the introduction of the concept of polarizing power associated with a given Mueller
matrix, together with some related analyses and graphical representations. Section 4 deals
with the invariance properties of the polarizing power with respect to certain polarimetric
transformations. The results are illustrated in Section 5 through the inspection of the values
taken by the polarizing power for typical polarization devices like diattenuators, retarders
and intrinsic depolarizers.

2. Theoretical Background

Hereinafter we will use the term “light” for the sake of brevity; nevertheless, it can be
understood as the more general “electromagnetic wave”.

The transformation of polarized light by the action of a linear medium (under fixed
interaction conditions) can always be represented mathematically as s’ = Ms, where s
and s’ are the Stokes vectors that represent the polarization states of the incident and
emerging light beams, respectively, while M is the Mueller matrix associated with this kind
of interaction and that can always be expressed as [8,26,44]

M = m00 M̂, M̂ =

(
1 DT

P m

)
,

m =

k1 r3 r2
q3 k2 r1
q2 q1 k3

,

k ≡ 1√
3

k1
k2
k3

, D ≡

D1
D2
D3

, P ≡

P1
P2
P3

, r ≡

r1
r2
r3

, q ≡

q1
q2
q3

,

(1)

where m00 is the mean intensity coefficient (MIC), i.e., the ratio between the intensity
of the emerging light and the intensity of incident unpolarized light; M̂ = M/m00 is
the normalized Mueller matrix; D and P are the diattenuation and polarizance vectors,
with absolute values D (diattenuation) and P (polarizance); and vectors k, r, q, with
respective absolute values k, r, and q, are constitutive of the normalized 3 × 3 submatrix
m associated with M, which provides the complementary information on retardance and
depolarization properties.

Mathematically, Mueller matrices are fully characterized by the so-called ensemble cri-
terion [6], which involves two sets of inequalities, namely, the passivity, i.e., m00(1 + Q) ≤ 1,
with Q ≡ max (D, P) [33,39], together with the four covariance conditions constituted by
the nonnegativity of the eigenvalues of the Hermitian coherency matrix C associated with
M, whose explicit expression in terms of the elements mij (i, j = 0, 1, 2, 3) of M is [24]

C(M) =
1
4



m00 + m11
+m22 + m33

m01 + m10
−i(m23 − m32)

m02 + m20
+i(m13 − m31)

m03 + m30
−i(m12 − m21)

m01 + m10
+i(m23 − m32)

m00 + m11
−m22 − m33

m12 + m21
+i(m03 − m30)

m13 + m31
−i(m02 − m20)

m02 + m20
−i(m13 − m31)

m12 + m21
−i(m03 − m30)

m00 − m11
+m22 − m33

m23 + m32
+i(m01 − m10)

m03 + m30
+i(m12 − m21)

m13 + m31
+i(m02 − m20)

m23 + m32
−i(m01 − m10)

m00 − m11
−m22 + m33


. (2)

A measure of the ability of M to preserve the degree of polarization (DOP) of totally
polarized incident light, is given by the degree of polarimetric purity of M (also called the
depolarization index) [7], P∆, which can be expressed as

P∆ =

√
2P2

P
3

+ P2
S , (0 ≤ P∆ ≤ 1), (3)
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where PP is the so-called degree of polarizance [45], or enpolarizance (a measure of the ability
of M to increase the degree of polarization of light in either forward or reverse incidences),

PP ≡
√

D2 + P2

2
, (0 ≤ PP ≤ 1), (4)

and PS is the polarimetric dimension index (also called the degree of spherical purity),
defined as [6,23,45]

PS ≡
√

3k2 + r2 + q2

3
, (0 ≤ PS ≤ 1). (5)

Nondepolarizing media (i.e., media that do not decrease the degree of polarization of
totally polarized incident light) exhibit the maximal degree of polarimetric purity, P∆ = 1,
so that the associated Mueller matrices are called nondepolarizing or pure. The minimal
achievable value for P∆, P∆ = 0, is characteristic of perfect depolarizers, with associated
Mueller matrix M∆0 = m00diag (1, 0, 0, 0). The maximal value of PS, PS = 1, entails P∆ = 1
with PP = 0 (nondepolarizing-nonenpolarizing media), which corresponds uniquely to
retarders (regardless of the value of m00, i.e., regardless of whether they are transparent or
exhibit a certain amount of isotropic attenuation), and the minimal polarimetric dimension
index, PS = 0, corresponds to Mueller matrices with m = 0. Maximal enpolarizance,
PP = 1, implies P∆ = 1 and corresponds to perfect polarizers, while the minimal, PP = 0, is
exhibited by nonenpolarizing interactions (either nondepolarizing or depolarizing) [15,45].

Regarding measures of the anisotropies involved in M, a set of anisotropy coefficients
was defined in ref. [46], leading to an overall parameter called the degree of anisotropy, Pα,
which is obtained as a square average of linear and circular anisotropies due to enpolarizing
and retarding properties, and can be expressed as follows (except for nondepolarizing
diagonal Mueller matrices, i.e., k = 1, for which Pα is undetermined) [46]

Pα =
D2 + P2 + r2 + q2 + 2 DT P − 2 rT q

3 − 3k2 + 2 DT P − 2 rT q
[k ̸= 1], (6)

where superscript T indicates transpose. The values of Pα are limited by 0 ≤ Pα ≤ P∆.
As for the depolarizing properties of M, complete quantitative information is given

by the corresponding indices of polarimetric purity (IPP), defined as follows in terms
of the (nonnegative) eigenvalues (λ1, λ2, λ3, λ4) of C(M), labeled in nonincreasing order
(λ1 ≥ λ2 ≥ λ3 ≥ λ4) [5,13]:

P1 = 1
trC (λ1 − λ2), P2 = 1

trC (λ1 + λ2 − 2λ3), P3 = 1
trC (λ1 + λ2 + λ3 − 3λ4),

[trC = λ1 + λ2 + λ3 + λ4 = m00].
(7)

Leaving aside systems exhibiting magneto-optic effects, the Mueller matrix that repre-
sents the same linear interaction as M, but with the incident and emergent directions of the
light probe swapped, is given by [47,48]

Mr = diag(1, 1,−1, 1) MT diag(1, 1,−1, 1). (8)

Consequently, D (Mr) = P (M) and P (Mr) = D (M), showing that D and P share a com-
mon nature related to the ability of the medium to enpolarize unpolarized light incoming
in either forward or reverse directions [5,21].

3. Polarizing Power

Since a fully neutral polarimetric effect is characterized by M = I, I being the 4 × 4
identity matrix, any enpolarizing, depolarizing or retarding effect implies that M takes
a form different from I. Thus, the overall ability of M to change the incident state of
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polarization can be characterized by the polarizing power defined as the normalized
distance between matrices M and I

PΩ ≡ ∥M − I∥2
g

, (9)

where ∥ ∥2 represents the Frobenius norm and g is a positive parameter that will be deter-
mined by imposing the limit PΩ ≤ 1.

By considering the partitioned form of M in Equation (1) together with Equations (3)
and (5), and taking into account the relation

trm = trM̂ − 1 =
√

3(k1 + k2 + k3). (10)

with tr representing the trace, we obtain

P2
Ω =

3
(

P2
∆ + 1

)
− 2trm

g2 . (11)

As expected, the lower limit for P2
Ω is zero and corresponds uniquely to M = I,

while the upper limit takes the value 8/g2, which necessarily corresponds to a half-wave
retarder (i.e., a retarder exhibiting retardance π), which satisfies trm = −1 and has the
general form [6]

MRπ =


1 0 0 0
0 cos 4α sin 4α cos δ sin 4α sin δ

0 sin 4α cos δ − sin2 δ − cos 4α cos2 δ sin δ cos δ(1 − cos 4α)
0 sin 4α sin δ sin δ cos δ(1 − cos 4α) − cos2 δ − cos 4α sin2 δ

,

[0 ≤ α ≤ π/2, 0 ≤ δ < 2π].

(12)

Thus, the choice g =
√

8 is what matches the normalization criterion PΩ ≤ 1 (and therefore
0 ≤ PΩ ≤ 1), so we define the polarizing power of M as

PΩ =

√
3
(

P2
∆ + 1

)
− 2trm

8
. (13)

Since the physical meanings of the degree of polarimetric purity and the polarizing
power are well established, the above definition provides an interpretation of the quan-
tity trm as a sort of balance between the squared depolarization index and the squared
polarizing power

trm =
3
2

(
P2

∆ + 1
)
− 4P2

Ω , (14)

or equivalently,

trM̂ =
1
2

(
3P2

∆ + 5
)
− 4P2

Ω [M ̸= 0]. (15)

Note that −1 ≤ trm ≤ 3, where the minimal achievable value trm = −1 corresponds
necessarily to a half-wave retarder (P∆ = 1, PΩ = 1), while the maximum trm = 3 is
reached uniquely when M = I (P∆ = 1, PΩ = 0).

The feasible region for sets of values (trm, P2
∆, P2

Ω) is shown in Figure 1. Achievable
values are limited by the polygon with vertices AEFG. Edge AE corresponds uniquely
to nondepolarizing Mueller matrices, with point A being genuine of PΩ = 0 (M̂ = I),
while as seen above, point E is reached exclusively by half-wave retarders. All physical
situations for depolarizing Mueller matrices (i.e., P∆ < 1) have associated points in the
polygon AEFGA, excluding edge AE. The values of the quantities (trm, P2

∆, P2
Ω) for each

of the points indicated in the figure are the following: A(3, 1, 0), B (2, 1, 1/4), C (1, 1, 1/2),
D (0, 1, 3/4), E (−1, 1, 1), F (−1, 1/9, 2/3) and G (0, 0, 3/8).
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(a) 

Figure 1. The feasible values for (trm, P2
∆, P2

Ω) are determined by the section of plane
P2

Ω = −trm/4+3(P2
∆ + 1)/8 limited by edges AE, EF, FG and FA. The coordinates (trm, P2

∆, P2
Ω)

of the points shown in the figure are the following: A(3, 1, 0), B (2, 1, 1/4), C (1, 1, 1/2), D (0, 1, 3/4),
E (−1, 1, 1), F (−1, 1/9, 2/3) and G (0, 0, 3/8). Points on edge AE are uniquely covered by nonde-
polarizing Mueller matrices (P∆ = 1) ; vertex A corresponds uniquely to a neutral Mueller matrix
(M = I); vertex E is achieved uniquely by half-wave retarders; vertex F corresponds uniquely to
isotropic depolarizers of the form M = m00diag (1,−1/3,−1/3,−1/3); and vertex G corresponds
uniquely to perfect depolarizers (P∆ = 0) .

Along edge AE (P∆ = 1), the values of PΩ increase from 0 up to 1 as trm decreases
from 3 (point A) down to −1 (point E).

The minimal feasible value for P∆ compatible with trm = −1 corresponds to diagonal
Mueller matrices of the form M = m00diag (1,−1/3,−1/3,−1/3) (point F), so that along
edge EF P2

Ω decreases from 1 (point E) down to 2/3 (point F) as P2
∆ decreases from 1 down

to 1/9.
Edge FG corresponds to isotropic Mueller matrices of the form M = m00diag (1,−a,−a,−a),

with 0 ≤ a ≤ 1/3, so that P2
∆ and P2

Ω decrease from P2
∆ = 1/9, P2

Ω = 2/3 (point F, a = 1/3)
down to P2

∆ = 0, P2
Ω = 3/8 (point G, a = 0) as trm increases from trm = −1 up to trm = 0, so

point G corresponds uniquely to perfect depolarizers [M = m00diag (1, 0, 0, 0)].
Edge GA corresponds to isotropic Mueller matrices of the form M = m00diag (1, a, a, a),

with 0 ≤ a ≤ 1, so P2
∆ and P2

Ω evolve from P2
∆ = 0, P2

Ω = 3/8 (point G), to P2
∆ = 1, P2

Ω = 0
(point A), as trm increases from trm = 0 up to trm = 3.

To make the interpretation of Figure 1 easier, respective projections of the feasible
region on planes (trm, P2

Ω) and (trm, P2
∆) are represented in Figure 2, while Figure 3 includes

the feasible values for (P2
∆, P2

Ω) in the planes trm = −1 and trm = 0.
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Ω) (a), and projection of the feasible

region on the plane (trm, P2
∆) (b). Edge AE corresponds to nondepolarizing Mueller matrices (P2

∆ = 1),
which exhibit maximal polarizing power for each given value of trm; edge EF corresponds to Mueller
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M = m00diag (1,−a,−a,−a), with 0 ≤ a ≤ 1/3, which exhibit minimal polarizing power and
minimal degree of polarimetric purity for each given negative value of trm; and edge GA corresponds
to Mueller matrices of intrinsic depolarizers of the form M = m00diag (1, a, a, a), with 0 ≤ a ≤ 1,
which exhibit minimal polarizing power and minimal degree of polarimetric purity for each given
positive value of trm.
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the direction of light propagation is mathematically represented through a matrix whose 
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Figure 3. The feasible values for the pair (P2
∆, P2

Ω) in the planes trm = −1 (a), and trm = 0 (b), are
determined by the respective segments FE and GD.

4. Invariance

Given a Mueller matrix M, transformations MT
R M MR, where MR is a proper orthogo-

nal matrix (i.e., MT
R = M−1

R and detMR = +1) and so MR represents a retarder, are called
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single retarder transformations [49] and play an important role in polarization theory. The
general form of MR is

MR =

(
1 0T

0 mR

)
,

0 =

0
0
0

, mT
R = m−1

R , detmR = +1

. (16)

Since any given MR corresponds to a rotation of Stokes vectors in the Poincaré
sphere [50,51], a single retarder transformation can be interpreted through the follow-
ing consecutive steps: a Poincaré rotation MRs = s’ of the incident Stokes vector s, and
then the application of the inverse rotation MT

R to the Stokes vector after the action of M on
s’, i.e., MT

R [M s’].
At this point it is worth recalling that a rotation (in the real space) of angle α about

the direction of light propagation is mathematically represented through a matrix whose
general form is [52]

MG(α) =


1 0 0 0
0 cos 2α sin 2α 0
0 − sin 2α cos 2α 0
0 0 0 1

, (17)

and constitute a subclass of matrices MR that in fact are mathematically indistinguish-
able from those of circular retarders [6]. Consequently, a single retarder transformation
invariance includes such a kind of rotation invariance.

Let us now observe that both quantities, P∆ and trm, appearing in the definition (13)
of the polarizing power are invariant under single retarder transformations, which implies
that PΩ is also invariant under such transformations.

Regarding the swapping of the incident and exit directions of light, which corresponds
to the replacement of M (forward Mueller matrix) by Mr (reverse Mueller matrix), it should
be noted that, from its very definition, PΩ(Mr) = PΩ(M). Recall that both single retarder
transformations and reciprocity invariances also hold for polarimetric quantities like P∆,
trm, m00, PS, PP, Pα, P1, P2 and P3.

5. Polarizing Power of Typical Devices

For a more detailed view of the peculiar features of the polarizing power, we next analyze
its value for certain kinds devices typically found in polarimetry and polarization theory, like
diattenuators, retarders and intrinsic depolarizers (also called diagonal depolarizers).

5.1. Diattenuators

Diattenuators constitute a subclass of nondepolarizing systems characterized by
the fact that they produce differential intensity attenuation on their two polarization
eigenstates. Diattenuators whose Mueller matrix is symmetric are called normal [53–56]
or homogeneous [1].

The Mueller matrix of a normal diattenuator oriented at 0◦ has the generic form

MDL0 (m00, D) = m00


1 D 0 0
D 1 0 0
0 0 K 0
0 0 0 K

,
[
K =

√
1 − D2

]
, (18)

where m00 is the MIC, D is the diattenuation and K is called the counter diattenuation [51].
In the general case of an elliptical normal diattenuator with arbitrary orientation, its
Mueller matrix, MD, can always be expressed though the single retarder transformation
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MD = MT
R MDL0 MR. Therefore, PΩ(MD) = PΩ(MDL0), and by applying definition (13),

we obtain the following expression for the polarizing power of normal diattenuators

PΩ(MD) =

√
1 − K

2
, (19)

whose maximal value PΩ =
√

1/2 is achieved by perfect depolarizers, while PΩ decreases
as D decreases down to PΩ = 0 (D = 0 ⇒ MD = I) .

For a given value D of diattenuation, the structure of the Mueller matrices of non-
normal diattenuators features more asymmetry than normal ones and consequently they
exhibit larger values of PΩ. For instance, in the case of nonnormal perfect diattenuators
with asymmetric Mueller matrices like

1
2


1 1 0 0
0 0 0 0
1 1 0 0
0 0 0 0

,
1
2


1 1 0 0
0 0 0 0
0 0 0 0
1 1 0 0

,
1
2


1 0 1 0
1 0 1 0
0 0 0 0
0 0 0 0

,
1
2


1 0 0 1
1 0 0 1
0 0 0 0
0 0 0 0

 (20)

(together with arbitrary single retarder transformations of them), the polarizing power
reaches the maximal achievable value PΩ =

√
3/4 among the diattenuators.

5.2. Retarders

Retarders constitute a subclass of nondepolarizing systems, characterized by the fact
that they produce differential phase shifts on their two mutually orthogonal polarization
eigenstates. The Mueller matrix of a retarder has the general form considered above and,
as with normal diattenuators, is normal in the sense that its eigenstates are mutually
orthogonal (represented by antipodal points in the Poincaré sphere [50,51]).

The Mueller matrix of a linear retarder, with retardance ∆ and oriented at 0◦, has the
form

MRL0(∆) =


1 0 0 0
0 1 0 0
0 0 cos ∆ sin ∆
0 0 − sin ∆ cos ∆

, (21)

which allows the Mueller matrix MR of a general elliptical retarder to be expressed through
a single retarder transformation MR = MT

R′ MRL0 MR′ (not in a unique manner), MR′ being
the Mueller matrix of a retarder. Thus, the polarizing power of a retarder is given by

PΩ(MR) =

√
1 − cos ∆

2
, (22)

in such a manner that PΩ = 0 when ∆ = 0 (M = I) and PΩ increases up to the maximal
PΩ = 1, which corresponds to ∆ = π (half-wave retarders [6]).

5.3. Intrinsic Depolarizers

The Mueller matrices associated with depolarizing systems (P∆ < 1) can have very
different forms. Among them, we consider here the so-called intrinsic depolarizers, which
have the simple diagonal form M∆I = m00diag (1, a, b, c) [8,57].

The covariance conditions imply the following set of inequalities corresponding to the
nonnegativity of the eigenvalues of the associated coherency matrix

1 + a + b + c ≥ 0, 1 + a − b − c ≥ 0, 1 − a + b − c ≥ 0, 1 − a − b + c ≥ 0. (23)

Thus,

PΩ(M∆I) =

√
3 + a2 + b2 + c2 − 2(a + b + c)

8
, (24)
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in such a manner that, as expected, the minimum PΩ(M∆I) = 0 corresponds to a = b = c = 1
(M∆I = I), while the maximum PΩ(M∆I) =

√
3/8 (a, b, c assumed to be nonnegative) is

achieved for perfect depolarizers (a = b = c = 0) (recall that the covariance conditions
imply |a| ≤ 1, |b| ≤ 1, |c| ≤ 1).

Interesting particular examples of intrinsic depolarizers are

M∆a = m00


1 0 0 0
0 a 0 0
0 0 0 0
0 0 0 0

 [|a| ≤ 1], M∆ab = m00


1 0 0 0
0 a 0 0
0 0 b 0
0 0 0 0

 [|a|+ |b| ≤ 1], (25)

together with alternative forms obtained by permuting the diagonal elements of their 3 × 3
submatrices m. The respective polarizing powers are

PΩ(M∆a) =
√

3+a2−2a
8 , 1/2︸︷︷︸

a=1

≤ PΩ(M∆a) ≤
√

6/8︸ ︷︷ ︸
a=−1

,

PΩ(M∆ab) =
√

3+a2+b2−2(a+b)
8 ,

√
1/8︸ ︷︷ ︸

a=b=1

≤ PΩ(M∆ab) ≤
√

5/8︸ ︷︷ ︸
a=−b, |a|=1

.
(26)

6. Conclusions

The parameter PΩ introduced as a measure of the overall polarizing power of a
medium (or interaction) represented by any kind of Mueller matrix M, involves all polari-
metric effects of M on the polarization states of incident electromagnetic waves, including
enpolarizance, retardance and depolarization. From the natural definition of PΩ as the
normalized distance from M to the identity matrix I, the different contributions to the
polarizing power are combined in an unbiased and peculiar manner.

The polarizing power space, represented in Figures 1–3, illustrates the main features
and physically achievable values of PΩ. As occurs with other relevant polarimetric quanti-
ties, PΩ is fully determined from M, and it is invariant under single retarder transformations
(including rotations of the Cartesian laboratory coordinate system) and under the replace-
ment of M (forward Mueller matrix) by Mr (reverse Mueller matrix). Thus, PΩ provides
deeper insight in the interpretation of the information held by a measured Mueller matrix
and also admits its application in imaging Mueller polarimetry to generate new images
based on the representation of the point-to-point values of PΩ.
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