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Abstract: Radiomics represents an innovative approach to medical image analysis, enabling com-
prehensive quantitative evaluation of radiological images through advanced image processing and
Machine or Deep Learning algorithms. This technique uncovers intricate data patterns beyond
human visual detection. Traditionally, executing a radiomic pipeline involves multiple standardized
phases across several software platforms. This could represent a limit that was overcome thanks to the
development of the matRadiomics application. MatRadiomics, a freely available, IBSI-compliant tool,
features its intuitive Graphical User Interface (GUI), facilitating the entire radiomics workflow from
DICOM image importation to segmentation, feature selection and extraction, and Machine Learning
model construction. In this project, an extension of matRadiomics was developed to support the
importation of brain MRI images and segmentations in NIfTI format, thus extending its applicability
to neuroimaging. This enhancement allows for the seamless execution of radiomic pipelines within
matRadiomics, offering substantial advantages to the realm of neuroimaging.
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1. Introduction

In recent decades, medicine has witnessed a significant digitization of information
generated during routine clinical practice, leading to an increase in the development of
software tools to analyze them [1].

Simultaneously, Artificial Intelligence (AI) applied to medical research, particularly
through Machine and Deep Learning algorithms, has streamlined the processing of “Big
Data” [2], referring to large volumes of data that require advanced technologies and
techniques for acquisition, storage, distribution, management, and analysis.

One noteworthy innovation in this field is radiomics, an emerging discipline leverag-
ing AI techniques to revolutionize the interpretation of digital radiological images [3].

Radiomics allows these images to transcend mere anatomical representations, poten-
tially providing insights into several physiological and pathological processes.

The primary objective of radiomics is to extract quantitative data from radiological
images, which are subsequently processed using appropriate data analysis methods.

This approach enables clinicians to glean more accurate diagnoses and provides
valuable information such as predicting treatment response or disease progression [4].

Therefore, radiomics is paving the way for personalized medicine, promising im-
proved quality of life, increased survival rates, and reduced healthcare costs [5].
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A typical radiomic pipeline entails standardized procedures for extracting, analyzing,
and interpreting quantitative features from medical imaging data.

The first step involves image acquisition via examinations like CT scans, MRI, or
PET scans, often managed through the PACS (Picture Archiving and Communication
System) [4] and employing DICOM (Digital Imaging and Communications in Medicine) [5]
standards for communication.

Subsequently, segmentation identifies and delineates regions of interest (ROI), creating
a binary mask where pixels with a value of 1 belong to the target, while pixels with a value
of 0 do not.

Feature extraction follows preprocessing and filtering, aiming to reduce noise and
highlight characteristics like contours. The extracted features are categorized as follows:

1. Shape and morphological features: describing the size and shape of the ROI indepen-
dently of grayscale intensity distribution;

2. First-order statistical features: describing voxel intensity distribution within the
masked image region;

3. Texture features: capturing information about grey-level patterns within the VOI
(Volume Of Interest).

Tools like PyRadiomics [6], CERR (Computational Environment for Radiotherapy
Research) [7], or LIFEx [8] aid in accurate feature extraction.

Once features are obtained, the next step is feature selection, often accomplished
through the use of Machine Learning algorithms. Python-based libraries like SciKit-learn [9]
or TensorFlow [10] are widely used in this context.

Finally, the workflow concludes with the construction of a predictive model, utilizing
the selected features to derive meaningful insights. Predictive modeling encompasses
methodologies and techniques capable of making predictions about future data or events
based on available data. Generally, in order to construct a predictive model, Machine Learn-
ing models such as Support Vector Machine (SVM) [11], K-nearest Neighbors (KNN) [12],
and Linear Discriminant Analysis (LDA) [13] are employed, while cross-validation is used
for evaluating its performance.

Although using several software tools to complete a radiomic analysis may not repre-
sent an absolute problem, having a single interface guiding the entire pipeline could be
advantageous in the clinical context. This limitation was overcome through the develop-
ment of the matRadiomics application [14].

The primary goal of matRadiomics is to integrate the entire radiomics workflow into
a single environment, enabling users to complete the workflow seamlessly without the
need to switch between different software tools. By using this application, users can import
and inspect biomedical images, identify and segment a target, extract desired features,
select features, and build predictive models using Machine Learning algorithms [15]. It
also focuses on result reproducibility by tracking matRadiomics configuration options set
by the user through metadata.

To date, the application has been primarily designed and utilized to perform radiomic
workflows on DICOM images related to tumor lesions [16]. While traditional approaches
often face limitations in capturing the full spectrum of tumor characteristics, leading to
potential misclassifications and impacting therapeutic decisions, radiomics provides a
comprehensive and detailed characterization of the tumor microenvironment, emerging as
a promising solution to address these challenges [17].

In neuroimaging, radiomics is becoming increasingly crucial to highlight specific brain
characteristics through the identification of possible biomarkers [18]. Leading the entire
radiomic analysis within a single software could represent a significant advancement for
both clinicians and researchers.

The aim of this work is to extend the application of the functionalities to include its use
in the context of neuroimaging as well. We included a new module, NIfTIModule, which
allows users to import and process brain MRI images and segmentations in NIfTI format.
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Additionally, the classificationModule was expanded to incorporate new predictive models,
including SVM and Random Forest.

To evaluate the reliability and robustness of the matRadiomics extension, we con-
ducted a case study using openly available data from the Parkinson’s Progression Markers
Initiative (PPMI) dataset. We utilized matRadiomics to extract radiomic features from the
MRI images and segmentations, followed by the construction of predictive models using
both SVM and Random Forest algorithms. The performance of the models was assessed
using accuracy, precision, and recall metrics.

The source code and the documentation are available upon request to the authors.

2. Materials and Methods
2.1. Architecture

MatRadiomics is designed with a modular architecture that seamlessly integrates both
Matlab and Python environments, harnessing their respective strengths for comprehensive
functionality.

MatRadiomics backend was coded in MATLAB 2021b [19], which manages its function-
ality, while the graphical interface was created using the Matlab App Designer extension,
an interactive development environment for designing app layouts and programming
their behavior.

The application integrates a complete Python environment to manage the depen-
dencies required for its functioning. Furthermore, matRadiomics contains ad hoc Python
modules that can be invoked using the py. syntax. This syntax allows Matlab to call either
built-in Python functions or functions implemented in these ad hoc Python modules.

This tool interacts with several core libraries: (i) the Pydicom v2.2.2 [20] library
interfaces with the DICOM standard to read metadata associated with medical images;
(ii) PyRadiomics v3.0.1 [8], an open-source package for extracting radiomic features from
medical images; and (iii) SciKit-learn v1.0.1 [11], an open-source Machine Learning library
for Python designed to work with NumPy and SciPy libraries.

Furthermore, matRadiomics provides a range of supervised and unsupervised algo-
rithms for statistical modeling and Machine Learning, such as SVM [13], Logistic Regres-
sion [21], Bayesian classifier [22], KMeans [23], and DBSCAN [24].

The application is supported on macOS, Windows, and Linux operating systems and
it is distributed in both compiled (standalone MATLAB application) and non-compiled
versions. The compiled version does not require a MATLAB license, but relies only on a
MATLAB runtime. This characteristic makes matRadiomics well suited for application in
clinical settings.

MatRadiomics also integrates ComBat [25], a data harmonization technique used to
remove non-biological sources of variance in multisite studies.

In the first version of matRadiomics, ad hoc functionalities are grouped into three
modules. The dicomModule includes two functions: one is used to parse and store all
DICOM attribute names, tags, and value representations (VR) types in lists, and the other
is used to obtain DICOM attribute values (e.g., the position of the slice, rescale intercept,
and rescale slope) needed for other operations.

The pyradiomicsModule consists of a single function that configures the pyradiomics
extractor with the settings chosen by the user.

The classificationModule consists of as many functions as the number of implemented
classifiers in matRadiomics. It is used to execute model training, cross-validation, and to
obtain the model performance metrics.

In this version of matRadiomics, we introduced the NIfTIModule.
The NIfTI (Neuroimaging Informatics Technology Initiative) is the most widely used

data format for storing functional Magnetic Resonance Imaging (fMRI) because it solves
the problem of spatial localization [26].
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The decision to incorporate a function that allows importing images in NIfTI format
was primarily driven by the necessity to import neuroimaging images that the Freesurfer
software 7.3.2 [27] releases in nii format after the segmentation process.

NIfTIModule is an I/O module that allows the user to start a neuroimaging radiomics
pipeline based on the NIfTI only. NIfTIModule has significantly broadened matRadiomics
capabilities, allowing its utilization in Neuroimaging, whereas previously it was confined
to support only images in DICOM format.

Furthermore, the classificationModule was expanded by incorporating additional func-
tionalities, allowing users to configure the construction of two new predictive models
directly from the application. These newly added models include SVM [12] and Random
Forest [28], providing users with more options for building predictive models tailored to
their specific needs.

2.2. Image Visualization

Starting a study in matRadiomics requires the creation of a new series. This allows us
to set a folder where the results of extraction, selection, and Machine Learning processes
are saved.

A series denotes the type of study that will be performed, so it is recommended to
name the series descriptively.

Besides importing DICOM files, which were already enabled in the previous version
of the matRadiomics application, it is now possible to import files in NIfTI format.

For neuroimaging studies in matRadiomics, we managed the import and reading of
NIfTI images through a function that extracts the metadata and converts the volume into a
matrix, a data structure that can be conveniently managed by the Matlab syntax.

Following the import procedure, volume normalization is also performed to standard-
ize medical images, enhance contrast, and reduce noise.

The normalization process is of paramount importance for the following:

• Standardizing medical images to facilitate the analysis and comparison of images
from different sources or acquired at different times, as they are often acquired using
different devices or protocols, resulting in variations in intensity levels and grayscale;

• Enhancing contrast by redistributing intensities to better highlight important details;
• Preparing for feature extraction by reducing the impact of unwanted variations in

value scales. This can make the results more consistent and facilitate the extraction of
relevant information;

• Reducing noise to improve image quality.

2.3. Segmentation

Segmentation can be achieved through several methods:

1. Manual Segmentation: In this approach, the target region is manually delineated
through user interaction. This method is time-consuming and prone to operator-
dependent variability;

2. Semi-automatic Segmentation: Algorithms such as Region Growing or Thresholding
are employed, utilizing similar criteria to delineate the target. However, these methods
often necessitate manual refinement of the generated masks, introducing potential
operator-dependent errors;

3. Automatic Segmentation: Deep Learning techniques and pre-trained algorithms are
utilized to automatically segment specific regions of interest. This approach minimizes
operator-dependent errors, although it requires substantial amounts of labeled data
for training and significant computational resources for execution.

In matRadiomics, both manual and semi-automatic segmentation algorithms are
employed to delineate the target region of interest.

Although these two types of segmentation have also been enabled on NIfTI format
images in matRadiomics, it is common practice to use automatic segmentations for neu-
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roimaging with Freesurfer software representing a widely recognized gold standard in this
field.

Freesurfer excels in segmenting several brain tissues, including gray matter, white mat-
ter, cerebrospinal fluid, and subcortical structures like the thalamus. Moreover, it reliably
identifies intricate structures such as the corpus callosum and the mesencephalic bridge.

The segmentation outputs generated by Freesurfer are typically in NIfTI format, which
is now compatible with the new matRadiomics extension.

The ability to import neuroimaging data generated by Freesurfer allows the user to
proceed with subsequent steps of radiomics analysis within matRadiomics.

2.4. Extraction, Harmonization and Selection of Radiomics Features

MatRadiomics closely follows the guidelines of the reference manual “Image Biomarker
Standardization Initiative” [29] for the standardization and interpretation of images used
in medical research.

To proceed with feature extraction in the application, PyRadiomics is already set
as the default extractor. When the PyRadiomics extractor option is enabled, it handles
preprocessing tasks such as resampling, resegmentation, and discretization. However, if
matRadiomics is used for neuroimaging, and the imported segmentations are obtained
through the segmentation process performed with Freesurfer, the preprocessing methods
in the application remain disabled because the imported masks are already preprocessed.

Features harmonization, carried out in the case of multi-centric studies, is managed by
the ComBat package [25].

Furthermore, in addition to the existing feature selection methods in matRadiomics,
a new feature selection method has been integrated: feature selection using the Random
Forest model [30].

The feature selection process using the Random Forest model involves creating a set of
decision trees, known as “random decision trees”. Each tree is trained on a random subset
of the training data and utilizes a random subset of the available features.

After training, the model calculates the importance of each feature in the dataset by
evaluating its contribution to improving the accuracy of decision tree predictions. Features
that significantly enhance accuracy are considered more important.

With the features found to be significant during the selection process, it is possible to
proceed with the building of a predictive model.

2.5. Machine Learning

The classificationModule is used to create a predictive model. This module is based on
SciKit-learn [11], an open-source Machine Learning library that provides a wide range of
tools for several Machine Learning tasks, including classification, regression, clustering,
dimensionality reduction, model selection, and data preprocessing.

Within this module, in addition to the Machine Learning methods natively imple-
mented in matRadiomics such as LDA [15], KNN [14], and SVM [13], the Random Forest
method [30] was added.

Upon selecting the classification model, the dataset is partitioned into training and
test sets, and the user can specify the size of both sets directly from the matRadiomics GUI.

These classification models yield accuracy, precision (True-negative Rate), and re-
call (True-positive Rate), which are then displayed in the application. The advantage of
this module lies in its ability to empower clinicians to build different prediction models
effortlessly with an iterative approach while obtaining performance metrics from these
models. With these parameters, users can directly access the confusion matrix and the ROC
curve plots.

3. Case Study

To assess the reliability and robustness of our matRadiomics extension, we conducted
the radiomics workflow within the matRadiomics environment, utilizing openly available
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data from the Parkinson’s Progression Markers Initiative (PPMI) dataset (https://www.
ppmi-info.org/accessdata-specimens/download-data (accessed on 17 February 2024)), as
shown in Figure 1a.
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The PPMI is a longitudinal, multi-center study aimed to identify biomarkers for
Parkinson’s disease progression. It involves the collection of several data types, including
clinical, imaging, genetic, and biochemical data, from both Parkinson’s patients and healthy
controls over an extended period.

Specifically, we included 109 patients with Parkinson’s disease at baseline along with
118 healthy controls, matched for age and sex, all of whom underwent MRI imaging.

The MRI image segmentation was conducted using Freesurfer 7.3.2 and its standard
recon-all command pipeline, as illustrated in Figure 1b. Within the Freesurfer output folder,
the mri directory contains the aseg file, which includes masks of brain areas reconstructed
by Freesurfer.

We started our case study by initially creating a new series. We first loaded NIfTI
images into matRadiomics by clicking the following buttons: Files, Import, and NIfTI images,
as illustrated in Figure 2.
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The segmentation import function generates a tree structure, where each leaf is linked
to the labels of the imported segmentation. This tree is invoked in the callback function
responsible for handling the use of the check box on the right side of the interface, as shown
in Figure 4.
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Figure 4. Checkbox containing the labels.

Within the checkbox, users have the option to select the aseg box, which overlays all
segmentation labels on the image, as demonstrated in Figure 5. We examined the overlays
of our masks on the MRI images to validate the accuracy of the Freesurfer segmentation.
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Alternatively, users can choose to check the boxes corresponding only to the masks of
interest, as depicted in Figure 6.
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Figure 6. Selection of the mask of interest (right thalamus).

The ability to selectively choose masks of interest is crucial in neuroimaging studies
because researchers often need to focus on specific brain regions identified as target areas.
Once the desired labels have been selected, the extraction of features can proceed, as shown
in Figure 1c.

Feature extraction using PyRadiomics is supported in matRadiomics through the
Python module pyradiomicsModule, which is managed by a flag within the same module,
wherein different extraction functions are implemented. This flag enables the user to switch
between extraction functions tailored for different image formats.

The feature extraction process involves the following steps:

1. Invoking the getFeatures function from MATLAB and supplying the necessary data
for extraction;

2. Configuring the extractor parameters;
3. Initializing the extractor;
4. Performing feature extraction;
5. Sending the data back to MATLAB;
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6. Converting the data into standard MATLAB variables;
7. Visualizing and saving the extracted features.

To execute these steps, users can simply click the Extract Features button, which is
linked to the callback function ExtractFeaturesButtonPushed. The extracted features will then
be displayed in the Feature Extraction tab, as illustrated in Figure 7.
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The extracted features are saved in a CSV file in the Extracted Features folder, which
is located within the previously created series folder. Additionally, within this folder, a file
named current_app_version is saved. This file contains information about the application
version, the used extractor, and the extraction options for that specific series.

We extracted 290 features using PyRadiomics default settings, and through the matRa-
diomics user interface, we labeled each healthy control as 0 and each PD patient as 1.

Due to the large number of available features, it was necessary to proceed with their
selection as shown in Figure 1d, as redundant features could increase the complexity of the
learning model and potentially lead to overfitting.

Depending on the type of algorithm used for feature selection, the outcome can be a
subset of features or a score assigned to each feature. For feature selection, the Random
Forest method from the Feature Selection tab was chosen.

The selected features were used to train two classification models: SVM and Random
Forest. The dataset was split into a training set and test sets, with a specified test size of
20%, directly from the matRadiomics GUI.

To improve model performance and prevent over and under-fitting, hyperparameter
tuning using randomized search was performed.

Randomized search was chosen as the tuning technique because it randomly explores
a subset of the hyperparameter space, without examining all possible combinations, thus
reducing the computational cost. A 5-fold stratified cross-validation and 10 repetitions to
evaluate the model’s performance were set up.

The performance metrics obtained from the two trained models after hyperparameter
tuning are reported in Table 1.

Table 1. Performance metrics of SVM and Random Forest models.

RF 1 SVM 2

Accuracy 0.85 0.81
Precision 0.84 0.86

Recall 0.92 0.83
1 Random Forest, 2 Support Vector Machine.
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These performance metrics provide insight into how well the classification models are
able to distinguish between healthy controls and Parkinson’s disease patients.

In this context, accuracy represents the proportion of correctly classified instances out
of the total instances, while precision measures the proportion of true positive instances
among all instances classified as positive. Recall, also known as sensitivity, measures the
proportion of true positive instances that were correctly identified by the model out of all
actual positive instances.

These results suggest that both SVM and Random Forest models perform reasonably
well in discriminating between controls and Parkinson’s disease patients, with Random
Forest exhibiting slightly higher accuracy compared to SVM.

4. Discussion

While several software tools exist for conducting radiomic analyses [31], they often
come with inherent limitations that can hinder their utility in clinical practice. One signifi-
cant drawback is the fragmented nature of traditional radiomics pipelines, which typically
involve the use of multiple software platforms for image importation, segmentation, feature
extraction, and model construction. This disjointed workflow not only complicates the
process, but also increases the likelihood of errors and inconsistencies due to data transfer
between different software environments.

Moreover, many existing toolboxes lack user-friendly interfaces and comprehensive
functionality, making them inaccessible to clinicians and researchers without extensive
programming expertise. This complexity can deter adoption and limit the widespread
application of radiomics in clinical settings, where efficient and intuitive tools are essential
for seamless integration into routine practice.

Furthermore, the compatibility of existing toolboxes with different image formats and
segmentation algorithms is often limited, restricting their applicability to specific imaging
modalities or segmentation techniques. This constraint poses challenges for researchers
working with diverse datasets and necessitates manual intervention to adapt existing
workflows to new data types or processing methods.

The integration of matRadiomics into neuroimaging studies represents a significant
advancement in the field of medical image analysis. This extension enables researchers and
clinicians to seamlessly conduct radiomic analyses on neuroimaging data, especially using
brain segmentations made with the Freesurfer software.

One of the key strengths of matRadiomics lies in its ability to handle different image
formats, including DICOM and NIfTI, thereby facilitating the analysis of several types of
medical images commonly used in neuroimaging research. By incorporating features such
as image import, segmentation, feature extraction, and Machine Learning within a single
interface, matRadiomics streamlines the radiomics workflow, making it more efficient and
user-friendly.

In addition, the way matRadiomics seamlessly interacts with the Python environ-
ment, which leverages Matlab’s official support, contributes to the ease of maintenance
and extension of matRadiomics with new functionalities. This design choice streamlines
the development process and facilitates the incorporation of updates or enhancements,
ensuring the continued evolution of matRadiomics to meet the evolving needs of users in
medical image analysis.

The case study conducted using data from the PPMI dataset demonstrated the practical
utility of matRadiomics in neuroimaging research. By leveraging Freesurfer segmentation
and PyRadiomics feature extraction, the application enabled the extraction of a comprehen-
sive set of radiomic features from MRI images of both healthy controls and Parkinson’s
disease patients. The subsequent application of Machine Learning algorithms, such as
SVM and Random Forest, facilitated the construction of predictive models to distinguish
between the two groups with reasonable accuracy.

The performance metrics obtained from the trained models indicate the potential
of radiomics in aiding the diagnosis and characterization of neurological disorders like
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Parkinson’s disease. The high accuracy, precision, and recall values suggest that the
extracted radiomic features capture meaningful information relevant to disease status,
highlighting the utility of matRadiomics in clinical decision making.

Furthermore, the seamless integration of Freesurfer segmentation into the matRa-
diomics workflow enhances its applicability in neuroimaging research. By allowing users
to import and utilize Freesurfer-generated segmentations directly within the application,
matRadiomics expands its functionality to encompass the analysis of complex brain struc-
tures with minimal manual intervention.

5. Conclusions

In conclusion, the matRadiomics extension emerges as a valuable tool for researchers
and clinicians involved in neuroimaging studies. Its comprehensive feature set, combined
with its user-friendly interface and compatibility with popular neuroimaging software
like Freesurfer, establishes matRadiomics as a versatile platform for conducting radiomic
analyses in the context of neurological disorders.

In recognizing the promising capabilities of matRadiomics in neuroimaging research,
it is essential to recognize the inherent limitations and potential biases that may be of
influence, thus strengthening the generalizability and robustness of radiomics analyses
conducted with matRadiomics in the interpretation of results. Since our analysis is mainly
based on a single case study oriented towards evaluating the functioning of matRadiomics,
there is a risk of selection errors as the characteristics of the subject included may not
fully represent the broader population of interest. Furthermore, the impact of imaging
parameters on feature extraction cannot be underestimated, as variations in acquisition
protocols and equipment settings can introduce variability in radiomics features. In future
investigations, we will seek to incorporate different cohorts and standardize imaging
protocols to mitigate these potential sources of bias.

To further enrich the potential of matRadiomics in neuroimaging research, the next
advances could address several aspects.

The process of handling large amounts of neuroimaging data could be improved by
introducing batch processing capabilities and optimizing computational resources.

Moreover, incorporating cloud computing solutions could provide scalability and flexibil-
ity, enabling researchers to analyze data remotely and collaborate across different institutions.

We will proceed with the addition of new segmentation algorithms within matRa-
diomics by inserting cutting-edge Deep Learning methods.

Furthermore, large validation studies could be performed to assess the reproducibility
and clinical relevance of radiomics features extracted via matRadiomics in different cohorts
and imaging protocols.

Finally, to ensure efficient processing of T1-weighted volumes for radiomic analysis, a
future development involves executing a full recon-all FreeSurfer operation on each volume
within an isolated Docker container. This approach is expected to optimize runtime, with
typical execution times ranging from 3 to 4 h per volume, depending on hardware specifi-
cations. This process will be initiated directly from MATLAB, detached from the original
system call, enabling seamless interaction with matRadiomics. Utilization of the official
FreeSurfer Docker image (https://hub.docker.com/r/freesurfer/freesurfer/ (accessed on
18 February 2024) will also facilitate compatibility with Windows operating systems.

The approach that we aim to utilize for integrating Freesurfer into matRadiomics
represents a replicable and extensible model for interacting with other segmentation tools
that employ advanced technologies, such as Deep Learning algorithms or advanced seg-
mentation algorithms, even outside the context of neuroimaging. This flexibility paves the
way for potential software development, allowing matRadiomics to be easily adapted for
the analysis of a wide range of medical imaging data.

By focusing on these aspects, matRadiomics holds promise in advancing as a valuable
tool for enhancing our comprehension of neurological disorders and improving patient
care within clinical environments.

https://hub.docker.com/r/freesurfer/freesurfer/
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