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Abstract: Thanks to recent technological and IT advances, there have been rapid developments in
biomedical and health research applications of computational fluid dynamics. This is a methodology
of computer-based simulation that uses numerical solutions of the governing equations to simulate
real fluid flows. The aim of this study is to investigate, using a patient-specific computational
fluid dynamics analysis, the hemodynamic behavior of two arterial cannulae, with two different
geometries, used in clinical practice during cardiopulmonary bypass. A realistic 3D model of the aorta
is extracted from a subject’s CT images using segmentation and reverse engineering techniques. The
two cannulae, with similar geometry except for the distal end (straight or curved tip), are modeled and
inserted at the specific position in the ascending aorta. The assumption of equal boundary conditions
is adopted for the two simulations in order to analyze only the effects of a cannula’s geometry on
hemodynamic behavior. Simulation results showed a greater percentage of the total output directed
towards the supra-aortic vessels with the curved tip cannula (66% vs. 54%), demonstrating that
the different cannula tips geometry produces specific advantages during cardiopulmonary bypass.
Indeed, the straight one seems to generate a steadier flow pattern with good recirculation in the
ascending aorta.

Keywords: cardiopulmonary bypass (CPB); computational fluid dynamics (CFD); mathematical
models; arteria cannulae

1. Introduction

Numerical methods and analytic solutions have grown rapidly over the last few
decades, with applications in physics, engineering, biology, and finance, among others [1–3].
Mathematical modeling of the cardiovascular system has received considerable attention
in the literature and is poised to become one of the heavy challenges of the coming decades
due to its potential applications in the prediction of pathologies and in the planning of
surgical therapies. Computational fluid dynamics (CFD) is classified as a branch of fluid
dynamics that uses numerical solutions of the governing equations to simulate real fluid
flows [4].

The emphasis in using the CFD approach lies in the possibility, by means of a computer-
based simulation, to understand the physiological blood flow behavior in the cardiovascular
system, evaluate the effects that vascular modifications or inlet of different pathologies can
have on local hemodynamics, facilitate surgical planning, and develop medical devices
that are otherwise hard to test in vivo [4].

This mathematical simulation platform can thus provide cardiologists with the support
tools for clinical practice, able to analyze the behavior of the cardiovascular system under
physiological conditions, predict the onset of particular diseases or disorders, and anticipate
the effects of surgical or pharmacological changes.
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Recently, CFD has been applied in the context of medical bioengineering [5] and
cardiovascular diseases [6–8]. Most of the studies on CFD are used to investigate the flow
patterns in anatomical vessels and to quantify the relationship between hemodynamic
factors and atherosclerosis [9,10]. Other applications include guiding new product devel-
opment and predicting device performance in situ. Blood pumps, artificial heart valves,
blood oxygenators, filtration devices, catheters, tubing, and diagnostic equipment [11–13]
can be considered the most widespread examples.

Several contributions described the CFD analysis to investigate the flow pattern
induced by the aortic cannula during CPB [14–17] or in the presence of aortic patholo-
gies [18,19]. Over recent years, the development and improvement of the aortic cannulation
procedure has been the subject of enormous interest. During open-heart surgery, the aortic
cannula was inserted, as a surgical equipment, into the ascending aorta in conjunction
with the heart-lung machine which is used to drain the blood away from the heart [20].
Establishing an adequate arterial cannulation is a very important event in the cardiopul-
monary bypass procedure. Indeed, arterial cannulation maintains a normal circulatory
flow of the blood within the body and, if not handled correctly, it may result in many
possible complications.

In Gramigna et al. [14], the hemodynamics in the ascending aorta and in the supra-
aortic vessels between non-pulsatile traditional cardiopulmonary bypass and pulsatile
CPB were analyzed by means of CFD. This CFD analysis used a multi-scale model of a
3D patient-specific aorta geometry, the arterial cannula of the CPB, and the intra-aortic
balloon (IAB), with a 0-dimensional model. Deng et al. [15] used a numerical model based
on computational fluid dynamics to analyze the difference of several cannulation methods
on the blood flow property in a type A aortic dissection (TAAD) model. Hungeroth
et al. [16] dealt with an outflow-optimized cannula design (optiCAN), which was improved
using computational fluid dynamics models, prototyped, and tested in vitro as well as
in vivo. In Caruso et al. [17], a comparative multi-scale study was performed, by coupling
three-dimensional computational fluid dynamics and a 0D model in order to establish the
modifications of blood flow caused by the changes in the cannula insertion angle during
a cardiopulmonary bypass. More specifically, in this preliminary CFD study [17], we
numerically analyzed how the CPB cannula orientation influences the blood flow in aortic
and epiaortic vessels during pulsed CPB. We investigated the hemodynamic modifications
(flow distribution, velocity pattern, and stressed areas), considering a CPB arterial cannula
with two different tilt angles, which were chosen as the extremes of the range within
which the cannula orientation can vary without causing any problems to the surgical
field. Malvindi et al. [18] performed a pre-dissection computational fluid analysis of an
ascending aortic aneurysm associated with the unicuspid aortic valve. In Xu et al. [19],
in a longitudinal study performed for a type B aortic dissection (TBAD) patient, CFD
simulations were used to compute several hemodynamic indexes, including the wall shear
stress and the relative residence time (RRT).

The aim of this study is to analyze the hemodynamic behavior of two arterial cannulae.
We considered two different cannula geometries used in clinical practice during a cardio-
pulmonary bypass. The analysis was performed by using a fluid dynamics study on a
patient-specific geometry. Compared to our previous analysis [17], in this study, a more
complete aorta model was used in addition to modeling outlets in the thoracic area, which
could influence the results.

2. Materials and Methods
2.1. Anatomical Model

A real (3D) patient-specific geometry model of the aorta artery was realized from a
series of medical images by using open-source software. More specifically, we used DICOM
(Digital Imaging and Communications in Medicine) images from an in vivo contrast-
enhanced axial computed tomography. Scan slices were conducted for diagnostic purposes.
The derived faced surface was simplified for the CFD analysis using a reverse engineering
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method, as described in our previous study [14]. The aorta model was designed including
the upper ramifications (innominate artery, left carotid artery, and left subclavian artery).
Two 22 Fr (7.3 mm diameter) arterial cannulae (Select Series™ Straight and Angled Tip
Arterial Cannulae, Medtronic Inc., Minneapolis, MN, USA [Medtronic cannula catalog
2020]) with similar geometry except for the distal end (straight or curved tip), that are
routinely used during a cardiopulmonary bypass, were modeled (Figure 1). They were
inserted into the ascending part of a patient-specific aorta, 2 cm above the ST junction
perpendicular to the aortic wall (Figure 2). This position provides the best hemodynamic
pattern as has been indicated in our previous research [21]. The two cannulae with different
types of distal ends (Case I: straight or Case II: curved tip) were used to evaluate the
influence of tip curvature on fluid dynamics within the aortic model.
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Figure 2. Aortic model and the two different arterial cannulae: (a) straight tip and (b) angled tip.

2.2. Mathematical Model, Boundary Conditions, and Simulation Details

The 3D incompressible Navier–Stokes equations were considered to model the blood
motion:

∇·u = 0 (1)

ρ (∂u/∂t) + ρ (u·∇)u = ∇·[−pI + µ (∇u + (∇u)T] + F (2)
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where u is the fluid velocity vector, ∇u is the tensor derivative of the velocity vector u, p is
the pressure, µ is the dynamic viscosity, ρ is the density of blood, I is the identity matrix,
and F is the volume force field.

It is important to specify that, since the patient was supine during the surgical pro-
cedure, the term F was neglected in the computational study (the effect of gravity was
ignored).

Thus, to describe the blood motion, the following equation is considered:

ρ (∂u/∂t) + ρ (u·∇)u = ∇·[−pI + µ (∇u + (∇u)T] (3)

We considered blood using Newtonian flow, an accepted assumption for flows in
vessels as large as the aorta [22]. Blood density ρ and dynamic viscosity µ were assumed to
be equal to 1060 kg/m3 and 0.0035 Pa s, respectively.

In most previous CFD studies, for simplicity, blood was simulated as a Newtonian
fluid despite the fact that blood does not have a Newtonian behavior. As the flow velocity
and shear strain rate increase, the viscosity of the blood decreases [23,24]. However, in
areas with low flow, the viscosity is greater than that considered, and non-Newtonian
models could simulate changes in the blood viscosity in these areas. Previous studies
simulated the blood flow in various vessels and indicated differences in pressure and wall
shear stress (WSS) estimates based on Newtonian and non-Newtonian models [25–27]. We
carried out a study on a large vessel and, for these reasons, we approximated the blood as
a Newtonian fluid.

For both cases, we hypothesized that the blood was delivered only through the arterial
cannula, and the aorta was modeled with a closed input (no flow came out from the aortic
valve). More specifically, a constant flow of 5.00 L/min was assumed as the inlet boundary
condition required to flow through the CPB arterial cannula. The zero-pressure outlet
boundary conditions were assumed at the exits of the aorta artery (innominate artery, left
carotid artery, left subclavian artery, and thoracic aorta).

Since the aim of our study was to analyze only the effects of a cannula’s geometry
on hemodynamics, the assumption of identical boundary conditions for both simulations
was chosen.

The blood flow motion was described by adopting the laminar model. Indeed, with a
flow of about 5 L/min, the Reynolds number was about 3800 in the arterial cannula and
about 1100 in the ascending aorta. Turbulent flow was not considered since the Reynolds
number is only in the cannula in the transient range and the analysis of flow in this conduit
was not of interest.

In this study, COMSOL 6.1 (COMSOL Inc., Stockholm, Sweden), a finite element
analysis solver for various physics and engineering applications [28], was used.

For the computational fluid dynamics simulation, the aorta and the CPB cannula
walls were assumed to be inflexible and no-slip boundary conditions were assumed. Fur-
thermore, to evaluate the hemodynamic in the aorta vessel, two steady-state simulations
were performed:

(a) Case I: Straight Tip Arterial Cannula;
(b) Case II: Angled Tip Arterial Cannula.

To analyze the mesh quality and performance, several measures can be calculated
using COMSOL 6.1 (http://www.comsol.com, accessed on 24 September 2023), such as
the minimum element quality, element volume ratio, and maximum growth rate. For both
cases (I and II), the optimal mesh parameters were chosen in order to obtain good quality,
acceptable calculation times, and accurate solutions. The convergence error is in the order
of 10−6.

More specifically, the meshes included two boundary layers and tetrahedral elements
(113,489 elements for case I and 113,049 elements for case II), both with a minimum element
quality of 0.007115, an average element quality of 0. 7, and an element volume ratio of
1.7 × 10−6 (Figure 3). On the one hand, it is true that results are more accurate when the

http://www.comsol.com
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refinement increases. On the other hand, it is equally true that the calculation burden,
and, consequently, computational times are significantly affected from mesh quality. It
is therefore necessary to define a sufficiently fine step beyond which, even with further
refinement, no improvements are obtained. In the case taken into consideration, lower
computational times were preferred, since an extremely refined solution is not of interest.
To solve the Navier–Stokes equations, these further choices have been made: the Pardiso
solver with a pivoting perturbation of 1.0 × 10−13, the P1–P1 finite element method for the
space discretization, linear elements for both the velocity components, and the pressure
field. An Intel Xeon 2.10 GHz with 192 GB RAM was used.
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In addition to the flow distribution and velocity pattern, to evaluate the impact of
the two types of cannula distal ends on flow perfusion, the wall shear stress (WSS) [19],
expressed in Pascals (Pa), was also considered. WSS describes the friction force exerted
by blood motion on the vessel surface in a direction on the local tangent plane, which
affects endothelial cell function and can cause different vascular pathologies, such as
atherosclerosis, thrombosis, aneurysms, and stenosis [29]:

WSS =

√(
(τx)2 + (τy)2 + (τz)2

)
(4)

where τx, τy, and τz are the viscous stress in x, y, and z directions, respectively.

3. Results

The flow distribution in terms of the streamline in all vessels and in the aortic CPB
cannula for the two analyzed cases are shown in Figure 4.
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A zoomed view of the cannula insertion area on the ascending aorta is shown in
Figure 5.

Fluids 2023, 8, x FOR PEER REVIEW 6 of 10 
 

3. Results 
The flow distribution in terms of the streamline in all vessels and in the aortic CPB 

cannula for the two analyzed cases are shown in Figure 4.  

 
Figure 4. Velocity field (streamlines) (m/s) in cannula and epiaortic vessels in the case of the straight 
tip (a) and curved tip (b). 

A zoomed view of the cannula insertion area on the ascending aorta is shown in Fig-
ure 5. 

 
Figure 5. Velocity field (streamlines) (m/s) in cannula and epiaortic vessels in the case of the straight 
tip (a) and curved tip (b). 

Figure 5. Velocity field (streamlines) (m/s) in cannula and epiaortic vessels in the case of the straight
tip (a) and curved tip (b).

Figures 4 and 5 show that the straight tip cannula produced an important flow that
hit the inner wall of the ascending aorta, resulting in more evident flow recirculation in
the ascending aorta below the cannulation site and in an orderly flow pattern in the supra-
aortic vessels. On the contrary, the angled tip cannula caused a swirling flow with stasis in
the ascending aorta below the cannulation site and a predominant flow distribution in the
brachiocephalic artery.
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Interestingly, a greater percentage of the total output directed towards the supra-aortic
vessels with the curved tip cannula (Case II) compared to the straight one (Case I) was
observed (66% vs. 54%) (Table 1).

Table 1. Comparison of mean flow rates in aortic vessels between case I and case II.

Vessel

Case I (Straight Tip) Case II (Angled Tip)

Mean Flow
(L/min) % Mean Flow Mean Flow

(L/min) % Mean Flow

Cannula 5.00 100 5.00 100
Thoracic aorta 2.30 46 1.70 34

Epiaortic vessels 2.70 54 3.30 66

A similar behavior was observed while considering the high wall shear stress (WSS)
(Figure 6) for both cases near the take-off of the innominate artery and the right carotid
artery. Indeed, a slightly higher value for the curved tip compared to the straight one has
been evaluated. In addition, in the straight tip case, it was also located on the posterior
wall of the aorta opposite the cannulation area.
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In conclusion, this non-invasive evaluation demonstrated that using different cannula
tips offers specific advantages during CBP. The straight one seems to generate a more
orderly flow pattern in the epiaortic vessels but with a lower percentage of blood flowing
through them. On the contrary, the cannula with curved tip, even though it seems poten-
tially more thrombogenic, offers an enhanced blood flow selectively to the epiaortic vessels.

4. Discussion

Mathematical modeling of the cardiovascular system has received considerable at-
tention in the literature. It is poised to become one of the heavy challenges of the coming
decades due to its potential applications in the prediction of pathologies and in the plan-
ning of surgical therapies. The primary objective of this study was to investigate the
hemodynamic behavior of two different arterial cannulae, which are routinely utilized
during cardiopulmonary bypass, using a patient-specific geometry. In our first CFD in-
vestigation [17], we numerically investigated how the CPB cannula orientation influences
the blood flow in aortic and epiaortic vessels during pulsed CPB. More specifically, we



Fluids 2023, 8, 302 8 of 10

evaluated the hemodynamic modifications (hemodynamic, velocity pattern, and stressed
areas) considering two CPB arterial cannulae with different tilt angles. This choice was
made taking into account the extremes of the range within which the cannula orientation
can vary without causing any problems to the surgical field.

Compared to the previous one, in this study, a more complete aorta model was
used in addition to also modeling outlets in the thoracic area, which could influence the
simulations results. Nowadays, the cannula choice is left to the surgeon’s preference.
However, according to the manufacturer, the angled tip cannula offers enhanced flow
directed to the supra-aortic vessels, even if in a case of higher flow resistances, the higher
cardiac output is in a logarithmic proportion respective to the straight one. Our work
showed results in line with manufacturer specifications, confirming that using different
cannula tips offers specific advantages during CBP. More specifically, the straight tip
cannula produced maximum WSS to the inner wall of the ascending aorta, more evident
flow recirculation in the ascending aorta below the cannulation site, and an orderly flow
pattern in the supra-aortic vessels. On the contrary, the angled tip cannula caused a swirling
flow with stasis in the ascending aorta below the cannulation site and a predominant flow
distribution in the brachiocephalic artery with a higher WSS value localized in that area.
Our conclusion must be taken in relation with the cardiac output needed during CBP.
We tested the two cannulae with a cardiac output of 5 L/min. That is enough to cover
most of the patient’s needs during CBP and light hypothermia (34–32 ◦C) as is routinely
utilized in cardiac surgery. It is reasonable that for higher needs, i.e., in patients with
BSA > 2.0 m2 (BSA: external surface area of the human body given in square meters.), the
flow turbulence and WSS of the angle tip cannulae will become worse and might jeopardize
its hemodynamic performance. Therefore, the cannula choice must also be taken with the
cardiac output need.

The CFD method described in this study can be seen as a promising tool to integrate
the existing knowledge of CBP effects on aortic hemodynamics. On the other hand, it
presents several limitations that have been underlined.

The first assumption is the hypothesis of rigid surfaces ignoring wall compliance
and applying the no-slip boundary conditions. This hypothesis was made to reduce the
simulation time, which was very high when parametric studies were performed, and is
useful in obtaining the first results. Indeed, CFD results could be taken into account before
performing fluid–structure interaction (FSI) models, which will be considered in a future
perspective of this preliminary computational study.

Moreover, we assumed blood is an incompressible fluid, which is an accepted assump-
tion for vessels as large as the aorta [22]. Regarding future research directions, to estimate
the transitional flow in the aorta and in its superior vessels, we will intend to use a low
Reynolds number model (k-omega).

Another assumption is the adoption of zero-pressure for outlet boundary conditions.
However, even though simplified, the CFD simulation is a valid and innovative tool

to assist clinicians during their decision making.

5. Conclusions

In recent years, the development and improvement of the aortic cannulation procedure
has been the subject of enormous interest. Establishing an adequate arterial cannulation is
a very important event in cardiopulmonary bypass surgical intervention, since it maintains
a normal circulatory flow of the blood within the body and, if not handled correctly,
it may result in many possible complications. The aim of this work was to evaluate
the hemodynamic behavior of two different arterial cannulae, which are routinely used
during cardiopulmonary bypass, using a patient-specific computational fluid dynamics
model. Although the cannula choice is nowadays left to a surgeon’s preference, the
manufacturer certifies that the angled tip cannula offers enhanced flow directed to the
supra-aortic vessels compared to the straight one. Our work showed results in line with
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manufacturer specifications, confirming that using different cannula tips offers specific
advantages during CBP.

The simulation analysis showed a greater percentage of the total output directed
towards the epiaortic vessels with the curved tip cannula (66% vs. 54%), which highlights
that the different cannula tip geometry produces specific advantages during CPB. Indeed,
the straight cannula seems to generate a steadier flow pattern, which also avoids the
stagnation phenomena in the ascending aorta.

The aim of this study is to set up a mathematical simulation platform to provide
cardiac surgeons with support tools for their clinical practice. This can be seen as an
important tool to analyze the behavior of the cardiovascular system under physiological
conditions as well as to predict the onset of particular diseases or disorders and anticipate
the effects of surgical or pharmacological changes.
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