
Citation: Pattanapisont, T.; Kotani, K.;

Siritanawan, P.; Kondo, T.; Karnjana, J.

Multi-View Gait Analysis by

Temporal Geometric Features of

Human Body Parts. J. Imaging 2024,

10, 88. https://doi.org/

10.3390/jimaging10040088

Academic Editor: Arslan Munir

Received: 28 February 2024

Revised: 3 April 2024

Accepted: 3 April 2024

Published: 9 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

Multi-View Gait Analysis by Temporal Geometric Features
of Human Body Parts
Thanyamon Pattanapisont 1,2 , Kazunori Kotani 1, Prarinya Siritanawan 1,* , Toshiaki Kondo 2

and Jessada Karnjana 3

1 School of Information Science, Japan Advanced Institute of Science and Technology, Nomi 923-1211, Japan;
s2120416@jaist.ac.jp (T.P.); ikko@jaist.ac.jp (K.K.)

2 School of Information, Computer, and Communication Technology, Sirindhorn International Institute of
Technology, Pathum Thani 12120, Thailand; tkondo@siit.tu.ac.th

3 National Electronics and Computer Technology Center, National Science and Technology Development
Agency, Pathum Thani 12120, Thailand; jessada.karnjana@nectec.or.th

* Correspondence: prarinya@jaist.ac.jp

Abstract: A gait is a walking pattern that can help identify a person. Recently, gait analysis employed
a vision-based pose estimation for further feature extraction. This research aims to identify a person
by analyzing their walking pattern. Moreover, the authors intend to expand gait analysis for other
tasks, e.g., the analysis of clinical, psychological, and emotional tasks. The vision-based human pose
estimation method is used in this study to extract the joint angles and rank correlation between them.
We deploy the multi-view gait databases for the experiment, i.e., CASIA-B and OUMVLP-Pose. The
features are separated into three parts, i.e., whole, upper, and lower body features, to study the effect
of the human body part features on an analysis of the gait. For person identity matching, a minimum
Dynamic Time Warping (DTW) distance is determined. Additionally, we apply a majority voting
algorithm to integrate the separated matching results from multiple cameras to enhance accuracy,
and it improved up to approximately 30% compared to matching without majority voting.

Keywords: multi-view gait analysis; correlation feature; dynamic time warping; voting algorithm

1. Introduction

Gait is an individual’s walking pattern that involves position changes in the upper
and lower body. In other words, it refers to the movement of a joint as it changes position
over time. In recent years, vision-based joint estimation has been widely deployed. We let
pj

i(x, y, z, t) represent a joint number j in Figure 1, which presents the human body joints
from MediaPipe [1] that was used in this study. i represents a person index, x, y, and z
represent the x, y, and z axes of the joint coordinates, and t represents time. The changing
of pj

i(x, y, z, t) can present a walking pattern. It can represent the personality of a person,
e.g., identity, emotions, health, and more [2].

Figure 1. Sixteen keypoints from MediaPipe pose estimation used in this study.
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1.1. Gait Analysis

Human gait can be applied to analyze neurological disorders, such as Parkinson’s
disease. It is a progressive disorder that affects the nervous system, and some symptoms
are reflected in the walking pattern. The research by S. R. Hundza et al. [3] presented the
Inertia Measurement Unit (IMU)-based gait cycle detection in Parkinson’s disease (PD)
using gyroscope angular rate reversal to address the initial gait cycle of PD test subjects.
A. P. Rocha et al. [4] employed the Kinect RGB-D camera system as a tool to assess PD by
extracting the skeleton of PD patients. Their target was to distinguish between PD and non-
PD subjects and between two PD states. G. Sun and Z. Wang [5] employed vision-based
fall detection by OpenPose to figure out the human pose and conducted SSD mobilenet
object detection to get rid of OpenPose’s mistakes and applied SVDD classification for fall
detection. D. Slijepcevic et al. [6] used different machine learning (ML) and deep neural
network (DNN) techniques to classified the walking patterns of children who have Celebral
Palsy (CP). They aimed for explainable ML to gain trust for using it to analyze human gait.
They found that the classification from ML approaches is better than DNNs. However,
DNNs employed additional features to predict the results. Some previous works show that
emotion detection by using human gait was possible, as per the survey by S. Xu et al. [7].
In their study, G. E. Kang et al. [8] examined how bipolar disorder patients control their
balance while walking and sitting to walk. They used motion data from 16 cameras to
achieve this. Moreover, N. Jianwattanapaisarn [9] proposed the analysis of an emotion
characteristic by prompting 49 subjects to walk in a setting region while watching the
emotion-inducing videos on Microsoft Hololens 2 smart glasses. They used OptiTrack
motion capture to obtained human gaits and postures and extracted features such as the
angle between body parts and walking straightness for analysis.

Different types of methods were used to study gait, including non-training-based
methods like Dynamic Time Warping (DTW), Decision Tree, K-means clustering, and Sup-
port Vector Machine (SVM), as well as training-based methods like CNN, Grad-CAM,
and Long Short-Term Memory (LSTM). In fact, all of the algorithms are reliable, but the
non-training-based DTW is selected for this study because it is an uncomplicated method
for matching the patterns. Since it is a classification technique, it does not require data
training or a large number of datasets. R. Hughes et al. [10] improved the floor-based
monitoring system and implemented DTW with KNN to enhance walking identification.
M. Błażkiewicz et al. [11] applied DTW to assess the gait asymmetry of barefoot walking
to evaluate the gait symmetry. The work by Y. Ge et al. [12] employed DTW to match the
signals from LoRa sensors with a database to recognize the gait. D. Avola et al. proposed
wearable sensor-based gait recognition using a smartphone accelerometer, based on a
modified DTW, and applied modified majority voting to return the matched identity of the
best comparison score to improve the recognition’s accuracy [13]. Previous works show
that non-training-based methods are effective in recognizing gait. However, training-based
methods are essential for tasks beyond recognition. Hence, we intend to implement the
training-based method for extending the gait analysis tasks.

1.2. Gait Recognition

There are two main approaches for gait recognition, i.e., appearance-based and model-
based approaches [2]. The appearance-based approach is model-free; it bases analysis
directly on silhouette sequences to deploy the shape and textural information as features
for gait analysis. The following studies present gait recognition based on a person’s
appearance. The work by M. Alotaibi and A. Mahmood [14] intended to increase gait
recognition accuracy by developing eight layers of deep CNN that are less sensitive to
variations and occlusions. They employed CASIA-B, a multi-view gait database with
various walking conditions, for the experiment. Their proposed method can overcome
several issues, but performance decreases if the gallery set does not cover a variety of
walking conditions. They achieved an average correct classification, rank-1, and rank-5
accuracy of 86.70%, 85.51%, and 96.21% on the CASIA-B dataset, respectively. M. Deng and
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C. Wang focused on proposed gait recognition in different clothing conditions [15]. They
employed silhouette gait images to extract the shape of a human and divide it into four
sub-regions. Then, they selected the gait features based on the width of each sub-region
and input the gait feature vector into Radial Basis Function (RBF) neural networks. Their
proposed method gave the correct classification rate on NM (normal walking) and CL
(walking while wearing a down coat) conditions of the CASIA-B dataset at 90% when using
NM as a probe set and at 93.5% when using the CL condition as a probe set. S. Hou et al.
developed the Gait Lateral Network (GLN) to recognize the human gait [16]. It is a deep
CNN that can learn discriminative and compact representations from silhouette images.
GLN achieved an average rank-1 accuracy of 96.88% on NM and 94.04% on a BG (walking
while carrying a bag) condition of the CASIA-B dataset, respectively. However, the clothing
condition affects the slight decrease in rank-1 accuracy to 77.50%. C. Fan et al. [17] claimed
that different parts of the human body consist of diverse visual appearances and movement
patterns during walking. GaitPart was proposed as a way to extract gait features. The goal
was to improve the learning of part-level features using a frame-level part feature extractor
made up of FConv and obtain the short-range spatiotemporal expression using a Temporal
Feature Aggregator with a Micromotion Capture Module (MCM). The results from GaitPart
achieved average rank-1 accuracy on the CASIA-B dataset of 96.2% on NM, 91.5% on BG,
78.7% on CL conditions, and 88.7% on the OU-MVLP dataset. GaitEdge was a framework
described by J. Liang et al. [18] for recognizing human gait. It made this framework more
practical and kept performance from dropping in cross-domain situations by blocking
irrelevant gait information. They designed the module to integrate the trainable edges of
the segmented person’s shape with the fixed internals of silhouette images based on the
mask operation, named Gait Synthesis. GaitEdge achieved an average rank-1 accuracy on
the CASIA-B* dataset (across different views) of 97.9% on NM, 96.1% on BG, and 86.4% on
CL conditions.

Our research interest is the model-based approach. It requires a mathematical model
to distinguish the gait characteristics. The earlier works from R. Liao et al. [19] proposed
a model-based gait recognition by extracting 14 body joints of 2D human pose estima-
tion from images and transforming them into 3D poses, called PoseGait. The CNN is
implemented to extract the gait features. Moreover, they combined three spatio-temporal
features with the body pose to enhance the features and recognition rate. Their proposed
method achieved recognition rates on the CASIA-B dataset of 63.78% on NM, 42.52% on BG,
and 31.98% on CL conditions. Additionally, they proposed another model-based method for
gait recognition with pose estimation and graph convolutional networks, named PoseMap-
Gait [20]. They aimed to preserve the robustness against human shape and the human body
cues of the gait feature by using a pose estimation map, which claims to enrich the recogni-
tion rate. PoseMapGait achieves the average recognition rate on the CASIA-B dataset of
75.7% on NM, 58.1% on BG, and 41.2% on CL conditions. X. Li et al. [21] mentioned the
information loss suffering of 2D poses, unlike 3D poses. They presented a 3D human mesh
model with parametric pose and shape features. In addition, they trained a multi-view
to overcome the poor pose estimation in a 3D space. They achieved rank-1 accuracy on
the CASIA-B dataset of 60.92% on NM, 42.01% on BG, and 32.81% on CL conditions. This
study was not trained for gait recognition directly, but the authors aimed to create the
database for multiple related purposes. The research from C. Xu et al. [22] considered the
occlusion-aware human mesh model for gait recognition. They mentioned that partial
occlusion of the human body mostly occurs in surveillance scenes. So, they created model-
based gait recognition for handling the occluded gait sequences without any prerequisite.
They set the SMPL-based human mesh model to an input image directly, and extracted the
pose and shape features for the recognition task. The most challenging part was when the
occluded ratio was huge (around 60%). Their proposed method outperformed the other
state-of-the-art methods by 15% of rank-1 accuracy. K. Han et al. proposed a discontinuous
gait image recognition based on the extracted keypoints of the human skeleton [23]. They
aimed to overcome the situation of discontinuity in the gait images. This study achieved a
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high recognition rate and is robust to common variations. Mostly, model-based gait analysis
aimed to increase the recognition rate by implementing machine learning. They achieve
the average rank-1 accuracy on the three conditions of the CASIA-B dataset of 79.5%.

Previous studies have addressed variations such as camera perspective, clothing,
illumination, occlusion, and carrying that make gait analysis unreliable. These variations
are a significant challenge for analyzing the gait. Additionally, it is essential to apply gait
analysis in practical settings where equipped stationary cameras whose perspectives are
limited, such as surveillance cameras, unlike in laboratory settings.

1.3. Vision-Based Human Pose Estimation

The authors extract features as joint angles based on human joint estimation by Google
MediaPipe [1]. It uses the BlazePose model, a lightweight model that produces thirty-three
keypoints of pose estimation, but we employ only sixteen keypoints for the experiment,
as shown in Figure 1. Each keypoint contains the coordinates in the x, y, and z axes, unlike
the OpenPose [24] and AlphaPose [25] that produce 18 keypoints of the estimated joints in
the x and y axes. However, MediaPipe is only a single-person pose estimation, while both
OpenPose and AlphaPose are multi-person pose estimations. Since most datasets provide
sequences with a single walker, a single-person pose estimation is sufficient. A previous
study from X. Li et al. [26] proposed fitness action counting and classification based on
MediaPipe. They presented the comparative results between MediaPipe, OpenPose, and Al-
phapose, which claimed that MediaPipe is faster to recognize and achieved high accuracy.
K. Y. Chen et al. used MediaPipe to obtain the features, and employed transfer learning
deep neural networks to determine the type of fitness movement and its completeness [27].
The authors also suggested that MediaPipe has an uncomplicated implementation, fast
computational speed, and high accuracy.

This study proposes person identification by majority voting based on DTW matching.
It is walking pattern matching, which is a non-training-based approach. Once we extract
the human pose landmarks, we use the Euclidean distance to create a triangle. Then, we
apply the cosine law to extract the desired joint angles based on the performed triangle,
i.e., elbow, hip, knee, and ankle angles, and calculate rank correlation between the extracted
joint angles. We deploy two features, i.e., joint angles and correlation, for measuring the
DTW distance. Finally, we match people in each camera perspective of the target sequences
and apply a majority vote to increase the matching results. We divide features into three
parts corresponding to the upper, lower, and whole body to study the effect of walking
patterns. Additionally, we divide the number of subjects into three cases to observe the
results of the proposed method.

Our research goal is to analyze human motion from a multi-view gait image for human
behavior analysis based on their walking pattern and to expand the range of our research to
include clinical, psychological, and effective analysis tasks in addition to recognition tasks.

Let us address our highlights and the advantages of the research as follows:

• We implement Dynamic Time Warping (DTW) to match the walking patterns.
• We deploy the joint angles and the rank correlation between each angle in parallel as

features for measuring the DTW distance.
• A majority vote is applied to increase the matching performance over multiple cameras.
• Small datasets can be employed by the proposed method, which is a non-training-

based approach.
• Detailed analyses are possible due to the availability of data visualization.
• The proposed method is implemented on the CPU, which has advantages in terms of

time and cost savings.

2. Materials and Methods

This section explains our proposed method for multi-view person’s identity matching
based on DTW and the majority voting algorithm. The joint angles and their correlation
are determined to be employed as features for a matching purpose.
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2.1. Methodology

Figure 2 shows the overall methodology of this study. The authors extract the joint
coordinates of the reference and target sequences as pj,ik ,t,D and pj,itar ,t,D. Variable k rep-
resents the number of reference sequences, which is kϵK. We let j be a joint number;
D is a camera perspective, and i is a person identity label. Then, we extract the features
from reference and target sequences as the joint angles (θire f ,t,D and θitar ,t,D), which consist
of 10 angles, including the elbow, hip, knee, and ankle (front and back), on both the left
and right sides of the body. Next, we calculate the rank correlation between each feature
vector of reference and target sequences as cire f ,t,D and citar ,t,D. Then, we apply Dynamic
Time Warping (DTW) to measure the distance between them as SD

i . After that, we find
a minimum DTW distance to match a person’s identity in the target sequence with the
reference sequence. The matched person identity is returned as iD

k , which refers to the
person identity in each camera perspective (D). Finally, we aggregate the separated person
identity (iD

k ) from each D by applying majority voting to increase the reliability of a person
identity matching.

Figure 2. Overall methodology of this study.

2.2. Joint Angles Calculation

To extract the joint angles, we initialize the process by connecting 3 joints, i.e., p(j−1),i,t,D,
pj,i,t,D, and p(j+1),i,t,D, from Google MediaPipe in Figure 1 as a triangle. Figure 3 represents
the mentioned triangle connection. We apply the Euclidean distance between each joint,
which is determined to connect them for generating a triangle. We let it be Legs a, b, and c
using Equations (1)–(3). Leg a represents a connection line between joints p(j−1),i,t,D and
p(j),i,t,D, Leg b is a connection line between joints pj,i,t,D and p(j+1),i,t,D, and Leg c is a
connection line between joints p(j−1),i,t,D and p(j+1),i,t,D. Finally, we apply the cosine law
in Equation (4) to extract the middle angle (θ j,i,t,D), which is a preferred joint angle to use
as a feature.

a = textb f pj,i,t,D − p(j−1),i,t,D (1)

b = textb f pj,i,t,D − p(j+1),i,t,D (2)

c = textb f p(j−1),i,t,D − p(j+1),i,t,D (3)

θ j,i,t,D = cos−1(
(a2 + b2)− c2

2 × (
√

a2 ×
√

b2)
) (4)

This study separates feature vectors into three parts, i.e., whole, upper, and lower
body, to determine DTW distance for a matching purpose. Typically, human gait refers



J. Imaging 2024, 10, 88 6 of 18

to the motion of lower body parts, i.e., hip, knee, and ankle. However, we notice that the
whole body has motion while humans walk, not just the lower parts. Thus, we decide to
employ the upper body feature to study the effect of the body parts on an analysis of the
gait in various walking conditions.

The θi,t,D value in Equation (5) represents a feature vector of the whole body consisting
of 10 angles. Upper body (θi,t,D

u ) consists of 2 angles, left and right elbow, as in Equation (6).
The lower body (θi,t,D

l ) consists of 8 angles, left and right hip, knee, and ankle (front and
back), as in Equation (7).

θi,t,D =
[
θ1,i,t,Dθ2,i,t,D . . . θ j,i,t,D . . . θ10,i,t,D

]T
(5)

θi,t,D
u =

[
θ1,i,t,Dθ2,i,t,D

]T
(6)

θi,t,D
l =

[
θ3,i,t,Dθ4,i,t,D . . . θ j,i,t,D . . . θ10,i,t,D

]T
(7)

Figure 3. Joint angle calculation using cosine law to calculate a middle angle (θ j,i,t,d) between 3 joints.

2.3. Correlation Calculation

In this study, we calculate the correlation between joint angles, treating them as indi-
vidual patterns that serve as features for matching. Based on frame-by-frame human pose
extraction, we extract individual joint angles with respect to the frame, resulting in a pattern
that is frame-dependent. The rank correlation aims to be a frame-independent feature and
it can provide more stability and enhance the reliability of the matching. Moreover, when a
person is walking, their whole body is moving. Thus, all joints are correlated.

Spearman correlation is a method to measure dependence between two ranking
variables [28]. It is a non-parametric rank measurement that employs a monotonic function
to define a relationship between them. The calculated correlation is [−1, 1], which implies
that two variables are similar and have a positive monotonic relationship when it is closer
to 1. However, if it is closer to −1, the two variables are perfectly opposite and have a
negative monotonic relationship. There is no correlation if a calculated value is around 0.

Figure 4 shows the way to assign the ranks to θ1,i,D and θ2,i,D values. The θj,i,D value
represents values of joint angle j in every t, as shown in Equation (8). Figure 4a presents the
values of θ1,i,D and θ2,i,D before assigning the ranks, and Figure 4b presents the rankings
of θ1,i,D and θ2,i,D as X and Y, respectively. The values are arranged from minimum to
maximum, assigning a minimum value to the first order. For the tied ranks, the average
number between them will be assigned to all tied ranks. Figure 4a shows that there are two
identical values of θ2,i,D, which actually are orders of 3 and 4, but we assign an order of
3.5 as they are tied ranks.
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Figure 4. Sample ranking of θ1,i,D and θ2,i,D for calculating the correlation between them. (a) is the
values before ranking of θ1,i,D and θ2,i,D. (b) is the values after ranking of θ1,i,D (X) and θ2,i,D (Y).

This study calculates an individual correlation between each joint angle as a sample
in Table 1 and applies it as a feature for pattern matching. Each correlation feature is a
2D array that consists of ten 1D arrays inside, as each row of the table in Table 1. It is an
individual walking pattern in terms of the correlation between joint angles.

θj,i,D =
[
θ j,i,1,Dθ j,i,2,D . . . θ j,i,t,D

]T
(8)

Equation (9) presents the correlation calculation in this study. The E[•] value represents
an expected value of vectors X and Y. The correlation between angles of reference and
target sequences is calculated separately as cire f ,D and citar ,D.

ci,D =
E[XY]−E[X]E[Y]√

E[X2]−E[X]2
√
E[Y2]−E[Y]2

(9)

Table 1. Sample of the calculated individual correlation between each joint angle.

LElbow RElbow LHip RHip LKnee RKnee LAnkle
(Front)

RAnkle
(Front)

LAnkle
(Back)

RAnkle
(Back)

LElbow 1.00 0.43 −0.47 −0.32 −0.65 −0.30 −0.31 −0.01 0.10 0.03

RElbow 0.43 1.00 −0.37 0.06 −0.19 0.17 −0.34 −0.46 0.24 0.54

LHip −0.47 −0.37 1.00 0.06 0.58 0.28 0.07 −0.08 −0.23 −0.30

RHip −0.32 0.06 0.06 1.00 0.33 0.86 −0.33 −0.54 0.04 0.45

LKnee −0.65 −0.19 0.58 0.33 1.00 0.47 0.30 −0.34 −0.52 0.08

RKnee −0.30 0.17 0.28 0.86 0.47 1.00 −0.43 −0.61 −0.13 0.41

LAnkle
(Front)

−0.31 −0.34 0.07 −0.33 0.30 −0.43 1.00 0.23 −0.31 0.00

RAnkle
(Front)

−0.01 −0.46 −0.08 −0.54 −0.34 −0.61 0.23 1.00 0.13 −0.57

LAnkle
(Back)

0.10 0.24 −0.23 0.04 −0.52 −0.13 −0.31 0.13 1.00 0.17

RAnkle
(Back)

0.03 0.54 −0.30 0.45 0.08 0.41 0.00 −0.57 0.17 1.00

2.4. Distance Measurement

Dynamic Time Warping (DTW) is an algorithm to measure the distance between time
series which can be used to find similarities. This algorithm can handle varying walking
speeds and endure time shifts between two sequences. This algorithm is versatile and can
be used for different recognition tasks, such as speech and signature recognition, as in the
work of C. S. Myers and L. R. Rabiner [29].

DTW offers the most affordable and optimum option for two sequences to be aligned,
known as the DTW distance (SD

i ). Figure 5 shows an example of the DTW warping path
on the cost matrix of the right hip angle of reference (y-axis) and target sequences (x-axis)
between the same person (Figure 5a) and a different person (Figure 5b). It indicates that
the warping path of the same person is diagonal from the starting point to the endpoint,
unlike the warping path of the different person. The more straight warping path refers
to an optimal path, which implies both patterns require a lower cost to be aligned. Since
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DTW can be one-to-multiple alignment, the more diagonal paths, the greater the similarity
between the two patterns.

Figure 5. Sample of the DTW warping path (red line) on the cost matrix shown as a heat map of right
hip angle at D = 162◦. (a) DTW warping path with the same person. (b) DTW warping path with a
different person.

We employ features from Equations (5)–(9) as the features for determining DTW
distance as SD

i , and then multi-dimensional DTW is implemented. The dependent DTW is
applied to calculate the distance between two multi-dimensional models. In the research of
M. Shokoohi-Yekta et al. [30], it is called DTWD. It warps all dimensions into a single matrix
as a single-dimensional DTW calculation and calculates the distance between two matrices.

2.5. Matching Algorithm and Voting

After determining DTW distance, we match the person identity in a target with
reference sequences by finding a minimum DTW distance as in Equation (10). Since it
has multiple cameras for multi-view gait analysis, we let iD

k represent the matched person
identity from each camera perspective (D).

iD
k = argmin

ik
(SD

i ) (10)

Since the multi-view databases use multiple cameras, we obtain multiple matched
identities. This implies that the accuracy of the matching depends on the camera perspective.
We then apply majority voting to aggregate the identity from each D by selecting the most
frequently appearing identity in every view. The ’vote’ function in Equation (11) refers to
the mentioned voting algorithm. In fact, it is simply a mode in statistics [31].

ik = vote{i0
◦

k , . . . , iD
k , . . . , i180◦

k } (11)

3. Results

We evaluate the proposed method with CASIA-B [32] and OUMVLP-pose [33] datasets
by calculating the accuracy in Equations (12) and (13). It is used to measure the correctness
of the matched identities.

Accuracy (without voting) =
Total number of iD

k
Total number of true label

(12)

Accuracy (with voting) =
Total number of ik

Total number of true label
(13)

We separate the features into three parts, i.e., the whole, upper, and lower body parts.
In this study, we choose the identical view case because the proposed method is a pattern-
matching method without a learning state, in contrast to a training-based approach. We
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apply a majority vote to enhance the reliability of the multi-view walking pattern matching
instead. In addition, we experiment with various sample sizes to show the performance of
the proposed method.

3.1. CASIA-B Datset

We apply our method to the CASIA-B dataset [32]. It is a multi-view gait database
that captures 124 subjects with 11 cameras, as shown in Figure 6a. The camera perspective
spans from 0◦ to 180◦ with 18◦ intervals. All sequences capture the subjects walking from
a starting point to the marked endpoint. The 0◦ captures a frontal perspective, the 90◦

captures a side perspective, and the 180◦ captures a rear perspective. There are three
walking conditions, i.e., normal walking (NM), walking while carrying a shoulder bag (BG),
and walking while wearing a down coat (CL), as shown in Figure 6b–d. The NM condition
consists of six sub-datasets. The BG and CL conditions consist of two sub-datasets per
each. This study employs 20, 50, and 118 subjects from CASIA-B with two sub-datasets
per condition (one as a reference and one as a target for matching) for experimenting. We
apply MediaPipe to extract a human skeleton.

Figure 6. Samples of a multi-view CASIA-B gait database [32]. (a) Gait images from the different
camera perspectives. (b) Normal walking condition (NM dataset). (c) Walking with carrying condition
(BG dataset). (d) Walking with clothing condition (CL).

The following Figures 7–12 display the accuracy without and with a majority vote
on NM, BG, and CL conditions, respectively. The number of subjects for experimentation
is 20, 50, and 118 for each condition of CASIA-B. It is important to note that we match
the reference and target sequences under identical walking conditions, e.g., matching
between two NM sub-datasets. The reason is that the proposed method is pattern matching,
and it has no feature learning state. The matching across different walking conditions
may decrease the accuracy. Therefore, our focus is to investigate the effect of the walking
pattern when the parameters are varied and to improve the multi-view matching based on
DTW distance.

The results indicate that a majority vote can enhance the matching performance. It
can improve the accuracy by about 30%. This implies that a majority vote can reduce the
view variation issue that affects matching. The most reliable feature belongs to the whole
body, including both joint angles and correlation features. The findings show that when a
person is walking, the whole body is moving together, and it is correlated. Furthermore,
the lower body part can be used to identify people by their walking patterns. Unfortunately,
the upper body feature achieves the lowest accuracy, especially for the correlation. It is
essential to note that the upper body feature consists of two angles, the left and right
elbow angles, and this suggests that these two angles are not significant for identification.
Naturally, it is difficult to recognize people from only two angles.
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The BG sub-dataset captures walkers carrying shoulder bags, and the CL dataset is
a scene where subjects walk while wearing a thick outer coat that limits arm movement,
which affects the movement of their arms directly. We find that the accuracy of the upper
joint angle feature is higher than in the NM condition. This indicates that carrying and
clothing conditions make the walking pattern distinct from an identical walking condition.
Still, the correlation between upper joint angles remains unreliable.

The overall results imply that the impact of the whole body features is the most
significant and reliable, followed by the lower body features.

Figure 7. Accuracy of the matching without majority voting on NM condition. (a) Accuracy of the
joint angles being used as a feature of 20, 50, and 118 subjects. (b) Accuracy of the correlation being
used as a feature of 20, 50, and 118 subjects.

Figure 8. Accuracy of the matching with a majority vote on NM condition. (a) Accuracy with majority
voting of the joint angles being used as a feature of 20, 50, and 118 subjects. (b) Accuracy with
majority voting of the correlation being used as a feature of 20, 50, and 118 subjects.
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Figure 9. Accuracy of the matching without majority voting on BG condition. (a) Accuracy of the
joint angles being used as a feature of 20, 50, and 118 subjects. (b) Accuracy of the correlation being
used as a feature of 20, 50, and 118 subjects.

Figure 10. Accuracy of the matching with a majority vote on BG condition. (a) Accuracy with
majority voting of the joint angles being used as a feature of 20, 50, and 118 subjects. (b) Accuracy
with majority voting of the correlation being used as a feature of 20, 50, and 118 subjects.

Figure 11. Accuracy of the matching without majority voting on CL condition. (a) Accuracy of the
joint angles being used as a feature of 20, 50, and 118 subjects. (b) Accuracy of the correlation being
used as a feature of 20, 50, and 118 subjects.
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Figure 12. Accuracy of the matching with a majority vote on CL condition. (a) Accuracy with majority
voting of the joint angles being used as a feature of 20, 50, and 118 subjects. (b) Accuracy with
majority voting of the correlation being used as a feature of 20, 50, and 118 subjects.

3.2. OUMVLP-Pose Dataset

OUMVLP-Pose is an OU-ISIR gait database with extracted 2D pose estimation
(pj

i(x, y, t)) by OpenPose and Alphapose [33]. It contains sequences of 10,307 subjects
walking a round trip captured by 14 cameras spanning from 0◦ to 270◦ with 15◦ intervals
as shown in Figure 13.

The OUMVLP-Pose dataset provides 18 joint landmarks that are extracted from Open-
Pose and Alphapose. Unfortunately, it has no foot landmarks provided, and the ankle
angles cannot extracted. Thus, the whole-body and lower-body features for this dataset are
θi,t,D =

[
θ1,i,t,D . . . θ j,i,t,D . . . θ6,i,t,D]T and θi,t,D

l =
[
θ3,i,t,Dθ4,i,t,D . . . θ j,i,t,D . . . θ10,i,t,D]T , re-

spectively. We apply the proposed method with 20, 50, and 100 subjects from the OUMVLP-
Pose dataset.

Figure 13. Capturing setup environment of OUMVLP-Pose [33] and sample images with extracted
human pose estimation.
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Figures 14–17 show the accuracy without and with a majority vote of the OUMVLP-
Pose dataset, which provides 2D human pose coordinates extracted by OpenPose and
Alphapose. The results suggest that the proposed method can enhance person recognition
even when the joint coordinates are 2D and there are no ankle angles. We can achieve an
accuracy of about 0.8 after applying a majority vote. Additionally, the data of some subjects
are incomplete, and it is a crucial part of this study because it needs two sub-datasets to be
a reference and target for the matching. If one is missing, it has no data to match.

Figure 14. Accuracy of the matching without a majority vote on OUMVLP-Pose (OpenPose).
(a) Accuracy of the joint angles being used as a feature of 20, 50, and 100 subjects. (b) Accuracy of the
correlation being used as a feature of 20, 50, and 100 subjects.

Figure 15. Accuracy of the matching with a majority vote on OUMVLP-Pose (OpenPose). (a) Accuracy
with majority voting of the joint angles being used as a feature of 20, 50, and 100 subjects. (b) Accuracy
with majority voting of the correlation being used as a feature of 20, 50, and 100 subjects.

The experimental results suggest the correlation between joint angles brings stability
to the matching according to the trend of results from all datasets is similar. The upper joint
angles feature can identify the identities, unlike correlation. Additionally, an increase in the
number of subjects reduces the overall accuracy in matching based on DTW distance. This
suggests that our proposed method is suitable for smaller datasets.
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The lower body part is sufficient for identifying identities based on a walking pattern.
However, the whole body part is the most essential for the correlation feature, and it can be
a crucial part of expanding the gait analysis to other tasks.

Figure 16. Accuracy of the matching without a majority vote on OUMVLP-Pose (Alphapose).
(a) Accuracy of the joint angles being used as a feature of 20, 50, and 100 subjects. (b) Accuracy of the
correlation being used as a feature of 20, 50, and 100 subjects.

Figure 17. Accuracy of the matching with a majority vote on OUMVLP-Pose (Alphapose). (a) Accu-
racy with majority voting of the joint angles being used as a feature of 20, 50, and 100 subjects. (b)
Accuracy with majority voting of the correlation being used as a feature of 20, 50, and 100 subjects.

3.3. Execution Time

Table 2 shows the execution time for calculating the joint angles and matching based
on DTW distance on the Google Colab’s CPU. The measured time is per ten frames of a
single person, and it excludes the time for human pose estimation. The overall time for
calculating all tasks for one person per frame is 28.72 ms. The proposed method requires
no training phase and can be used with a small amount of data, which can be executed on
a CPU. It is a simple and effective method to identify individuals.

Table 2. Execution time for calculating joint angles and DTW matching per 10 frames of one person
on the virtual CPU of Google Colab.

Joint Angles
Calculation

DTW
(Joint Angles)

DTW
(Correaltion)

3.22 ms 182 ms 102 ms

3.4. Comparative Results with Previous Studies

This section presents the comparative results on the NM condition of the CASIA-
B dataset. Tables A1 and A2 in Appendix A present the original results from [19,34],
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respectively. We do not intend to compare our results with the original results from their
papers, but it is for reference.Both studies show the results of experimenting with separated
features. Table 3 presents the results of our experiments, and Table 4 presents the results
of the employed CLTS with 20 subjects. The CLTS is a training-based approach, and in it,
every sub-dataset from CASIA-B was employed as train and test sets, while we employed
only two sub-datasets of the NM condition, which are NM01 as a reference and NM02
as a target for matching. Since the two approaches are formed differently, it is difficult to
experiment under identical conditions. For the most accurate implementation, we trained
the data for CLTS with the same method as clarified in their paper, but we selected subject
numbers 1–21 instead (excluded subject number 5 as specified in their work). For the test
set, we employed subject numbers 21–41 of NM01.

Table 3. Accuracy with a majority vote (%) on NM walking condition of the CASIA-B dataset (ours).

Accuracy with a Majority Vote (%)

20 Subjects 50 Subjects 118 Subjects

Joint angles

Whole 80.00 80.00 68.64

Upper 55.00 52.00 50.00

Lower 75.00 74.00 55.93

Correlation

Whole 85.00 78.00 65.25

Upper 10.00 8.00 2.45

Lower 80.00 62.00 39.83

Table 4. Average rank-1 accuracy (%) on NM walking condition of the CASIA-B dataset (CLTS).

20 Subjects

Include
identical view 62.83

Exclude
identical view 59.14

Table 3 shows the accuracy with a majority vote on the NM walking condition identical
view case of the CASIA-B dataset. Since our method focuses on the integration of different
views by voting to overcome the view variation, we neglect the cross-view situation in this
experiment. As mentioned previously, our method with a majority vote is suitable for a
smaller dataset. Meanwhile, the CLTS achieves a result of about 60% when the dataset is
reduced. This implies that the training-based approach requires a large amount of data to
increase the accuracy of identification.

In brief, the training-based method requires more data for DNN to learn the features,
and it requires a GPU to perform the tasks. The CLTS is an appearance-based approach
that uses high-dimensional features for DNN to learn. The experiments were performed
on the NVIDIA GeForce GTX 1080Ti GPU. Additionally, PoseGait used a Tesla K80 GPU
to perform 2D pose estimation and feature extraction based on CNN. While the proposed
method performed the tasks on the CPU of Google Colab, additionally, the proposed
method does not require a re-training process when adding or deleting identities. It makes
the proposed method faster and lighter to implement and preserves high efficiency.

4. Conclusions

This study presents multi-view gait recognition by majority voting based on the
features of human body parts. We analyze gait by calculating joint angles and their
correlation. We divide features into three parts, i.e., whole, upper, and lower body, to study
the impact of different body parts on gait analysis. DTW employs these features to match
people in separate multiple cameras. Then, we apply a majority vote to integrate the
separated data to improve the accuracy and test the experiment over three different walking
conditions in the CASIA-B and OUMVLP-Pose datasets. Furthermore, we divide the
number of subjects into 20, 50, and 118 subjects for the CASIA-B dataset, and 20, 50, and
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100 subjects for the OUMVLP-Pose dataset to observe the trend of the matching accuracy
when the amount of data is varied.

According to the findings, integrating the view variations by majority voting can
enhance the accuracy of the matching based on DTW distance to 30% compared to the case
without a majority vote. We find that the features related to the lower body are sufficient
for identifying people using the joint angle. However, the whole body is crucial for other
tasks of gait analysis, such as detecting emotions and predicting one’s health. In this
case, the correlation feature adds more reliability to the results. The proposed method is
suitable for identifying identities with a smaller database. Additionally, the availability of
data visualization enables one-by-one detailed analyses, which is advantageous for the
expansion of our future tasks. Furthermore, it can be executed on the CPU according to a
no-training state. Thus, the GPU and complicated environment are unnecessary, leading to
reductions in both cost and time.
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Appendix A

Table A1. Averaged rank-1 accuracy (%) of multi-scale temporal features on NM condition of the
CASIA-B dataset from CLTS. The check mark indicates the features used to evaluate this method’s
efficiency [34].

Multi-Scale Features Rank-1 Accuracy

Frame-Level Short-Term Long-Term NM
√

96.9
√

97.2
√

95.9
√ √

97.0
√ √

97.4
√ √

97.4
√ √ √

97.8

Bold represents the maximum Rank-1 accuracy.

http://www.cbsr.ia.ac.cn/english/Gait%20Databases.asp
http://www.cbsr.ia.ac.cn/english/Gait%20Databases.asp
http://www.am.sanken.osaka-u.ac.jp/BiometricDB/GaitLPPose.html
http://www.am.sanken.osaka-u.ac.jp/BiometricDB/GaitLPPose.html
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Table A2. Recognition rates (%) of different features on NM condition of the CASIA-B dataset from
PoseGait [19].

Features Recognition Rates[
fpose

]
60.92[

fangle
]

46.97

[ flimb ] 42.40

[ fmotion ] 48.95[
fpose , fangle , flimb , fmotion

]
63.78

Bold represents the maximum recognition rates.
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