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Abstract: Whispering gallery mode (WGM) resonators doped with fluorescent materials find impres-
sive applications in biological sensing. They do not require special conditions for the excitation of
WGM inside that provide the basis for in vivo sensing. Currently, the problem of materials for in vivo
WGM sensors are substantial since their fluorescence should have stable optical properties as well as
they should be biocompatible. To address this we present WGM microresonators of 5–7 µm, where
the dopant is made of carbon quantum dots (CDs). CDs are biocompatible since they are produced
from carbon and demonstrate bright optical emission, which shows different bands depending on
the excitation wavelength. The WGM sensors developed here were tested as label-free biosensors by
detecting bovine serum albumin molecules. The results showed WGM frequency shifting, with the
limit of detection down to 10−16 M level.

Keywords: whispering gallery modes; microsphere; carbon dots; biosensing; bovine serum albumin

1. Introduction

In biological research and clinical diagnosis, it is crucial to detect and identify various
proteins accurately. This process requires highly sensitive and selective detection methods.
Many modern methods, which are well-developed, provide information about large en-
sembles of molecules and structures; however, sometimes it is required to detect unlabelled
single proteins. Doped microresonators supporting whispering gallery modes (WGM) have
gained attention as biosensors due to their biocompatibility, compact size, high Q-factor,
and narrow spectral width of resonance lines [1,2]. They represent a logical way of further
advancing WGM sensors and WGM-based optoplasmonic sensors, which are capable of
detecting not just single molecules but also single atomic ions [3,4], tracking molecular
movements during biochemical reactions [2], and collecting information about the spectral
properties of molecules [5,6]. It is relatively easy to achieve lasing in such resonators [7];
however, biosensors based on WGM microlasers have been the focus for researchers for
the last 10–15 years. Similarly to WGM sensors, WGM fluorescent sensors are highly
responsive to even the slightest changes in the refractive index of the environment. This
sensitivity enables the detection of frequency shifts caused by attaching molecules as it is
in WGM sensors; while in WGM fluorescent sensors the number of detecting parameters
can be extended. WGM fluorescent sensors have a wide range of applications, from the
label-free detection of proteins and enzymes [2,8] to imaging in biological tissue [9]. In
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addition, WGM-based sensors can be used to study drug interactions [10] and sensing at
the cellular level [11], where WGM sensors embed in or interact with cells, enabling new
applications for the in vivo sensing and tracking of physiological parameters of individual
cells [12]. The sensitivity of WGM devices, coupled with their structural diversity and
compatibility with existing infrastructures such as traditional chip-based technologies has
led to the development of a wide range of sensor applications based on them.

Quantum dots are a popular choice for fluorescent dopants in the development of
emitting WGM cavities. However, their use in biomedical applications may be limited due
to potential toxicity issues arising from their composition of heavy metals. A non-toxic
alternative to quantum dots is carbon dots (CDs), which are quasi-spherical nanoparticles
less than 10 nm in size consisting of sp2- or sp3-carbon domains and rich in oxygen- and
nitrogen-containing functional groups [13]. CDs are characterized by high biocompatibility,
chemical inertness, photostability, and high photoluminescence quantum yield, which
makes them most suitable for use in biological applications [14–16]. Carbon dots are water-
soluble and have low toxicity, making them suitable for various medical applications, such
as biosensing, drug delivery, and cell analysis [17,18]. When embedded into polystyrene
microspheres, the carbon dots retain their biocompatibility. In our previous work on
carbon dots, utilizing LIVE/DEAD and AlamarBlue assays we demonstrated the high
biocompatibility of CDs on cell lines THP-1 (monocytes isolated from human peripheral
blood), B16–F10 (mouse skin melanoma epithelial cell line), and K562 (human myelogenous
leukemia cell line) [19]. CDs have been used as a gain medium for WGM lasers where the
WGM resonator was made of conventional glass fiber [20]; the cavity sizes were up to 70 µm,
which is barely suitable for in vivo biosensing. One of the first demonstrations of WGM
lasers with CDs was made with CDs incorporated in NaCl; the Q-factor of such lasers was
rather low—447 [21]. Recently, our group demonstrated a microfluidic approach to WGM
cavities fabrication for another type of nanocrystals—AIS quantum dots [22]. Although a
significant reduction in the emission lifetime was observed, there were no WGM resonances
detected. Polystyrene microparticles decorated with CDs were used in [23], where their
enhanced luminescence was observed. Although carbon dots are promising for biosensing
and bioimaging [18], there are no reports about their use for WGM biosensors yet. So, in
contrast to previously published works, here we focus on making WGM decorated with
CDs for biosensing applications.

In this work, we present new composite WGM fluorescent sensors made of carbon
quantum dots and polystyrene microspheres. We tested their sensing properties by ap-
plying bovine serum albumin (BSA) molecules—a protein that is commonly utilized as a
reference protein for examining interactions with drugs, biomolecules, and nanoparticles.
Its structural similarity to human serum albumin makes it a valuable tool for research in
drug development and medical diagnostics [24,25]. Sensitive detection of BSA is crucial
in a variety of applications; in biomedicine, BSA is used as a stabilizer of enzymes and
proteins [26,27]; in pharmaceuticals, BSA is used as a drug carrier [28,29] due to its abil-
ity to bind and transport various compounds. Among numerous biomolecule detection
methods, carbon-dot-doped WGM-based sensors offer a highly relevant approach for BSA
protein detection. Their high sensitivity, ease of fabrication, low cost, biocompatibility, and
selectivity make them valuable tools for various biomedical and analytical applications.

2. Materials and Methods
2.1. Synthesis of CDs

Multicolored carbon dots were synthesized by the solvothermal method described
in [14], from citric acid and urea in dimethylformamide. Chemicals were sourced from
reputable suppliers such as Sigma-Aldrich and LCC Vekton. To synthesize CDs, 1 g of
citric acid and 2 g of urea were dissolved in 10 mL of dimethylformamide and heated in a
Teflon-lined autoclave at 180 °C for 8 h. The colloidal solution obtained was purified by
dialysis against deionized water using a dialysis tube with a 3.5 kDa molecular cut-off tube
for 24 h and then freeze-dried.
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2.2. Synthesis of Polystyrene Microspheres

Polystyrene microspheres with diameters ranging from 5 to 7 µm were synthesized
via emulsifier-free emulsion and dispersion copolymerization using a combination of
styrene and 4-styrenesulfonic acid sodium salt (NaSS) [30,31]. Styrene was purified using
a 30% aqueous solution of potassium hydroxide followed by distillation under vacuum.
Emulsifiers including sodium dodecyl sulfate, Tween 80, Tween 65, dioctyl sulfosuccinate
sodium salt, and poly(vinyl alcohol) were used without prior purification. Bidistilled
water, free from surface active impurities as indicated by specific conductivity and surface
tension measurements, was utilized for solution preparation and polymerization. The
synthesis was conducted in a 100 mL flask equipped with standard laboratory apparatuses
for temperature control and agitation. A mixture of styrene and NaSS in appropriate
solvents was heated to specified temperatures to initiate polymerization. After completion,
the residual monomer was removed by steam distillation, and water-soluble impurities
were eliminated through centrifugation and redispersion cycles.

2.3. Impregnation of CDs into Microspheres

To decorate microspheres with CDs, we adopted the impregnation method. This
method was selected due to its cost-effectiveness and simplicity, making it an attractive
choice for modifying the properties of loose polymeric and mesoporous materials [32,33].
Impregnation involves saturating the microspheres with a solution containing carbon
dots, allowing for their uniform distribution throughout the microsphere matrix without
compromising their structural integrity. To 100 µL of an aqueous solution with a 10−3 M
concentration of CDs, 600 µL of an aqueous solution of polystyrene particles (0.5 wt%) was
added, with the resulting solution occasionally shaken over 20 h. It was then washed with
deionized water after which the solution was centrifuged three times for 10 min at 5000× g.
Upon aggregation of the microspheres, the solution was held in an ultrasonic bath until the
particles dissolved completely in water (1–2 min).

2.4. WGM Sensing

To study the sensor properties of CD-decorated microspheres supporting WGM in
relation to the presence of BSA, they were deposited from an aqueous buffer onto a glass
substrate and subsequently dried under ambient conditions. Preliminary CD concentration
in the aqueous buffer was reduced to ensure that any droplet of the solution contains from
two to five microspheres. The stock solution of BSA with a concentration of 1.5·10−5 M
was prepared by dissolving 10 mg powder in 10 mL of distilled water. Then, a range of
BSA solutions with concentrations from 10−12 to 10−18 M were prepared by dilution of
the stock solution. During the experiment, the BSA solution was added to the same slide
where polystyrene microspheres with CDs were already deposited and the same particles
were examined for changes in their emission.

2.5. Characterization

To measure the absorption spectra of solutions over a wide spectral range with a
step of 1 nm, a spectrophotometer SF-56 (St. Petersburg, Russia) was used; luminescence
spectra were measured using a spectrofluorometer Shimadzu RF-5301PC (Kyoto, Japan).
The laser scanning confocal microscope Zeiss LSM 710 (Jena, Germany) was used to obtain
luminescent images of microspheres doped with CDs. An objective 20×/0.4 was selected
to study the samples with excitation wavelengths of 405 and 488 nm. To detect emission
and whispering gallery modes, a confocal Raman microspectrometer inVia Renishaw
(New Mills, UK) was used, with sample emission excited by a laser with a wavelength
of 488 nm. A microscopic image of microspheres was obtained by scanning electron
microscope (SEM) Merlin (Zeiss).
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3. Results and Discussion

The absorption spectrum of CDs in water (Figure 1) shows two distinct bands. The
short-wavelength band in the ultraviolet region represents a combination of transitions
involving π–π∗ transitions in the sp2-hybridized carbon core and n–π∗ transitions of
carboxyl groups [14,34,35]. The absorption peak at 535 nm corresponds to the transitions
related to the surface states. Given BSA’s limited absorption in the visible spectrum, the
optical behavior of the mixture solution of BSA and CDs primarily reflects the inherent
properties of carbon dots.
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Figure 1. Spectra of water solutions: optical density (a) and normalized photoluminescence (b) of
BSA (1), CDs (2), and their mixture excited at λ = 488 nm (3).

CDs exhibit predominant photoluminescence in the mixture’s spectra (Figure 1b),
overshadowing the luminescent bands of bovine serum albumin. These bands, with peaks
at 548 nm and 583 nm, are only faintly discernible. The fluorescence spectrum of carbon dots
changes when they are embedded into polymer microspheres (Figure 2a) from the solution,
which is explained by characteristic mechanisms such as surface passivation, aggregation
effects, confinement effects, charge transfer, and/or polarity changes (Figure 2b) [36–39].
Meanwhile, the fluorescence spectra of CDs exhibit excitation-dependent emission due to
the coexistence of multiple emissive centers within carbon dots.
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Figure 2. (a) SEM image of a polystyrene microsphere. (b) Normalized photoluminescence spectra of
CDs solution excited at 405 nm (curve 1) and 488 nm (curve 2), CD-doped microspheres excited at
405 nm (curve 3) and 488 nm (curve 4). Inset shows a microsphere image, corresponding to spectrum
3, which was acquired by a laser scanning confocal microscope.

The emission spectra of the obtained microspheres were measured with the micro-
Raman spectrometer inVia, with 50 pm resolution (Figure 3a). They have two peculiarities.
First, the emission spectra of CDs doped microspheres have similar bands to the solution
of CDs (Figure 2b); however, we observe emission peaks corresponding to the whispering-
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gallery modes circulating inside the microsphere. This is the result of coupling between
CD emission and cavity modes and amplified spontaneous emission. To check for pos-
sible lasing, an input–output characteristic was measured at different excitation levels.
Figure 3b shows that the peak intensities are sublinear, with the characteristic saturation,
corresponding to typical quantum dots [40].

5 0 0 5 2 5 5 5 0 5 7 5 6 0 0 6 2 5 6 5 00
1
2
3
4
5
6
7

Int
ens

ity

W a v e l e n g t h ,  n m

 1 4  W / c m 2

 3 2  W / c m 2

 8 0  W / c m 2

 1 6 0  W / c m 2

 8 0 0  W / c m 2

 1 6 0 0  W / c m 2

a

0 500 1000 1500
0.0

0.5

1.0

1.5

2.0

In
te

ns
ity

Pump, W/cm2

536 nm 543 nm 558 nm
575 nm 592 nm 611 nm

b

Figure 3. (a) Emission spectra of polystyrene microspheres covered with carbon dots at different
excitation intensities; (b) input-output characteristic defined as intensities of separate emission lines.

For sensing experiments, 4 µL of the aqueous BSA solution was added to the test
sample; a concentration series of experiments with BSA (10−12 M, 10−15 M, 10−16 M,
10−18 M) was conducted to determine the limit of detection, that is reflected on Figure 4.
The mode shifting is caused by changing the surrounding medium refractive index, so-
called reactive sensing [5]. Note, that wavelength shifts values are huge; even for 10−15

M it is about 1.5 nm (Figure 4b), and it became smaller with a reduced concentration of
BSA (Figure 4c). The second feature we observed is related to reducing the Q-factor of the
resonances under the attachment of BSA molecules, which is also related to sensing [41].
This is because the adsorption of molecules on the surface of the resonator can increase the
energy dissipated by the resonator, leading to a lower Q-factor. Indeed, as seen in Figure 4a,
the value of Q-factors is changing; according to our assessments, it was reduced from 2820
to 1650 on average (please see Appendix A). However, the Q-factor is still high enough for
observing amplified emission.

Figure 4. (a) Emission spectra of CDs doped microspheres before and after adding BSA molecules
(10−16 M solution). WGM frequency shift extracted from emission spectra of CDs doped microspheres
before and after adding BSA solution: (b)—10−15 M, (c)—10−16 M, (d)—10−18 M.
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As a further step, we tried to find a limit of detection. For this, the resulting BSA
concentration was reduced to 10−18 M and applied to samples of CDs doped WGM mi-
crospheres. The results are presented in Figure 4d. The normalized spectra show the
reproducible character of frequency shifts; however, at 10−18 M it is becoming unresolvable
with our sensors. Thus, we define the limit of detection as 10−16 M and the dynamic range
as four orders of magnitude of concentrations at least (Figure 5).
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Figure 5. Dependence of WGM frequency shift vs. concentration of added BSA solution in logarith-
mic scale.

4. Conclusions

We have developed a simple and reproducible method for making biosensors based
on fluorescent whispering gallery mode resonators. This method exploits the decorating of
polystyrene microspheres with carbon quantum dots. Such particles demonstrate narrow
emission lines corresponding to whispering gallery modes. The method allows the pro-
duction of particles for label-free sensing of low concentrations of biomolecules such as
bovine serum albumin by WGM frequency shifting. The detection limit is defined as low
as 10−16 M concentrations and the dynamic range is four orders of magnitude.
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Appendix A

Table A1 presents the spectral position of WGM modes, the full width at half maximum
(FWHM), and the corresponding Q-factors of the carbon dot (CD)-doped microspheres
before and after the addition of bovine serum albumin (BSA) solution at various concentra-
tions. The observed trend of decreasing Q-factors in CD-doped microspheres following the
addition of BSA solution is attributed to the adsorption of protein biomolecules onto the
microsphere surface, which can lead to increased energy dissipation.

Table A1. WGM modes characteristics of CDs-doped microspheres before and after covering by BSA.

Sample Peak λ, nm FWHM, nm Q-Factor

1. CD-doped Microsphere

1 561.54 0.289 1954 ± 100

2 577.89 0.312 1863 ± 96

3 595.28 0.350 1711 ± 91

1. CD-doped microsphere
after adding BSA solution (10−12 M)

1 564.77 0.375 1497 ± 78

2 581.21 0.405 1427 ± 74

3 598.76 0.365 1631 ± 85

2. CD-doped microsphere

1 559.18 0.224 2496 ± 170

2 575.45 0.205 2807 ± 184

3 592.82 0.2 2963 ± 194

2. CD-doped microsphere
after adding BSA solution (10−15 M)

1 560.45 0.318 1762 ± 150

2 576.77 0.290 1989 ± 154

3 594.14 0.273 2176 ± 169

3. CD-doped microsphere

1 558.95 0.211 2649 ± 80

2 575.22 0.214 2688 ± 82

3 592.54 0.208 2849 ± 86

3. CD-doped microsphere
after adding BSA solution (10−16 M)

1 559.87 0.415 1349 ± 140

2 576.26 0.324 1779 ± 176

3 593.47 0.388 1530 ± 150
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