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Simple Summary: Ocular surface squamous neoplasia (OSSN) is a common corneal and conjunctival
cancer in horses living in regions of high UV exposure. The response to various therapies remains
highly variable (30 to 90% response rates described in previous publications), and recurrence remains
relatively common. Improved understanding of ocular transcriptomic responses to OSSN in horses,
along with microbiome changes and how the ocular transcriptome and microbiome interact, may
provide new insights into the disease pathogenesis and new leads for treatment. In the present study,
we used swabs from the ventral conjunctival fornix of the OSSN-affected eye and the normal opposite
eye to interrogate both the transcriptome and microbiome from the same sample. We then used
bioinformatic approaches to identify key conjunctival cell-microbiome interactions and how these
were affected by the presence of OSSN.

Abstract: Ocular surface squamous neoplasia (OSSN) represents the most common conjunctival
tumor in horses and frequently results in vision loss and surgical removal of the affected globe.
Multiple etiologic factors have been identified as contributing to OSSN progression, including
solar radiation exposure, genetic mutations, and a lack of periocular pigmentation. Response to
conventional treatments has been highly variable, though our recent work indicates that these
tumors are highly responsive to local immunotherapy. In the present study, we extended our
investigation of OSSN in horses to better understand how the ocular transcriptome responds to the
presence of the tumor and how the ocular surface microbiome may also be altered by the presence
of cancer. Therefore, we collected swabs from the ventral conjunctival fornix from 22 eyes in this
study (11 with cytologically or histologically confirmed OSSN and 11 healthy eyes from the same
horses) and performed RNA sequencing and 16S microbial sequencing using the same samples.
Microbial 16s DNA sequencing and bulk RNA sequencing were both conducted using an Illumina-
based platform. In eyes with OSSN, we observed significantly upregulated expression of genes and
pathways associated with inflammation, particularly interferon. Microbial diversity was significantly
reduced in conjunctival swabs from horses with OSSN. We also performed interactome analysis and
found that three bacterial taxa (Actinobacillus, Helcococcus and Parvimona) had significant correlations
with more than 100 upregulated genes in samples from animals with OSSN. These findings highlight
the inflammatory nature of OSSN in horses and provide important new insights into how the host
ocular surface interacts with certain microbial populations. These findings suggest new strategies for
the management of OSSN in horses, which may entail immunotherapy in combination with ocular
surface probiotics or prebiotics to help normalize ocular cell and microbe interactions.
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1. Introduction

Ocular surface squamous neoplasia (OSSN) is the most common conjunctival tumor in
horses, frequently resulting in vision loss and potentially surgical removal of the globe [1–3].
Risk factors for the development of OSSN include lack of periocular pigmentation, solar
radiation exposure, heritable genetic mutations, acquired p53 mutations, physical peri-
ocular irritation, previous viral exposure, and potentially immunological and hormonal
influences [4–12]. Although multiple treatment options have been described (e.g., surgi-
cal removal, intralesional chemotherapy, radiation therapy, cryotherapy, radiofrequency
hyperthermia, immunotherapy, or combination), success rates vary widely (30 to 90%),
and recurrence has been observed with all available treatment modalities [5,6,13–27]. Re-
cently, however, the application of a novel liposomal immunotherapy has substantially
improved OSSN treatment responses (including eyelid tumors) while minimizing local
toxicity [27]. The ocular pathology of equine OSSN also presents several key similarities to
that of OSSN in humans, including shared risk factors, lesion progression time, and similar
gross and histologic appearances [1,9,10], further supporting the additional translational
value of studies expanding our mechanistic understanding of OSSN disease processes in
the equine model.

Pathophysiological changes in the tumor microenvironment, including the micro-
biome, have been shown to significantly impact tumor growth [28–31]. Microbiota exert
significant effects on the host immune system, metabolism and disease progression [32,33].
The role of the microbiome in tumor initiation, prognosis, and response to treatment has
been a recent topic of discussion, which has largely focused on the relationship between
the gastrointestinal microbiota dysbiosis and cancer progression but has more recently
expanded to explore the concept that the local tumor microbiota likely plays an integral
role in disease progression [34,35]. Although the bacterial load on the ocular surface is
low, in humans, these bacteria are thought to play a role in maintaining corneal home-
ostasis and regulating the immune system by stimulating host interleukin production and
activation [36]. The gut microbiome has been recognized to indirectly modulate cancer
susceptibility or progression, while shifts in intra- or peri-tumoral microbiota diversity have
further been demonstrated in multiple other cancer types in humans, including colorectal,
lung, breast, prostate and cervical [37–47]. Using in situ spatial-profiling technologies and
single-cell RNA-sequencing of human oral squamous cell carcinoma (SCC) and colorectal
cancers, spatial, cellular, and molecular host-microbe interactions were recently demon-
strated [46]. Although previous investigations of alterations in cellular and molecular
biology have advanced earlier cancer diagnosis and treatment in horses, microbial contribu-
tions to tumor growth and host differential gene expression and the potential therapeutic
implications of such characterization remain incompletely unexplored [45].

A unique aspect of ocular anatomy is the capability of studying animals with unilateral
ophthalmic disease, allowing the non-affected eye to act as a “control” due to its exposure
to the same environmental conditions as the affected eye. Therefore, the objective of this
study was to characterize the local microbiota of the conjunctiva in equine eyes affected
by OSSN compared to healthy eyes and to associate the microbiota with tumor RNA
expression profiles. We documented the most prevalent species observed in ocular tissues
and assembled preliminary evidence supporting microbial compositional shifts in ocular
neoplasia. We used microbial read evidence and host transcriptional expression from
the same tissues to perform association analyses, representing the first study to examine
both microbial presence and gene expression from the same prepared sampling sites
in equine neoplasia with translational value to humans suffering from similar OSSN
disease processes.

2. Materials and Methods
2.1. Horses

The clinical studies described here were approved by the Colorado State University
Clinical Review Board (protocol #3556). Horses enrolled were presented to Colorado State
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University’s Johnson Family Equine Hospital Equine Ophthalmology Service between
March 2022 and June 2023. Horses were screened prospectively by complete ophthalmic
examination, including biomicroscopy, direct ophthalmoscopy, and tonometry, as well as
patient history, physical examination, and bloodwork to ensure no prior history of systemic
disease, and enrolled with informed owner consent. Horses were included if no concurrent
systemic disease was detected and following histopathologic or cytologic confirmation
of OSSN with the tumor localized to the limbus. Horses were excluded if lesions of the
primary eyelid or third eyelids were noted. A total of 11 horses (22 eyes) were included in
the study, including 1 mare, 9 geldings, and 1 stallion. Horse breeds included four Paint
Horses, three Quarter Horses, one Thoroughbred, one Tennessee Walking Horse, one Cob
horse, and one Mustang. Of the 11 OSSN-affected eyes sampled, OSSN was present in
the right eye of 7 horses, and the left eye of 4 horses. The perilimbal location of the OSSN
in affected eyes were lateral (8/11), medial (2/11), and ventral (1/11). Affected horses
presented at an average age of 16.6 years old (range 5 to 24 years). Lesions were noted
either by the owner or a referring veterinarian between 3 weeks and 10 months prior to the
initial presentation.

2.2. Sample Collection and Processing

Ocular surface swabs were collected using 6-inch PurFlock Ultra and sterile flocked
collection devices (Puritan Medical Products, Guilford, ME, USA). The horse’s inferior
eyelid was everted, the dry swab was inserted to the level of the ventral conjunctival
fornix and swept along the length of the eyelid four times. Three swabs were placed in a
15 mL conical tube (Corning Inc., Corning, NY, USA) containing RNAlater (ThermoFisher
Scientific, Waltham, MA, USA) for RNA sequencing, while one swab was placed in a micro
conical tube without any storage media for microbial 16S sequencing. Samples for RNA
sequencing were stored at 4C prior to RNA and DNA extraction. To extract RNA from nasal
cells, swabs were vortexed for 1 min at high speed to dislodge cells. PBS was then added
to the RNA later at a ratio of 1:5. Cells were pelleted, then processed for RNA extraction
using the Qiagen RNeasy micro kit (Qiagen, Hilden, Germany) following manufactures
instructions for DNA extraction as described below.

2.3. RNA Sequencing

RNA concentrations were verified on a Nanodrop 1000 Spectrophotometer (Ther-
moFisher Scientific) and then sent to Novogene Corp. Inc. (Sacramento, CA, USA) for RNA
sequencing. RNA quality was determined using an Agilent 2100 Bioanalyzer system to
generate RIN numbers (RNA integrity number), which ranged from 6.9 to 10 for all RNA
samples submitted. At Novogene Corp, mRNA was purified using poly-T oligo-attached
magnetic beads. After fragmentation, the first strand of cDNA was synthesized using ran-
dom hexamer primers, followed by the second strand of cDNA synthesis. The library was
completed following end repair, A-tailing, adapter ligation, size selection, amplification,
and purification. Quantified libraries were pooled and sequenced on an Illumina NovaSeq
6000 (Illumina, San Diego, CA, USA). 150 bp paired-end reads were generated, and files
were delivered as de-multiplexed fasq files.

Sequence data were analyzed on Partek Flow software, version 10.0 (Partek Inc.,
Chesterfield, MO, USA). Raw data were filtered by removing reads containing adapters
and reads containing N > 10% and for Phred scores > 30. Filtered reads were aligned
with STAR 2.7.3a using the CanFam3.1 genome assembly. Aligned reads were annotated
and counted using HT-seq [48] with Ensembl 107, and differentially expressed genes were
identified using DEseq2 [49] (Differential gene expression analysis based on negative
binomial distribution). Biological interpretations included gene ontology and gene set
enrichment analysis (GSEA), (https://www.gsea-msigdb.org/gsea/index.jsp, accessed
on 1 December 2023). Gene sets Hallmarks v2022.1, biocarta v2022.1, KEGG v2022.1,
Gene Ontology go.bp v2022.1, and ImmuneSigDB v2022.1 were used for comparisons.

https://www.gsea-msigdb.org/gsea/index.jsp
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Significant pathways were filtered using false discovery rate (FDR) q-value of ≤0.25 and
NOM p-value ≤ 0.05.

2.4. Microbial 16S Sequencing

Additional swabs were collected for microbial analysis. Swabs were cut and immersed
in extraction tubes following Qiagen DNeasy PowerSoil Pro Kit instructions (Qiagen,
Hilden, Germany). Microbial DNA was frozen at −80 ◦C and sent to ACME (Anschutz Cen-
ter for Microbiome Excellence) at the University of Colorado Anschutz Medical Campus,
Aurora, CO. for microbial sequencing. The library was prepared according to the Earth Mi-
crobiome project protocol (https://earthmicrobiome.org/protocols-and-standards/16s/,
13 February 2024), with 35 PCR cycles using 515F and 806R primers. Due to the low overall
bacterial abundance in the swab samples, additional PCR cycles were needed to reach the
required number of reads for each sample. Samples were run on MiniSeq cartridges on
Illumina Miseq sequencing instruments. Microbial sequence analyses were performed with
QIIME2 [50]. Microbial community similarity was displayed with principal coordinate
analysis (PCoA) plots. Alpha diversity was determined using Shannon, Faith, and pielou
indices. Beta diversity using weighted and unweighted UniFrac, as well as Bray Curtis.
Alpha diversity indices were compared using a paired T-test, and beta diversity metrics
were compared with PERMANOVA. An analysis of the composition of microbiomes (AN-
COM) was employed to determine the sequence variants that differed significantly between
treatment groups [51]. In addition, LEfSE (Linear discriminant analysis Effect Size) was
also used to calculate the taxa that best discriminated between rhinitis and the healthy
group (https://huttenhower.sph.harvard.edu/lefse/, 13 February 2024) [52]. Microbial
features were filtered for a minimum frequency of 22 (0.01% of the highest) and features
not present in >2 samples were also removed, resulting in a total of 365 total features.

2.5. Interactome Analysis of Transcriptome and Microbiome Data

The microbial DNA of n = 6 out of 11 horses with matched RNA sequencing data were
used in this analysis. The remaining horses had no microbial DNA extractions available.
For this analysis, a total of 268 DEGs (differentially expressed genes) were extrapolated
from the RNA sequencing data using a Log2 fold change of ≤−1 or ≥1. The median ratio
normalized reads from individual samples were then correlated to the percent relative
abundance of 212 unique bacterial taxon found in at least 3 samples using rcorr [52].
p values for significance and r values for correlation were generated for each gene to taxon
pair. Protein-coding genes with correlation p-values ≤ 0.05 were then entered into the
string protein database (https://string-db.org) for categorizing the protein sets [53].

3. Results
3.1. Transcriptomic Differences in OSSN Effected Surface Ocular Cells

RNA sequencing results from n = 11 ocular swabs with matched OSSN and normal
phenotype show a high level of heterogeneity. Dimensional reduction shows no obvious
clustering of OSSN samples; instead, 4 out of 11 of the OSSN-affected eyes are separated
from the others (Figure 1A). Differential gene expression analysis shows 174 significantly
upregulated protein-coding genes (Figure 1B). Highly upregulated genes in OSSN included
GPCRs (G protein-coupled receptors), cancer-associated PTX and OSM, as well as the
inflammatory cytokines IL1B and CXCL8 9 (Figure 1C).

Gene set enrichment analysis (GSEA) comparing OSSN to normal eyes shows signifi-
cant upregulation of multiple immune and inflammatory response pathways (Figure 2A,B),
as well as the upregulation of reactome pathways related to interleukin signaling, platelets,
neutrophils, and extracellular matrices (Figure 2D). Downregulated pathways in OSSN are
less numerous and include “cilium assembly” as well as some RNA processing pathways
(Figure 2C).

https://earthmicrobiome.org/protocols-and-standards/16s/
https://huttenhower.sph.harvard.edu/lefse/
https://string-db.org
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Figure 1. Transcriptomic differences in OSSN vs. normal ocular surface cells. (A) Principal compo-
nent analysis (PCA) plot of n = 11 horses, with OSSN-affected eyes shown in red and normal 
matched horse eye shown in blue. (B) Volcano plot of Deseq differential gene expression analyses 
results. X-axis shows Log2 Fold change comparing OSSN vs. Normal and y-axis shows −Log10 false 
discovery rate adjusted p-value. Significance was defined as FDR ≤ 0.05 and fold change ≥ 2Log2 or 
≤−2Log2. (C) List of top 20 significantly upregulated genes in OSSN-affected eyes with gene descrip-
tion, adjusted p-value, and fold change. 
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Figure 1. Transcriptomic differences in OSSN vs. normal ocular surface cells. (A) Principal component
analysis (PCA) plot of n = 11 horses, with OSSN-affected eyes shown in red and normal matched
horse eye shown in blue. (B) Volcano plot of Deseq differential gene expression analyses results. X-
axis shows Log2 Fold change comparing OSSN vs. Normal and y-axis shows −Log10 false discovery
rate adjusted p-value. Significance was defined as FDR ≤ 0.05 and fold change ≥ 2Log2 or ≤−2Log2.
(C) List of top 20 significantly upregulated genes in OSSN-affected eyes with gene description,
adjusted p-value, and fold change.

3.2. Ocular Microbiome of OSSN-Affected Horses

The ocular surface microbiome was compared between n = 6 OSSN-affected eyes and
matched normal eyes using 16S microbial DNA seq. After filtering (see methods), a total
of 365 features were present in n = 12 samples. The most abundant phylum on average
was Proteobacteria, followed by Actinobacteria, then Firmicutes (Figure 3A), while the most
abundant taxa on a class level is Gamaproteobacteria, followed by Actinobacteria (class), then
Bacilli and Clostridia (Figure 3B). OSSN-affected eyes showed an overall decrease in alpha
diversity (Figure 3C); however, the p-value did not reach a significant number. PCoA
(principal coordinate analysis) using weighed unifrac distance measurement showed clus-
tering of five out of six OSSN samples, with a PERMANOVA (permutational multivariate
analysis of variance) p-value of 0.053 (Figure 3D). There were no significant differences in
composition at any taxon level between OSSN vs. normal eyes using ANCOM or LefSE
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Figure 2. GSEA pathway analysis results of n = 11 OSSN-affected ocular swab cells vs. normal. (A) 
Stacked bar graph of Hallmark gene sets with FDR adjusted p-value ≤ 0.05. Normalized enrichment 
scores shown in green (positive for upregulated in OSSN), total genes mapped to pathways shown 
in blue and –log10(FDR p-value) in orange dot (>1.3 values significant). (B) Significant KEGG path-
ways upregulated in OSSN eyes. (C) significantly downregulated KEGG and Reactome pathways 
in OSSN. (D) additional significantly upregulated Reactome pathways in OSSN. 
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Figure 2. GSEA pathway analysis results of n = 11 OSSN-affected ocular swab cells vs. normal.
(A) Stacked bar graph of Hallmark gene sets with FDR adjusted p-value ≤ 0.05. Normalized enrich-
ment scores shown in green (positive for upregulated in OSSN), total genes mapped to pathways
shown in blue and –log10(FDR p-value) in orange dot (>1.3 values significant). (B) Significant KEGG
pathways upregulated in OSSN eyes. (C) significantly downregulated KEGG and Reactome pathways
in OSSN. (D) additional significantly upregulated Reactome pathways in OSSN.
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Figure 3. Ocular microbiome composition of OSSN-affected eyes compared to matched normal con-
trols. (A) Taxonomy results of n = 6 horses, showing relative abundance at phylum level composition.
(B) relative microbial abundance at class level showing a total of 26 classes of bacteria found in
12 samples. (C) Alpha diversity of OSSN vs. normal showing Faith metric with perceive distance
(p) on y axis. Significance computed using paired parametric T test. (D) Beta diversity computed
using weighed unifrac distance measurements. Normal samples in blue, OSSN in red. Statistical
significance computed using QIIME2 permanova.

3.3. Interactome of OSSN

In order to provide the most comprehensive and biologically relevant interactome
composition, species and genus-level taxa were selected for correlation with DEGs from
sample-matched RNA sequencing data. A total of 11 species were found to have significant
correlations with at least one gene (Figure 4A).
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Figure 4. Ocular Interactome of equine OSSN. Differentially expressed genes (OSSN vs. normal) with
fold change ≤ −1.5log2 or ≥1.5Log2 and FDR ≤ 0.05 were correlated with relative abundance of
genus and species level microbial taxon. (A) shows significant correlations with 5 species and DEGs.
r values shown in color scale. (B) Three genus-level taxon with >100 significant correlations with
differentially expressed genes. Correlation r values shown in color scale, white spaces nonsignificant.
(C) stacked bar graph of String protein annotation for DEGs significantly correlated with genus
Actinobacillus. Pathways chosen with highest strength and p value ≤ 0.05. graph legend shown in
bottom right. Blue shows number of DEGs in pathway, red shows total genes present in each pathway
set. Green strength of association and purple for –Log10 FDR adjusted p-value. (D) top 10 strength
String protein annotation pathways for DEGs correlated with genus Helcococcus. (E) top 10 strength
String protein annotation pathways for DEGs correlated with genus Parvimonas.
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However, there were no major associations or common pathways found between these
21 genes. The genes KRT77 (Keratin 77) and GMNN (Geminin) had the most correlations
(all positive) with 8 out of the 11 species. On a genus level, a total of 18 genus-level annota-
tions were correlated to the 268 DEGs as described in methods. There were three genera
with significant correlations to more than 100 genes, including Actinobacillus, Helcococcus
and Parvimonas (Figure 4B). There were 242 genes with a significant correlation to Acti-
nobacillus, mapping to STRING pathways; the highest-strength pathways corresponded to
immune-related pathways, such as MHCI, IL8, IL1, IL18 and TLR pathways (Figure 4C).
The highest-strength pathways for the 107 genes correlated to Helcococcus are similar to
those of Actinobacillus, with additional macrophage proliferation and some Th1 responses
(Figure 4D). There were 233 genes with a significant positive correlation to Parvimonas,
with the highest-strength immune pathways mostly identical to Actinobacillus (Figure 4E).
Both Parvimonas and Helcococcus had positive correlations with r values > 0.6, whereas
Helcococcus was negatively correlated with 4 out of the 107 genes.

4. Discussion

The primary objective of this study was to investigate how the transcriptome and the
microbiome are altered in horses with OSSN and how these two unique areas of the ocular
immune system interact with each other. This is the first study to our knowledge to explore
the ocular transcriptome and microbiome using matched ocular swab samples, and the
first to study their interactions in an equine ocular neoplasia model.

Based on the transcriptome analysis, we identified 174 genes that were significantly
upregulated in the OSSN-affected eyes compared to the controls. To compare the ocular
transcriptome of horses with OSSN to that of human OSSN, a query of several of these
upregulated genes was submitted to the “human eye atlas” [54], in which seven OSSN-
affected samples were included in the analysis. Many of the upregulated genes (e.g., OSM,
IL-1ß, CXCL8, ORL1, PTGS2, TREM1) are upregulated in human hyalocytes, which are
tissue-resident innate immune cell populations present in the vitreous cavity and thought
to be derived from the monocytic lineage [55,56]. However, the pathophysiology of OSSN is
traditionally recognized to originate in the limbal epithelial cells [57,58], and indeed Boneva
et al. demonstrated an upregulation of many keratin and epidermal development genes
upregulated in SCC tissues, which was not seen in our equine study. We did, however,
observe a strong immune signature, as stated in the pathway analysis, for example, with
upregulation of complement proteins, inflammatory cytokines and inflammatory response
pathways (Figure 2). These conjunctival and corneal cellular responses in horses with OSSN
likely reflect inflammation associated with immune responses to the malignant cells. For
example, previous histological studies of equine OSSN have demonstrated an inflammatory
cell infiltrate in most of the tumor biopsies that were examined, indicative of an ongoing
anti-tumor immune response [59,60]. In addition to the plethora of immune pathways,
cilium assembly was downregulated in OSSN eyes, which is in line with previous reports
of dysregulation in ocular diseases [61].

We also assessed the ocular microbiome in this study to help understand not only how
the microbiome may be altered in OSSN but also to interrogate using Next Gen Sequencing
techniques the ocular microbiome in normal horses, which has been previously described in
other geographic regions including Alabama, Texas, Chile, and the United Kingdom [62–65].
Across these studies, the most common phylum identified oscillates between Proteobacteria,
Actinobacteria, Firmicutes and Bacteroidetes, with major differences attributed to geographic
location. Julian et al. reported an increase in the class Bacilli (phylum Firmicutes) in the
eyes of horses with ulcerative keratitis [66]. The human ocular microbiome is arguably
less “complex” compared to horses living in an outdoor environment, composed primarily
of Proteobacteria and Actinobacteria [67]. As in these previously reported human studies,
the genus Corynebacterium (phylum Actinobacteria) was also present at high levels here in
equine patients. With respect to OSSN, there is a single report in cattle that compares the
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conjunctival microbiome in eyes with squamous cell carcinoma to those of healthy eyes [68],
which did not identify significant differences in bacterial populations.

In the present study, the OSSN microbiome alpha and beta diversity were significantly
different in OSSN eyes, although there were no significant differences in microbial abun-
dance between groups. Related to our findings, we noted from previous reports that the
genus Actinobacillus has long been associated with various inflammatory and infectious
diseases such as granuloma, sepsis, and arthritis in livestock [68]. In the current study,
we found Actinobacillus abundance to be correlated with upregulation of many immune
genes in the major histocompatibility complex (MHC), interleukin, and microglia categories
(Figure 4), as was the case of the genus Helcococcus, which also has a strong “immune”
correlation. Although levels of neither Actinobacillus or Helcococcus genus were significantly
different between OSSN and normal eyes, Actinobacillus was highly enriched in four out
of the six OSSN eyes, making it a more likely candidate for a disease-mediated process
directly related to the presence of tumors. The genus Parvimonas was also correlated to
the same categories of immune genes upregulated in OSSN eyes. Parvimonas, however,
has previously been correlated to colorectal cancer [69]. In particular, Parvimonas micra is
thought to epigenetically alter the methylation profile of tumor suppressor genes, thus
contributing to metastasis [70]. Interestingly, microbial sequencing performed here also
detected several species-level ASVs present. Since 16S sequencing uses only up to 250 base
pairs, the species-level annotations are typically considered unreliable [71]. However, we
were able to identify 13 species with >0.1% average abundance across all samples. Although
the species-correlated genes did not all fall into any pathway classification or protein class,
the correlation of eight of these species with the keratin gene KRT77 is intriguing, since
KRT77 is considered a biomarker for squamous cell carcinoma [72] and involved in the
epithelial differentiation from the limbal stem cells [73].

Although this study provides a novel glimpse into the OSSN immunome, there are
several limitations that warrant additional discussion. As reports in the human literature
indicate that the location of sampling (lid vs. conjunctiva) and extraction methods impact
the microbial population sequences [74,75], the utmost care was taken to obtain samples
from inferior conjunctival fornix; however, it is possible that some of the differences could
be attributed to the swabbing technique. In canines with corneal ulcers, sampling from
the conjunctival fornix yielded similar results in microorganism identification as sampling
from the ulcer itself, suggesting the good utility of conjunctival fornix sampling as used in
this study [76]. Similarly, the collection of host cells for transcriptome sequencing could
also be impacted by the location of the swab and the cell types collected. As the sample
size here was limited and as horses were client-owned with naturally occurring disease
processes, horses presented at varying degrees of tumor severity, which may have also
resulted in potential differences in the degree, stage or inflammation.

Our findings, which are the first to examine the ocular immune response in equine
eyes with OSSN versus normal eyes, provide key new insights into the disease pathogenesis
and present the possibility for a role of immunome in establishing or perpetuating the
disease. Additional, larger studies will be required to establish a potential causative role
more firmly for the microbiome in the host response to OSSN.

5. Conclusions

In this study, we demonstrated alterations in differential gene expression and the
local microbiome in equine OSSN, with potential implications for disease susceptibility
and progression. Key findings were that OSSN-affected eyes demonstrated a high level
of heterogeneity in differential gene expression, with upregulation of genes associated
with immune/inflammatory pathways associated with interleukin signaling, neutrophils,
and the extracellular matrix. Evaluation of the local microbiome indicated a decrease in
alpha diversity as well as differences in beta diversity in OSSN-affected eyes. Interactome
analysis revealed significant interactions between the ocular cellular responses to OSSN
and certain microbial populations, including Actinobacillus, Helcococus, and Parvimonas,
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suggesting important interactions between the host and the microbiome at the conjunctival
epithelial surface.
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