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Abstract: Supercontinuum (SC) generation pumped by fiber lasers with short wavelengths below
2.0 µm is important since it can provide a compact light source for various applications. We review
the progress of SC generation in various materials regarding the formation of the waveguides and
point out the existing issues in the current investigations and possible solutions in the future.
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1. Introduction

The supercontinuum (SC) is a kind of board spectrum that is excited by a pulsed laser in
the nonlinear medium via various nonlinear mechanisms, including self-phase modulation
(SPM), stimulated Raman scattering (SRS), soliton fission, optical wave breaking, four-
wave mixing (FWM) and cross-phase modulation, along with the dispersion properties
of the medium [1–5]. The brightness of the SC as a light source is several orders of
magnitude higher than that of the synchrotron, but the whole facility to generate SC is
much cheaper, and thus, such a broad SC source can find its various applications in optical
tomography, fluorescence microscopy, spectroscopy, and molecular sensing [5]. Usually,
the SC spectrum from a nonlinear medium can be maximumly expanded via the dispersive
engineering of the waveguide structure, e.g., using a pump wavelength close to the zero
dispersive wavelength (ZDW), which can be finely tuned via careful structural design in
the waveguide.

Various pump sources have been used to generate SC, and the dominant pump sources
are the optical parametric oscillator (OPO)/optical parametric amplifier (OPA) systems and
the all-solid-state lasers [4,5]. They have several advantages, like high peak power, ultra-
short pulse duration, excellent beam quality, and a high spectral contrast ratio. However,
the former is usually expensive, with large footprints and low robustness, while the latter
is a promising alternative due to its high brightness, compact structure, good beam quality,
high stability, and cost-effectiveness. In particular, fiber lasers are well-suited for meeting
the requirements of low average power and high compactness, as the fibers used in these
experiments can be spooled to a centimeter-scale ring with negligible bending loss; finally,
these lasers can be easily scaled down to a centimeter-level [6,7].

In terms of the material option, a medium with a high nonlinear coefficient, a broad
transmission window, and a suitable dispersion profile that can produce rich nonlinear
effects over relatively short transmission distances is essential [1–3]. High nonlinearity
and a broad transmission window are beneficial to generate SC in a wide spectral region,
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while the suitable dispersion profile can shift the zero-dispersion wavelength (ZDW) to
a desired wavelength that can match the suitable pump source available. The ZDW is
determined by the material refractive index and the waveguide structural parameters, and
the material with a larger refractive index usually has a larger zero dispersive waveguide.
For example, chalcogenide glasses with values of the refractive index from 2 to 4 have zero
dispersion wavelengths from 3 to 6 µm depending on the structural parameters, while the
zero dispersive wavelength in the oxide materials with a refractive index around or below
two is from 1 to 2 µm, which can easily be pumped using compact short pulse sources [1–3].

On the other hand, the laser damage threshold is also important since pump lasers
with higher power may burn the materials. This is especially important for the waveguide
pumped by the laser with a short wavelength laser since such a pump source usually has a
high power compared with the mid-infrared fs laser. The advantage of the material with a
high laser damage threshold is clear, e.g., the high power and broad expansion of the SC
output can be expected from such a waveguide.

Over the past few years, a number of the results on SC generation have been reported
in fiber and waveguide. In terms of the width of the SC spectrum, for example, the 2–16 µm
SC spectrum has been reported in GeAsTeSe fiber pumped by OPO lasers, and a maximum
SC power of several hundred mW has been reported in Refs. [5,8]. However, for these
broad SC generations, the pump light is injected into the waveguide or fiber via free-space
optical coupling, and the whole optical system is fragile and uncompacted. One method is
to integrate a waveguide or fiber with a fiber laser via a tapered fiber, forming a compact
optical system for practical applications. Therefore, the combination of fiber-based ultra-
short-pulsed lasers and waveguides is highly promising for compact, on-chip SC generation.
In this review, we focus on such a topic, e.g., pump sources that are limited in the pulse
fiber lasers with short wavelengths. A number of materials like SiN and SiO2, Al2O3/AlN,
TeO2, Ta2O3, TiO2, chalcogenides, and LiNbO3 have been used for SC generation; we will
review their optical properties, as well as the SC spectra in the waveguides with different
structural parameters and pump sources, respectively. Finally, we point out the existing
challenges in the development of a practical SC source in the future.

2. Si and SiN

Silicon-based materials are probably widely used photonic materials due to their
excellent optical properties like high transparency in visible and infrared and low optical
loss [9]. Si, SiN, and SiO2 have a refractive index of 3.48, 2.0, and 1.45 at 1.55 µm [10,11],
respectively; therefore, SiO2 is primarily used as the cladding component in conjunction
with SiN and Si, forming various special structures.

Alizadeh et al. prepared a waveguide with a silicon core embedded in a thick SiO2
layer. The light was well confined in the silicon waveguide thanks to the larger contrast of
the refractive index between SiO2 and silicon, as well as the thick cladding layer, avoiding
any possible leakage of the light. A supercontinuum spanning from 1100 to 4000 nm was
observed while the waveguide was pumped by a 1.89 µm laser with a peak power of 800 W
and a pulse duration of 50 fs [12].

Marco et al. fabricated a waveguide with a similar structure, but silicon nitride
replaced the core of the waveguide. The waveguide is excited by a 1.56 µm fiber laser
emitting pulses lasting 120 fs at a repetition rate of 40 MHz. The pulses are directed into
the Si3N4 waveguide sample through two half-wave plates, a polarizing beam splitter, and
an aspherical lens. A lensed fiber and an off-axis parabolic mirror are used to collect and
collimate the generated SC. A curved mirror focuses the beam via a removable mirror into
two different optical spectrum analyzers. The subsequent SC spectrum measurements in
this paper generally follow this method. The resulting SC spectrum ranges from around
526 nm to at least 2.6 µm [13].

Neetesh et al. demonstrated a wavelength-doubled silicon waveguide spanning
the coherent supercontinuum spectrum from the near-shortwave infrared region. When
injecting a light with a wavelength of 1550 nm, a pulse width of 100 fs, and a repetition
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rate of 200 MHz into highly nonlinear optical fibers, these pulses underwent Raman shift,
resulting in pulses with a duration of 450 fs and a wavelength of 1.9 µm [14]. The team
used such a laser to pump two waveguides with different core widths, in which the zero-
dispersion wavelengths varied from 1.67 µm to 1.1 µm. The supercontinuum broadening
for both waveguides was approximately 1.124 µm to 2.4 µm.

Bao et al. proposed that lower waveguide dispersion can be obtained at longer wave-
lengths from horizontal slot waveguides with much smaller slot thickness [15]. They,
therefore, designed two schemes for horizontal double-slot silicon waveguide structures.
One option was to use two slots at the bottom of the waveguide, resulting in a supercontin-
uum broadening from 1464 nm to 2266 nm pumped by a laser with a peak power of 15 W,
a center wavelength of 1.7 µm, and a pulse width of 50 fs. Another option was to place two
slots on the sides, leading to supercontinuum broadening from 1498 nm to 2376 nm under
the same pumping conditions.

Ryosuke et al. utilized a novel micro-transfer printing technique to fabricate a Si-
SiO2-Si horizontal slot waveguide (a silicon-based slot waveguide) [16]. A mode-locked
erbium-doped fiber laser with a central wavelength of 1.56 µm, a pulse width of 65 fs, and
a repetition rate of 100 MHz was used as the pump source. The dependence of the SC
spectrum on the input pulse energy up to 10 pJ is shown in Figure 1a. The broadening of
the SC spectrum was mainly due to the initial SPM, and the pulse energy was transferred
to spectral components at a wavelength of around 2 µm by the dispersive wave, which
was in agreement with the simulation result at the interaction length of 2 mm shown in
Figure 1b. The maximal SC bandwidth at 30 dB was from 1.35 µm to 2.05 µm at the coupled
pulse energy of 10 pJ. They also found that a further increase in the pump power did not
contribute to the broadening of the SC spectrum due to the two-photon absorption of Si.
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Ahmad et al. simulated the generation of a mid-infrared supercontinuum (SC) in an
air-clad silicon nitride (Si3N4) waveguide, employing a laser with a pump wavelength of
1.55 µm, an ultra-short pulse duration of 50 fs, and a peak power of 5 kW. The SC spectrum
covering a range from 0.8 µm to over 6.5 µm can be achieved in the waveguide with a
height of 0.8 µm and a width of 3 µm, and such an SC spectrum can be further broadened
at its long wavelength side via increasing the height of the waveguide to 0.9 µm [17].

Guo et al. observed an SC spectrum covering more than two octaves from visible
light (0.56 µm) to mid-infrared (3.6 µm) [18] in a 1.7 µm wide SiN waveguide. The pump
source used was a compact mode-locked, erbium fiber-based femtosecond laser capable
of emitting a pulse sequence with a repetition frequency of approximately 100 MHz. The
pulse duration was less than 90 fs, the average power exceeded 110 mW, and the center
wavelength was 1550 nm.

David et al. utilized SiN waveguides with different widths pumped by a 100 MHz
repetition rate and 1550 nm fiber laser to generate supercontinuum spectra. The SC
spectrum in Figure 2 is shown as a function of the waveguide width. This spectrum spans
from approximately 500 nm to over 3 µm, covering a bandwidth of two-octave ranges.
The third harmonic generation (THG) and dispersive wave (DW) also appear at the short
wavelength region [19].
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Figure 2. Supercontinuum spectra from SiN waveguides of different waveguide widths pumped
with a 100 MHz repetition rate and 1550 nm fiber-laser [19]. Reprinted with permission from [19].

Karim et al. reported a numerical study on the generation of supercontinuum spectra
in a novel 5 mm air-clad SiN-suspended core channel waveguide. The proposed waveguide
was pumped by a laser with a wavelength of 1.55 µm, a power of 20 kW, and a pulse width
of 50 fs. The observed supercontinuum spectrum covered a range from 0.8 µm to 6 µm [20].

Dmitry achieved a supercontinuum spectrum extending from 1.2 to 3.7 µm, covering
more than 1.5-octave ranges, by utilizing a 2.35 µm sub-40 fs pulse generated from a 75 MHz
Kerr lens mode-locked Cr:ZnS laser in a silicon nitride waveguide [21].

Zhang et al. introduced a novel silicon waveguide with a horizontal silica slot between
two silicon layers. This waveguide exhibited four zero-dispersion wavelengths for the first
time, with flat dispersion over a bandwidth of 670 nm, and a supercontinuum broadening
from 1217 nm to 2451 nm was achieved in the waveguide pumped by a laser with a central
wavelength of 1810 nm, a full-width at half-maximum of 120 fs, and a peak power of
62 W [22].

Kuyken et al. demonstrated the generation of a supercontinuum in a 2 cm long
silicon wire pumped by a coherent Mira-OPO at a central wavelength of 2120 nm with
a pulse width of 2 ps (full-width at half-maximum) and a repetition rate of 76 MHz in
the anomalous dispersion regime [23]. Although the pump source was not fiber laser,
we still included these results in the paper since the laser wavelength was short. The
supercontinuum extended from 1535 nm to 2525 nm, with a coupled peak power of 12.7 W.
They also pumped the waveguide with a comb seed source consisting of a home-built
mid-infrared OPO with a repetition rate of 100 MHz, synchronously pumped by a mode-
locked femtosecond titanium–sapphire laser. The OPO had a center wavelength of 2290 nm,
close to the zero-dispersion wavelength of the silicon waveguide at 2180 nm. With a pulse
duration of 70 fs and an average power of 35 mW, they simulated the spectral content of the
optical pulse along the length of the silicon photonic wire waveguide, as shown in Figure 3a,
and ultimately achieved supercontinuum broadening from 1540 nm to 3200 nm [24]. They
also measured the SC spectra, which were generally in agreement with the simulated
spectral broadening, and the coherence of the pulses was also simulated, as shown in
Figure 3b.
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3. Al2O3 and AlN

Sapphire (Al2O3) is a good optical material since it has a broad transmission region
of up to 8 µm, a relatively high refractive index of ~1.8, a good nonlinear refractive index
value of ~n2 = 2.8 × 10−20 m2/W, and a high damage threshold (up to 1.3 kJ/cm2) [25].

In the case of sapphire pumped by a short laser wavelength, Kim et al. [25] demon-
strated that the broadband SC spectrum (up to 3.2 µm) can be achieved by launching
ultra-short femtosecond laser pulses into single crystal sapphire fiber with a dimension of
115 µm in diameter and 5 cm in length, where the 2 µm pumping source is created using
an optical parametric amplifier (OPA) seeded by a 784 nm femtosecond laser.

Li et al. inscribed a waveguide from the sapphire crystal using a femtosecond laser [26]
and investigated the SC generation from waveguides. Two groups of waveguides with
radii of 36 µm and 24 µm (hereafter referred to as WGI and WGII) were fabricated, respec-
tively. The spectral changes in waveguides and bulk sapphire with a length of 5 mm were
examined at an input pulse energy of 7.3 µJ. The pump source had a central wavelength
of 1030 nm, a pulse duration of 400 fs, and a repetition rate of 300 kHz, respectively. On
the short wavelength side, a relatively steady cut-off wavelength of ~450 nm was found,
as shown on the left part of Figure 4, but the WG1 waveguide exhibits much better SC
spectra in terms of width and flatness. In the right part of Figure 4, the pump lasers have
greater expansion up to 1100 nm, while the image in the inset is their respective far-field
image from SC emission. This gives clear evidence that the well-structured waveguide is
beneficial to the generation of a broad and flattened SC spectrum.
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On the other hand, aluminum nitride (AlN) thin films used in photonics devices are
usually polycrystalline or single crystalline and, thus, exhibit both strong χ(2) and χ(3).
Although polycrystalline waveguides sometimes have a relatively high optical loss, thin-
film AlN has been demonstrated to be a versatile platform for nanophotonics, providing
unique features like phase-matched second harmonic generation that cannot be observed
in the glassy waveguides [27].

Hickstein et al. prepared a fully SiO2-clad AlN polycrystalline waveguide with a
thickness (height) of 800 nm, a width of 3200 nm, and a length of 10 mm. By coupling into
the waveguide with 1560 nm light and a power of approximately 80 mW, a pulse width
of approximately 80 fs, and a repetition rate of 100 MHz, SC spectra can be excited with a
maximal width from the visible region (approximately 500 nm) to the mid-infrared (about
4000 nm), as shown as the red curve in Figure 5, where the experimental results are roughly
in agreement with the blue curve of the simulation [27].

Photonics 2024, 11, x FOR PEER REVIEW 6 of 17 
 

 

On the other hand, aluminum nitride (AlN) thin films used in photonics devices are 
usually polycrystalline or single crystalline and, thus, exhibit both strong χ(2) and χ(3). Alt-
hough polycrystalline waveguides sometimes have a relatively high optical loss, thin-film 
AlN has been demonstrated to be a versatile platform for nanophotonics, providing 
unique features like phase-matched second harmonic generation that cannot be observed 
in the glassy waveguides [27]. 

Hickstein et al. prepared a fully SiO2-clad AlN polycrystalline waveguide with a 
thickness (height) of 800 nm, a width of 3200 nm, and a length of 10 mm. By coupling into 
the waveguide with 1560 nm light and a power of approximately 80 mW, a pulse width 
of approximately 80 fs, and a repetition rate of 100 MHz, SC spectra can be excited with a 
maximal width from the visible region (approximately 500 nm) to the mid-infrared (about 
4000 nm), as shown as the red curve in Figure 5, where the experimental results are 
roughly in agreement with the blue curve of the simulation [27]. 

 
Figure 5. Supercontinuum generation from the lowest-order quasi-transverse-electric (TE00) mode 
(the red) and the theoretical optical spectrum from the waveguide (the blue). The bottom of the 
shaded region indicates the noise floor of the OSA. Reprinted with permission from [27]. 

Lu et al. reported that a single-crystalline AlN film with a thickness of 1 µm was 
grown on c-plane sapphire by metal-organic chemical vapor deposition, and then oxide-
clad AlN waveguides with widths from 0.8 to 3.0 µm were fabricated. The total waveguide 
length was 8 mm, and each waveguide was tapered to a width of 4 µm at the end facets. 
SC spectra of the nanophotonic AlN waveguides were characterized by 200 fs wide pulses 
and a pump wavelength of 1560 nm from a TOPTICA FemtoFiber proNIR with a repeti-
tion rate of 80 MHz. They demonstrated a broad SC spanning from UV to MIR wave-
lengths in dispersion-engineered single crystalline AlN waveguides [28]. Figure 6 shows 
the supercontinuum spectrum from 400 nm to 4200 nm recorded from a 2.6 µm × 1.0 µm 
waveguide; the average power coupled into the waveguide was estimated to be 56 mW, 
which corresponds to an on-chip pulse energy of ∼700 pJ. Such a large expansion of the 
SC into a longer wavelength is mostly due to the high quality of the single crystalline AlN, 
where the OH absorption is maximally suppressed. The SC spectrum is also highly coher-
ent and in good agreement with the simulation, as shown in Figure 6. 
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Lu et al. reported that a single-crystalline AlN film with a thickness of 1 µm was grown
on c-plane sapphire by metal-organic chemical vapor deposition, and then oxide-clad AlN
waveguides with widths from 0.8 to 3.0 µm were fabricated. The total waveguide length
was 8 mm, and each waveguide was tapered to a width of 4 µm at the end facets. SC
spectra of the nanophotonic AlN waveguides were characterized by 200 fs wide pulses and
a pump wavelength of 1560 nm from a TOPTICA FemtoFiber proNIR with a repetition
rate of 80 MHz. They demonstrated a broad SC spanning from UV to MIR wavelengths
in dispersion-engineered single crystalline AlN waveguides [28]. Figure 6 shows the
supercontinuum spectrum from 400 nm to 4200 nm recorded from a 2.6 µm × 1.0 µm
waveguide; the average power coupled into the waveguide was estimated to be 56 mW,
which corresponds to an on-chip pulse energy of ∼700 pJ. Such a large expansion of the
SC into a longer wavelength is mostly due to the high quality of the single crystalline
AlN, where the OH absorption is maximally suppressed. The SC spectrum is also highly
coherent and in good agreement with the simulation, as shown in Figure 6.
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4. TeO2

Oxide tellurium (TeO2) is an ideal candidate material with desirable material proper-
ties, such as a high refractive index of 2.1 at 1550 nm and a nonlinear Kerr coefficient that is
30–50 times higher than that of silica [29–32].

Neetesh [33] et al. deposited a tellurium dioxide (TeO2) layer with a thickness of
370 nm using radio-frequency reactive sputtering on a SiN waveguide with a thickness
of 200 nm (T), a width of 1200 nm (W), and a length of 7 mm. The waveguide loss
was approximately 0.5 dB/cm [34]. For SC generation, an optical parametric oscillator
generating pulses at 1550 nm with a pulse width of 200 fs and a repetition frequency of
80 MHz was used as a pump source. The estimated peak power coupled into the waveguide
was 600 W. The output was collected through a multimode fluoride fiber connected to a
spectral analyzer. The supercontinuum (SC) spectrum from 1300 nm to 1900 nm generated
by the optical parametric oscillator is depicted in Figure 7.
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Hamidu [35] et al. reported SC generation from a highly nonlinear tellurium dioxide
(TeO2) overlapping on a silicon nitride (Si3N4) ridge waveguide with a thickness of 400 nm
and a width of 1600 nm. The Si3N4 chip was fabricated at the Lionix foundry using
standard Si3N4 LPCVD (Low-Pressure Chemical Vapor Deposition). The TeO2 layer was
deposited using reactive radio-frequency magnetron sputtering at room temperature. In
the SC experiment, a mode-locked fiber laser with a center wavelength of 1565 nm, a pulse
width of 100 fs, a repetition rate of 200 MHz, and an average power of 76 mW was used
to pump a 6.7 cm long serpentine-shaped waveguide. The experimental SC spectra with
different levels of pump power are shown in Figure 8a and are in agreement with the
simulated results in the corresponding pump power shown in Figure 8b.
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5. Ta2O5

Ta2O5 has a high refractive index (>2.1), high nonlinear coefficient (n2: ~10−14 cm2/W),
wide bandgap (>4.2 eV), low optical loss, and low thermal optical characteristic
(dn/dT < 10−6/K), and a high laser damage threshold (few J/cm2), making it useful for
optical devices, especially in relation to high-power operation [36–44].

Lee’s group from Taiwan conducted a detailed simulation of the waveguide design
and dispersive tuning. In an air-cladding waveguide with a length of 5 mm and a loss
of 1.5 dB/cm, they demonstrated an SC spectrum from 585 to 1697 nm pumped by the
1056 nm laser with a pulse duration of 100 fs and a repetition rate of 80 MHz [36]. As
shown in Figure 9a, most of the spectral broadening was formed after the propagation of
approximately 3.7 mm because high order dispersion and the accumulated nonlinear phase
broke up the pulse in the temporal domain known as soliton fission; it offers rapid intensity
variation, and larger nonlinear phase modulation is induced to produce new frequency
components. The typical SC spectrum in Figure 9b pumped at 396 W power is in excellent
agreement with the simulation.
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They further investigated the high-order mode SC generation in the Ta2O5 waveguide
and demonstrated an SC spectrum spanning from 842 to 1462 nm (at −30 dB), which
corresponds to 0.83 octaves using the TM10 waveguide mode. They also discussed the
possibility of using the broadband higher-order modes emitted from the Ta2O5 waveguide
for trapping nanoparticles. This is an interesting case to develop a new application of the
SC source [37].

Recently, several reports have demonstrated the further expansion of SC from 700 nm
to 2400 nm in the waveguide pumped by a 1560 nm laser [42,43], as shown in Figure 10.
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The SC spectrum appears to become broad with a decreasing waveguide width, probably
due to its improved single-mode propagation feature. Moreover, the low optical loss of
around 0.1 dB/cm in the waveguides is beneficial to generate wide SC spectra from 700 nm
to 2400 nm in Refs. [42,43].
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6. TiO2

TiO2 has a nonlinear index (~0.2 × 10−18 m²/W) and a linear refractive index of 2.4,
and these properties could potentially lead to the stronger confinement of light and higher
effective nonlinearities in the waveguide. However, this material is largely unexplored
in the field of nonlinear photonics. Moreover, negligible two-photon absorption in TiO2
makes it promising to integrate with Si-based materials.

Zhang et al. simulated a compact dual-core waveguide consisting of SiN and TiO2 with
a large enough index contrast for dispersion engineering and obtained an octave-spanning
supercontinuum generation from 1160 to 2385 nm at a greatly reduced propagation distance
of 165 µm [45]. Shen et al. further designed a strip TiO2 waveguide with three zero-
dispersion wavelengths and simulated a SC covering a wavelength range from 1.71 to
9.90 µm (more than 2.5 octaves) while being pumped by a 3.1 µm laser [46]. Ryu et al.
designed dispersion and modal confinement in a TiO2 slot waveguide and achieved one or
two-octave broadband SC spectra in two waveguides with different structures [47].

Experimentally, Hammani et al. demonstrated the generation of an octave-spanning
supercontinuum from 1 to 2.4 µm in a 2.2 cm long TiO2 waveguide with two zero dispersion
wavelengths. The resulting on-chip supercontinuum reached the visible wavelength range
as well as the mid-infrared region using a femtosecond fiber laser pump at 1.64 µm [48].
Evans et al. observed spectral broadening in single-mode TiO2 waveguides pumped by
1565 and 794 nm femtosecond pulses. However, the expansion of SC spectra was poor.
Nevertheless, they concluded no two-photon absorption in the waveguides [49].

7. Chalcogenide

Chalcogenide materials have broad transmission regions, a high linear and nonlinear
refractive index, and low two-photon absorption and are highly suitable not only for
nonlinear applications but also for compact active and passive devices in the mid-infrared
region. Chalcogenides are also featured with broad glass-forming regions, and thus, their
physical properties, like the linear and nonlinear refractive index, can be tuned into a wide
compositional range. Many chalcogenide glasses with different compositions have been
used for waveguide fabrication [50]. Since chalcogenide glasses have a relatively high
refractive index, their ZWD is usually located at 3–7 µm in the waveguides prepared by
UV lithography; therefore, mid-infrared OPO lasers are mostly used as pump sources [2].
For example, SC spectra from 2–5 µm to 2–10 µm have been reported in As2S3 [51] and
GeAsSe [5] waveguides, respectively. In contrast, the spectra pumped by short-wavelength
fiber laser remain relatively less investigated.
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In As2S3, Lamont et al. and Hwang et al. [52,53] demonstrated SC generation in the
As2S3 chalcogenide waveguide pumped by 1.55 µm fs pulsed lasers. The typical SC spectral
bandwidth was from 1.1 to around 2.2 µm. Recently, we developed a dual-femtosecond
soliton pulse laser to pump the As2S3 waveguide with different widths and achieved a
span of SC from 1500 to 2400 nm in the waveguide with a width of 1 µm and a height of
870 nm. The results are shown in Figure 11, where the experimental spectrum is generally
in agreement with the simulation.
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Ge11.5As24Se64.5 glass was reported to be a stable composition against any exter-
nal energy input, like thermal annealing, light illumination, γ-ray, and X-ray irradia-
tion [54,55], and thus, it is widely used for the chalcogenide waveguide. Gai et al. and
Shang et al. [56–58] reported SC generation in Ge11.5As24Se64.5 waveguides pumped by the
1.55 µm laser. With increasing pump power, the SC spectra broaden from 1 µm to 2 µm, as
shown in Figure 12.
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GeSbS and GeSbSe were also used to prepare the waveguides since a heavy element,
Sb, in the glass can improve the optical nonlinearity [59–64]. Choi et al. succeeded in
fabricating the GeSbS waveguide with a length of 15 mm and obtained SC spectra from
1.28 to 2.12 µm, as depicted in Figure 13, when the waveguide was pumped by 1.55 µm
laser with peak power and a pulse width of 340 W and 500 fs, respectively.
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8. LiNbO3

Lithium niobate (LiNbO3, LN) has excellent optical properties, like a wide transparent
window (0.35~5 µm), large band gap (3.8 eV), larger refractive index (approximately 2.2
at 1550 nm) and high nonlinear coefficient. These properties make it widely used in high-
speed modulators [65], single-photon sources, mid-infrared frequency comb [66], optical
parametric oscillators [67], and SC light emitters.

In terms of SC generation, Yu et al. [68] succeeded in fabricating the LN waveguide
with a length of 0.5 cm and obtained SC spanning from 0.4 to 2.4 µm using a laser with
peak power, wavelength, and pulse width of 1.17 kW, 1.506 µm and 160 fs, respectively.
Guo et al. [69] used a 1550 nm pulse with 30 nJ of pulse energy and 150 fs of pulse duration
to pump unpoled LN ridge waveguides to obtain an SC spectrum from 1.3 to 3.2 µm.

Through dispersion engineering, the wider and flatter dispersion curve can be effec-
tively tuned in the waveguide. Jing et al. [70] designed the dual-coupled waveguide on
a 1.2 mm x-cut LNOI, where four zero-dispersion wavelengths were achieved. When the
waveguide was pumped by a 1550 nm laser with a pulse duration of 75 fs and a repetition
rate of 100 MHz, the supercontinuum spectrum was generated from 1920 to 3550 nm
(−20 dB level, near octave-spanning) at a peak power of 4.5 kW (pulse energy is 190 pJ).
Lu et al. [71] designed and prepared a waveguide with air cladding and achieved a SC
spectrum from 700 to 2200 nm at −30 dB in a 10 mm long waveguide, as shown in the
main panel of Figure 14, where the experimental spectrum is in good agreement with the
simulation. Strong third-order harmonic dispersion waves can also be observed, as shown
in the inset of Figure 14 (green and yellow lines).
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Wu et al. [72] designed a novel nanophotonic multi-segmented nonlinear thin film
LN waveguide with an aim to extend SC into the ultraviolet short-wave region. When the
waveguide with a width of 1.8 µm was pumped by a 550 nm laser with a pulse duration of
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130 fs, an SC spectrum range from 330 to 2400 nm could be generated. The inset clearly
shows that the pump light can be converted into yellow, green, blue, and violet along the
light propagation direction via various nonlinear processes. Yu et al. [73] even achieved a
much broader SC spectrum, approximately from 350 to 4100 nm, considering the second-
and third-order nonlinear interactions in the waveguide.

LNO waveguides were also pumped by the laser with a wavelength of ~2.0 µm. In
5 mm length nanophotonic periodically poled lithium niobate waveguides, Marc et al. [74]
achieved an SC spectrum from 400 to 2400 nm. C. R. Phillips [75] demonstrated an SC
spectrum from 1350 to 2800 nm in the waveguide pumped by a 1930 nm laser with a pulse
duration of 97 fs and a repetition rate of 72 MHz.

For the pump lasers at even shorter wavelengths of less than 1.5 µm, Marc et al. [76]
used 950 nm to pump 14 mm non-centrosymmetric lithium niobate-on-insulator ridge
waveguides to extend SC light to near-ultraviolet (NUV) light. When the laser with a pulse
width of 50 fs and an energy of 67 pJ was injected into the waveguide (equivalent peak
power of 266 W), the SC spectra range from approximately 710 to 1230 nm was achieved,
as shown in Figure 15. Guo et al. [77] also investigated soliton-induced SC experimentally
and obtained an SC spectrum from 900 to 2200 nm while pumping using a 1250 nm laser
with a pulse duration of 50 fs and a peak power of 20 kW.
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9. Opportunities and Challenging

Over the past decade, there has been considerable progress in developing integrated
SC sources pumped by short-wavelength lasers for various applications. Table 1 lists the
physical properties and SC parameters of the typical materials that are reviewed in the
paper. Some materials are probably missed for SC generation pumped by short wavelength
lasers. For example, waveguides like Ge/GeSi and GaAs/AlGaAs requiring pump sources
with long wavelengths are excluded in the paper. The waveguides based on tellurite
and phosphate glasses are not contained as well due to their complicated compositions.
Nevertheless, the results in the present paper still represent the most achievements in this
area until now.

Table 1. Physical properties and SC parameters of the materials that are reviewed in this paper.

Material Refractive
Index@1.5 µm

Third-Order
Nonlinearity

(cm2/W)

Transmission
Range (µm)

Pump
Wavelength

(µm)

Maximum
Range of SC

Spectrum (µm)
Ref.

Al2O3 1.75 3 × 10−16 0.18–4.5 1.03 0.45–1.1 [26]
AlN 2.2 2.3 × 10−15 0.2–5.5 1.56 0.4–4.2 [28]

Ta2O5 2.0 ~10–14 0.5–8 1.55 0.5–2.5 [36–44]
TeO2 2.1 1.4 × 10−14 0.33–5.0 1.565 0.9–2.2 [35]
TiO2 2.4 9.4 × 10−15 1–9 1.64 1–2.4 [48]

Chalcogenide 2.2–3 5–15 × 10−14 0.5–15 1.55 1.28–2.12 [62]
LiNbO3 2.21 1.8 × 10−15 0.35–5 1.55 0.35–4.1 [73]

SiN 2.0 2.4 × 10−15 0.35–7 1.55 0.56–3.6 [18]
Si 3.48 6.0 × 10−14 1.1–9 1.55 1.124–2.4 [14]

We can see from Table 1 that most of the materials have a nonlinear refractive index
at around 10−14–10−16 cm2/W, and the spanning of SC is always limited below 2.5 µm.
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It appears that the difference in the nonlinear refractive index has a negligible effect on
the broadening of the SC spectrum. This is due to the fact that these materials (excluding
chalcogenides) usually have a larger laser damage threshold, and thus, nonlinear broad-
ening can be achieved via a larger pump power from fiber-based short-wavelength lasers.
Therefore, the limit of SC spanning below 2.5 µm could be for other reasons. For example,
the coupling of the light into and out of the waveguide is mostly based on tapered silica
fiber; therefore, the expansion of the SC spectrum in the long wavelength is limited by
the absorption of silica beyond 3 µm. The use of fluorite [18] and chalcogenide fibers can
certainly deliver the signal of the long wavelength into the detector, but this usually leads
to issues like the matching of the mode field, and thus, the optical internal connection has
been an unsolved problem in the development of an integrated SC source pumped by short
wavelength fiber lasers.

Another possible reason that can account for the limitation of the SC broadening
beyond 3 µm is the strong OH absorption at 2.92 µm. When such an absorption in the
fiber can be reduced via careful material purification, it is challenging to be suppressed
in the waveguide. Although the absorption from the defects can be maximumly reduced
in the deposition target, OH-related defects can be introduced again when the target is
decomposed and re-condensed into the films in the vacuum since the residual OH- and
H- species in the vacuum can react with decomposed ions and clusters in the chamber.
The intensity of the absorption at 2.92 µm is determined by the number of OH-related
defects, and the extension of the SC spectra at a longer wavelength can be limited by
such an absorption. Therefore, the suppression of such absorption is key to realizing the
broadening of the SC spectrum beyond 3 µm, but this has not been solved or has never
been emphasized in the literature.

Exceptions can be found in Table 1, where both AlN and LiNbO3 have an SC beyond
3.0 µm. Since AlN and LiNbO3 used in the literature [28,73] are bulk single crystals, the
content of OH absorption in the materials is significantly suppressed.

On the other hand, the emission wavelength of most of the fiber sources is around
1.0–2.0 µm, and to maximize the width of the SC output, ZDW in the waveguide should
be moved to a short wavelength, and this usually leads to the small geometry of the
waveguide structure, typically around hundreds of nanometers in width and height. There-
fore, traditional UV lithography plus chemical etching cannot be applied to waveguide
fabrication. While E-beam lithography is a solution that can produce high-quality waveg-
uides, it is challenging to etch hard oxide materials like Ta2O5. Physical etching, like
ion milling, is possible, but the processing parameters for individual materials should be
further optimized.

Nevertheless, the quality of the waveguide is also important to achieve a broad SC
output. The rough surface and sidewall in the waveguide usually lead to large optical
loss. To investigate this, Grayson et.al. measured the line roughness of the waveguide and
estimated the scattered loss [78]. Considering the intrinsic loss, they claimed the existence
of 1.1 dB/cm excess loss in the GeSbSe waveguide but not in the GeSbS waveguide. Such
an excess loss was assigned to different surface states in GeSbSe and GeSbS waveguides. In
GeSbSe, surface reactions with the surrounding environment result in precipitates of oxides
and changes with atomic concentrations, which could significantly affect the properties of
the glass, while in GeSbS, the formation of a germanium oxy-sulfide glass at the surface
could act as a passivation layer or at least result in a surface that behaves similarly to
the original GeSbS chalcogenide. It was also reported that light illumination with dif-
ferent levels of photon energy and power can induce extra optical loss in chalcogenide
waveguides [79]. Recently, we proposed and demonstrated an interesting structure in
chalcogenide waveguides [80], where a trapezoidal SiO2 structure was first formed, and
then the film was deposited in a direction normal to the wafer surface. In this case, the
etchless waveguide exhibited a propagation loss of around a few dB/m, which is one order
of magnitude lower than those obtained in the traditional chalcogenide waveguide. This
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could be one of the solutions to fabricate a high-quality waveguide. However, this has not
been investigated in oxide waveguides.

We also note that one difference in the SC spectra pumped by the mid-infrared OPO
laser and short-wavelength fiber laser is the sharp, separated peaks that appear in the short
wavelength region, typically in a range from 500 to 800 nm. This usually is ascribed to the
dispersive waves. In a recent paper, Wu et al. demonstrated that it is possible to achieve
the SC spectrum to UV region in the waveguide assisted by these dispersive waves [72].
However, since the Rayleigh scattering is proportional to the inverse wavelength to the
fourth power, this further amplifies the importance of the high-quality waveguide with
low optical loss to achieve an SC source down to the UV region. On the other hand, this
also could be limited by the transparent cutting-off edge in the materials. Nevertheless,
the development of an SC source in the UV region is interesting for various practical
applications and is expected to attract more attention from researchers soon.

In summary, there are exciting opportunities to exploit the novel properties of on-chip
SC sources pumped by short-wavelength lasers. Recent results are very encouraging,
showing that it is possible to obtain low-loss or highly nonlinear waveguide devices
tailored for important applications. Exciting developments can be anticipated as further
optimization is applied to create new opportunities in optical science.
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