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Abstract: Recent advancements in the automotive field have significantly increased the level of
complexity and connectivity of modern vehicles. In this context, the topic of cybersecurity becomes
extremely relevant, as a successful attack can have an impact in terms of safety on the car navigation,
potentially leading to harmful behavior. Risk assessment is typically performed using discrete input
and output scales, which can often lead to an identical output in terms of risk evaluation despite
the inputs presenting non-negligible differences. This work presents a novel fuzzy-logic-based
methodology to assess cybersecurity risks which takes attack feasibility and safety impact as input
factors. This technique allows us explicitly model the uncertainty and ambiguousness of input data,
which is typical of the risk assessment process, providing an output on a more detailed scale. The
fuzzy inference engine is based on a set of control rules expressed in natural language, which is
crucial to maintaining the interpretability and traceability of the risk calculation. The proposed
framework was applied to a case study extracted from ISO/SAE 21434. The obtained results are in
line with the traditional methodology, with the added benefit of also providing the scatter around the
calculated value, indicating the risk trend. The proposed method is general and can be applied in the
industry independently from the specific case study.

Keywords: risk assessment; automotive; fuzzy logic

1. Introduction

Recent technological advancements in the automotive field have significantly in-
creased the level of complexity and connectivity of modern vehicles [1]. This opens the
door to new opportunities in terms of functionality, environmental impact, comfort, and
inclusion of disadvantaged people, but, at the same time, it increases the amount of pos-
sible cyber-attacks from which the system has to be protected [2–4]. In this context, the
topic of cybersecurity becomes extremely relevant not only for privacy concerns, but also
because it can have a direct impact on the safety of the car [5,6]. Cyber-attacks can intro-
duce unpredictable perturbations of vehicle functionality; thus, vehicle safety must be
guaranteed in the presence of cyber-attacks, and risk assessment becomes a pivotal activity
in cybersecurity management.

Standards play a very important role in the automotive domain to define how threats
should be identified and dealt with through a well-defined risk assessment pipeline. The
recent release of the ISO/SAE 21434 [7] is a step in the right direction for addressing
cybersecurity concerns. The scope of the ISO/SAE 21434 is reported below as it appears in
the standard. The ISO/SAE 21434 specifies engineering requirements for cybersecurity risk
management regarding concept, product development, validation, production, operation,
maintenance, and decommissioning of electrical and electronic (E/E) systems in road
vehicles, including their components and interfaces. The standard provides a framework
that includes requirements for the cybersecurity process and a common language for
communicating and managing cybersecurity risks.
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The risk assessment addressed in the ISO/SAE 21434 is based on consolidated method-
ologies, characterized by the use of discrete input and output scales, which can often lead to
an identical output in terms of risk evaluation despite the inputs presenting non-negligible
differences [8].

This work presents a novel methodology for assessing risks due to cyber-attacks based
on fuzzy logic applicable in the automotive field. These risks are determined according to
the risk assessment pipeline in the standard ISO/SAE 21434 and directly address the safety
impact of cyber-attacks. This technique allows us to explicitly model the uncertainty and
ambiguousness of input data, which is typical of the risk assessment process, providing
an output on a more detailed scale. At the same time, the use of fuzzy logic retains the
main structure of Threat Analysis and Risk Assessment (TARA) fostered by the domain
standards and allows analysts to work with linguistic variables.

The fuzzy inference engine is based on a set of control rules expressed in natural
language, which is crucial to maintaining the interpretability and traceability of the risk
calculation. The proposed fuzzy-logic-based risk assessment model is implemented through
MATLAB and therefore supported by a well-known tool set extensively used in the industry.
The tool set allows us to automatically perform risk calculation, as well as to provide
graphical representation. The presented approach was applied to a case study extracted
from the ISO/SAE 21434.

The obtained results are in line with the traditional methodology, with the added
benefit of being on a continuous scale and provided in a way that also measures the scatter
and dispersion around the calculated value, indicating the risk trend. In light of such results
and considering the possibility to be easily supported by automatic tools for the calculation
and graphical representation of risk values, we believe that the proposed method can
be used in real industrial projects. Moreover, the methodology is general enough to be
applicable in the industrial context, independently of the specific case study presented in
this paper.

The paper is organized as follows: Section 2 provides a general description of the
basic concepts applied in the rest of the paper. Section 3 provides a survey of existing
research papers related to the application of fuzzy logic in the context of risk management.
Section 4 contains a detailed description of the proposed methodology. In Section 5, a
report of its application to a case study derived from the ISO/SAE 21434 standard is
reported. In Section 6, the outcomes of the application of the methodology are discussed
and conclusions are provided.

2. Background

This section introduces some basic background concepts regarding risk assessment
(especially focusing on the automotive domain) and fuzzy logic.

2.1. Risk Assessment in Automotive

Safety critical systems development must comply with certification standards. The IEC
61508: “Functional Safety of Electrical/Electronic/Programmable Electronic safety-related
Systems (E/E/PE, or E/E/PES)” [9] is the reference international standard that regulates
the development and deployment of programmable systems in the industry. The standard
covers safety, specifically from the point of view of hazards created when failures of the
safety functions performed by E/E/PE-related systems occur. Over time, several other
domain-specific standards have been released using the IEC 61508 as a foundation, such as
the ISO 26262 [10] in the case of the automotive domain.

These documents require that hazard and risk assessment be carried out: “The EUC
(equipment under control) risk shall be evaluated, or estimated, for each determined
hazardous event”. This kind of risk analysis therefore consists of the identification of
hazardous events and determination of the necessary risk reduction for these events. This
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process has been extensively applied in safety critical systems, where the risk is typically
calculated as follows:

Risk = Hazard Frequency × Evaluation o f Consequences (1)

Hazard frequency can be measured in several ways, depending on the domain. Stan-
dards such as IEC 61508 [9] and IEC 61511 [11], for example, represent it as the estimated
number of hazardous events over a year (for continuously operating components) or as the
product of failure probability and demand rate (for on-demand operating components).
The ISO 26262 [10] suggests that a hazard can be related to the duration of a given oper-
ational situation, so such a duration should also be taken into account when calculating
the hazard frequency. The evaluation of consequences is usually represented on a discrete
scale in terms of the severity of injuries sustained by involved people, and it is driven by
well-established methods such as those in [12–14]. The risk is considered tolerable when it
is lower than reference thresholds defined in context based on the current values of society.
Any risk that is not tolerable should be treated accordingly and reduced to tolerable levels.

According to the ISO 26262 standard, the risk is calculated considering the additional
factor of controllability (which represents the ability to avoid a specified harm or damage
through the timely reactions of the persons involved). The risk (R), in the context of
ISO 26262, can be described as a function (F), with the frequency of occurrence (f ) of a
hazardous event; the ability to avoid specific harm or damage through timely reactions of
the persons involved, which is the controllability (C); and the potential severity (S) of the
resulting harm or damage:

R = F ( f , C, S) (2)

The ISO 26262 standard considers vehicle safety as the absence of unreasonable
risks that arise from malfunctions of the E/E system. However, an acceptable level of
safety for road vehicles requires the avoidance of unreasonable risk not only caused by
malfunctions, but also associated with hazards related to the intended functionality and its
implementation, especially those not due to failures (e.g., due to performance limitations).
To address the safety of the intended functionality (SOTIF), the automotive-specific standard
ISO 21448 was released [15].

A vehicle relying on sensing the external or internal environment that is free from the
faults addressed in the ISO 26262 series can have potentially hazardous behavior caused by
the intended functionality or performance limitation. Such hazardous behavior can be due
to insufficient robustness of the function with respect to sensor input variations or diverse
environmental conditions, or to an inability of the function to correctly comprehend the
situation and operate safely. From a methodological perspective, the risk assessment in
ISO 21448 is aligned with ISO 26262.

The ISO 21448, while it does not specifically address cybersecurity, recognizes that a
successful attack exploiting vehicle cybersecurity vulnerabilities can also lead to potentially
hazardous behavior that needs to be addressed from a functional safety point of view.

The ISO/SAE 21434 Road Vehicles: Cybersecurity Engineering [7] is the emerging
standard that was released in response to these issues, with the main objective of making
automotive companies (both OEMs and Suppliers) aware of the importance of cybersecurity
in the product development process.

The idea is that cybersecurity should be analyzed during the whole product life cycle,
starting from the first stages, towards the achievement of security by design. Moreover,
decisions concerning countermeasures against cyber threats should be taken based on a
Threat Analysis and Risk Assessment (TARA) process, shown in Figure 1.
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Figure 1. Threat Analysis and Risk Assessment—TARA [ISO/SAE 21434].

In particular, the standard suggests the execution of precise activities for risk assess-
ment. Below, they are reported as they appear in the standard:

• 15.3 Asset identification: Identify the assets, i.e., objects that have value and whose
security properties must be protected along with their damage scenarios, i.e., adverse
consequences involving a vehicle or vehicle function and affecting a road user;

• 15.4 Threat scenarios: Identify threat scenarios, defined as potential causes of compro-
mise of cybersecurity properties of one or more assets to realize a damage scenario;

• 15.5 Impact rating: Determine the impact rating of damage scenarios, that is, the magni-
tude of damage or physical harm that can be caused by the scenario itself. According
to the standard, the impact rating should be evaluated on a discrete scale composed of
four classes (negligible, moderate, major, and severe) and can be categorized as safety,
privacy, operational, or financial, depending on the type of potential damage;

• 15.6 Attack path analysis: Identify the attack paths related to threat scenarios. An attack
path is defined as a specific set of deliberate actions that the attacker can perform to
realize the threat scenario itself;

• 15.7 Attack feasibility rating: For each attack path, determine the ease with which it can
be exploited. The standard recommends several techniques to perform this step and
suggests mapping the result on a discrete scale composed of four classes (very low,
low, medium, and high);

• 15.8 Risk value determination: Determine the risk values of threat scenarios based on
the impact and feasibility rating of each. This step is performed using a risk matrix
similar to the one shown in Table 1 (where 1 is the lowest and 5 is the highest risk);

• 15.9 Risk treatment decision: Select appropriate risk treatment options for threat scenar-
ios. The following risk treatment options are determined: avoiding the risk (removing
risk sources), reducing the risk, sharing the risk (through contracts or transferring risk
by buying insurance), and retaining the risk.
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Table 1. Exemplar risk matrix from ISO/SAE 21434, Annex H.

Feasibility Rating

Very Low Low Medium High

Impact Rating

Severe 2 3 4 5

Major 1 2 3 4

Moderate 1 2 2 3

Negligible 1 1 1 1

The methodology described in Section 4 directly addresses the impact rating, feasibility
rating, and risk value determination phases of the TARA.

2.2. Fuzzy Logic

Fuzzy logic is a type of logic that is based on the theory of fuzzy sets, originally
developed by Zadeh [16] as a generalization of the classical set theory. Zadeh observed
how the sets of objects encountered in the real world often do not have precisely defined
membership criteria. In response to this problem, he developed the notion of fuzzy sets, i.e.,
sets for which the membership degree is not binary (either yes or no), but continuous. Ac-
cording to this reasoning, variables can therefore have degrees of truthfulness or falsehood
represented by a range of values between 1 (true) and 0 (false). This, in turn, makes it easier
to represent uncertainty and opens the possibility of modeling qualitative and ambiguous
information. Later on, Mamdani [17] used the fuzzy set theory to propose an experiment
aimed at controlling a steam engine by developing a set of linguistic control rules based on
the workers’ experience. The rules were expressed in natural language using an IF-THEN
type structure, and the system proved to be very effective at controlling the engine. This
type of fuzzy inference system (FIS) became very popular because of its intuitiveness (given
by the easily understandable control rules), and many works have been published since
then exploring the application of a fuzzy logic controller in several domains, e.g., [18–20].

To better explain the core concepts behind a Mamdani FIS, let us consider a simple
example. Suppose we want to control the speed of a cooling system fan based on ambient
temperature and humidity. First, the fuzzy sets must be defined for both input (temperature
and humidity) and output (fan speed). In a real-world scenario, this step would be carried
out by leveraging historical and/or expert knowledge relative to the FIS applicative domain.
Here, for the sake of simplicity, let {Low, Average, High} be the set of fuzzy sets and
X = [0–40] be the interval of possible values for both inputs and the output.

Each set is associated with a membership function, which determines the degree of
truth that an element belongs to the set. Membership functions are typically linear and
shaped like trapezoids or triangles; however, they can also assume more complex shapes
such as gaussian or sigmoid. Again, they are usually defined by exploiting expert knowl-
edge or historical data, but in this case, we arbitrarily chose trapezoidal (for inputs) and
triangular (for output) shapes in order to streamline the example. Note that membership
functions must be consistent on the comparative basis, meaning that only one of them may
be strictly increasing (or decreasing) for a certain range of the input scale. Figure 2 shows
the sets (and membership functions) used for the fan control example. From Figure 2a,
we can see that, for example, with a temperature of 25, it is 25% true that the temperature
is High (formally indicated as µ

High
Temperature(25) = 0.25) and 75% true that the temperature

is Average (formally indicated as µ
Average
Temperature(25) = 0.75). It is false (or 0% true) that the

temperature is Low. Similarly, Figure 2b shows that a humidity of 14 translates into a
degree of truth of 50% for both the Low and Average sets. This process of mapping the
inputs on fuzzy sets is known as fuzzification.
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Figure 2. Example of membership functions for a fan speed control task. The membership functions
for the Temperature and Humidity input factors are shown in (a) and (b), respectively. (c) shows the
membership functions for the output, Fan Speed.

Once the membership functions are defined for both input and output fuzzy sets,
the rule base must be created. The rule base contains the set of IF-THEN type rules that
dictate the relationship between input and output. Every rule is composed of an antecedent,
expressed in terms of input fuzzy sets, and a consequent, which represents the conclusion
in terms of output fuzzy sets. Continuing with the fan control example, suppose we have
the following rules:

1. IF Temperature is Average AND Humidity is Low THEN Fan Speed is Average
2. IF Temperature is High OR Humidity is High THEN Fan Speed is High
3. IF Temperature is Low AND Humidity is Low THEN Fan Speed is Low

These rules express fuzzy relations between input and output fuzzy sets by means
of logical connectors (AND, OR, THEN). The way these are translated into mathematical
operations depends on the type of compositional rule of inference that is adopted [21]. The
max–min composition is by far the most common, and is therefore the one that will be used
in the rest of this paper.
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According to the max–min compositional rule, the min and max operators correspond
to fuzzy AND and OR, respectively. Given that, it is possible to calculate the firing strength
of each rule (i.e., the degree of truth of its consequent) as follows:

1. FiringStrengthRule1 = min [0.75, 0.5] = 0.5
2. FiringStrengthRule2 = max [0.25, 0] = 0.25
3. FiringStrengthRule3 = min [0, 0.5] = 0

For example, considering rule 1, the antecedent is composed of Average Temperature
and Low Humidity connected by an AND operator. Given the inputs Temperature = 25
and Humidity = 14, according to the fuzzification process shown above, it results that
µ

Average
Temperature(25) = 0.75 and µLow

Humidity(14) = 0.5. Since the AND operator corresponds to min
according to our compositional rule, the resulting value for rule 1 is 0.5.

The next step is the aggregation, which consists of calculating the degree of truth
associated with each of the output fuzzy sets (Low, Average, High). This means that, in the
case of many inference rules with the same output consequent, e.g., IF A THEN C and IF
B THEN C, the truth value of C is computed as the maximum firing strength among the
rules having C as a consequent. This is only true under the max-mix inference rule, and the
rationale behind this is that the rules IF A THEN C and IF B THEN C are equivalent to IF
(A OR B) THEN C. The output of the aggregation is known as fuzzy conclusion.

In our example, the truth value of the Average output set is 0.5, the truth value of the
High output set is 0.25, and the truth value of the Low output set is 0, since we have only
one rule with each of those sets as consequent.

The membership function for each output set is truncated in correspondence with its
calculated truth value, as shown in Figure 2c, and the resulting area (colored in green in the
figure) is a graphical representation of the fuzzy conclusion.

The last step involves the transformation of the fuzzy conclusion into a crisp conclu-
sion (i.e., represented by a single, precise value) by estimating it from the fuzzy conclusion
itself. This is known as defuzzification and can be achieved by applying several different
methods [22]. One of the most common is the Centroid method, which consists of calcu-
lating the center of area (COA) of the fuzzy conclusion. The x axis coordinate of the COA
represents the crisp conclusion. According to this, referring again to Figure 2c, the crisp
conclusion for our example results in a final value of 23.4, which represents the estimated
fan speed given the temperature and humidity input values.

3. Related Work

Risk assessment and management is one of the fields where fuzzy logic was majorly
explored [23] due to the fact that decisions in such a domain are usually based on inputs
obtained through experts’ predictions, estimates, or evaluations, and are, therefore, intrinsi-
cally imprecise and not easily repeatable. Ramirez et al. [24], for example, used fuzzy logic
to assess the risk related to silver nanoparticles in aquatic ecosystems. They used a two-
layer FIS in which a toxicity parameter was first determined using size, shape, and coating
of nanoparticles and then combined with concentration to extrapolate a final risk value.
Petrovic et al. [25] presented a risk assessment model for mining equipment maintenance
using fuzzy logic. The idea was to establish a model that would overcome the shortcomings
of the conventional risk priority number (RPN) method while still maintaining the same
structure of calculation involving severity, frequency, and detectability. The authors applied
the model to a set of belt conveyor elements which works in severe conditions in a coal
mine, showing improvements over RPN in terms of both the precision and richness of
information of the assessment. A comparable approach was followed by Gallab et al. [26],
who applied their methodology to liquified petrol gas supplier equipment, again demon-
strating several benefits over traditional RPN. Similarly, several works explored the use of
fuzzy logic in the context of performing FMEA (Failure Mode and Effect Analysis) [27,28],
especially for safety critical applications such as naval [29,30] and nuclear [31]. Grassi
et al. [32] instead proposed an approach to evaluate the risk associated with activities
carried out in workplaces. They introduced new factors to consider the effects of human
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behavior and the environment on the risk level, other than the classical injury magnitude
and occurrence probability of an accident. Fuzzy logic was used to allow the analyst to
specify weights for different risk factors and to assign judgments by means of linguistic
terms, which are better interpreted and managed by humans. In the field of financial risk
management, Cheng et al. [33] constructed an early-warning model for financial distress
using fuzzy regression as an alternative to well-known methods, namely, discriminant,
logit, and artificial neural network analysis. Yu et al. [34] instead developed a multicriteria
decision analysis tool for credit risk evaluation using fuzzy set theory.

Recent works have also applied fuzzy logic to cybersecurity risk assessment. Alali
et al. [35] proposed a fuzzy inference system to evaluate risks associated with cyber threats
on the internet based on four main factors: vulnerability, threat, likelihood, and impact.
They structure the system in a hierarchical way, where factors such as intent and targeting
are first used to determine the attacker’s capabilities, which are then evaluated alongside
the vulnerabilities to determine the overall likelihood of an attack and, ultimately, the
risk associated with it. They also developed a decision support system [36] with the aim
of aiding in the selection of a risk mitigation strategy for cyber-crimes in Saudi Arabia.
Saulaiman et al. [37] presented a fuzzy-logic-based implementation of a CVSS (Common
Vulnerability Scoring System) calculator. They showed similar results with respect to the
traditional CVSS, with the added benefit of explainability, and highlighted the possibility
of enhancing the system with domain-specific metrics in the future. Finally, Kerimkhulle
et al. [38] proposed a model to estimate the risk associated with information security in
the Industrial Internet of Things (IIoT) environment using three fuzzy inference systems.
One system estimates the probability of threat realization, another estimates the probable
damage, and a final one estimates the information security risk for the IIoT system.

4. Proposed Methodology

To assess cybersecurity risks taking into account their impacts in terms of safety, we
propose a risk assessment framework based on fuzzy logic. Conceptually, the idea is similar
to the approach described in the ISO/SAE 21434, as the risk is calculated as the combination
of two factors: Impact Rating, i.e., how impactful the consequences of an attack can be in
terms of safety, and Feasibility Rating, i.e., how difficult it is for a malicious individual to
perform the attack. With reference to Figure 1, using TARA, our approach aims at refining
the phases of impact rating evaluation (15.5), feasibility rating evaluation (15.7), and risk
determination (15.8). The following paragraphs will first discuss such factors and then
present the complete framework.

4.1. Input Factors

Impact rating—The impact rating is determined based on the damage scenarios that
can stem from a successful attack. Although the impact can be evaluated in terms of several
factors, such as safety, operational, financial, and privacy, we specifically address safety.
The ISO/SAE 21434 standard measures the safety impact rating using the severity of the
consequences of a damage scenario in terms of injuries and harm to the people involved as
the only metric. However, the standard states that factors like controllability and exposure
(used in the ISO 26262) can also be considered if proper rationale is provided. Given
the focus of this work on assessing the cybersecurity risks related to safety, we consider
controllability to be an important factor to include in the risk calculation. Controllability
refers to the probability that someone is able to gain sufficient control of the hazardous event,
such that they are able to avoid specific harm. Different damage scenarios can have similar
severity but significantly different levels of controllability, which would alter the actual
probability of injuries occurring. In such cases, the risk associated with hardly controllable
or uncontrollable scenarios should be higher, despite the severity being the same.

In line with the ISO 26262, both severity and controllability are evaluated on a discrete
scale from 0 to 3, as shown in Tables 2 and 3, respectively. To assign a rating to the severity
factor, an existing injuries scale (e.g., Abbreviated Injury Scale (AIS), Injury Severity Score
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(ISS), New Injury Severity Score (NISS)) can be used as a reference [12–14]. Based on the
considerations reported above, we calculate the impact rating as the mean between the
values of severity and controllability, as shown by the following formula:

Impact Rating =
Severity + Controllability

2
(3)

Table 2. Severity levels.

0 1 2 3

No injuries Light and moderate
injuries

Severe and life-threatening
injuries Fatal injuries

Table 3. Controllability levels.

0 1 2 3

Controllable in
general Simply controllable Normally

controllable
Difficult to control or

uncontrollable

Feasibility rating—In this work, the feasibility rating is determined by the exploitability
metric provided by the CVSS framework, which is one of the ways suggested by the
ISO/SAE 21434. The exploitability metric is based on four factors: attack vector, attack
complexity, privileges required, and user interaction. Table 4 provides a description of each
factor, along with the list of possible values it can assume according to the CVSS framework.
Each numerical value is associated with a label (or metric value) [39]. Once a value has been
assigned to every factor, the feasibility rating is calculated using the following equation:

Feasibility Rating = Exploitability Metric = 8.22 × V × C × P × U (4)

The result is therefore obtained on a continuous scale that ranges from 0.12 to 3.89.

Table 4. Factors used to determine the exploitability metric.

Factor Description
Possible Values

Numerical Metric

Attack Vector (V) Reflects the context in which the vulnerability is exploitable.

0.2 Physical

0.55 Local

0.62 Adjacent

0.85 Network

Attack Complexity (C) Describes the conditions beyond the attacker’s control that must exist
to exploit the vulnerability.

0.44 High

0.77 Low

Privileges Required (P) Describes the level of privileges an attacker must possess to exploit the
vulnerability.

0.27 High

0.62 Low

0.85 None

User Interaction (U) Captures the requirement for another user, other than the
attacker, to participate in the successful exploitation of the vulnerability.

0.62 Required

0.85 None

4.2. Definition of Fuzzy Logic-Based Risk Assessment Framework

The first step towards the construction of our fuzzy-logic-based risk assessment
framework is the definition of the input and output fuzzy sets. As previously mentioned in
Section 2.2, fuzzy sets populate the scale of each factor. Each fuzzy set should be associated
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with a linguistic label and a corresponding membership function which identifies the range
of input values corresponding to such a label. In our case, we defined the following fuzzy
sets for the input factors:

FS_Impact rating: {Negligible, Moderate, Major, Severe}

FS_Feasibility rating: {Very Low, Low, Medium and High}

and the following fuzzy set for risk, which is the output, according to the ISO/SAE 21434:

FS_Risk rating: {Very Low, Low, Medium, High, Very High}

The shape of membership functions is particularly important since it has a significant
effect on the inference system calculation process. In this work, we relied on solutions from
available standards and literature.

Feasibility membership functions—The membership functions for feasibility rating were
also defined starting from the ISO/SAE 21434. In Annex G, that standard suggests subdi-
viding the input interval into four (one for each label) disjoint subintervals, as shown in
Table 5.

Table 5. Feasibility rating: example mapping of labels to input intervals. Taken from ISO/SAE 21434.

Label Input Interval

High 2.96–3.89
Medium 2.00–2.95

Low 1.06–1.99
Very Low 0.12–1.05

This, however, does not fully capture the uncertainty derived from the fact that input
values are intrinsically imprecise, as they are the result of a qualitative assessment made by
humans. The idea is to create an overlap between each adjacent subinterval to smoothen
the passage from one label (or set) to the other and represent such uncertainty. In each
overlap range, the membership linearly decreases for one set while linearly increasing for
the next one. This range was set to 0.5, which resulted in four trapezoidal membership
functions, as shown in Figure 3a.

Considering, for example, the membership function for the Low set, it can be formally
described as follows:

µLow
Feasibility=


0

2x − 1.6
−2x + 4.48

1

x ≤ 0.8, x ≥ 2.24
0.8 < x < 1.3

1.74 < x < 2.24
1.3 ≤ x ≤ 1.74

(5)

Impact membership functions—For the impact rating, instead, the membership func-
tions are more difficult to define, since in the literature and the standards, such a metric is
usually only expressed in linguistic terms. We assumed that the central labels (Moderate
and Major fuzzy sets) should be evenly distributed across the input range, whereas the
other two (Negligible and Severe) are expected to be more rare since they represent edge
cases and are therefore mapped on smaller intervals. In terms of function shape, we used
the triangular one, as it has been demonstrated to be the most universally effective [40].
The resulting functions are shown in Figure 3b.

Risk membership functions—The risk membership functions (shown in Figure 3c)
should also have a triangular shape, but the ones corresponding to Very Low and Very
High were given a trapezoidal shape. This was intended to give the final output after
defuzzification (see final paragraph of this section) in the interval [1–5], which allows for
a direct comparison with the risks calculated according to the traditional methodology
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provided by the ISO/SAE 21434. More precisely, the whole output is mapped on the
interval [0.45–5.55].
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Rule base. Next, the rule base must be defined. In this case, it was defined by following
the guidance provided by the risk matrix in Annex H of the ISO/SAE 21434. With two
input factors, each with four possible values (labels), we obtained a total of 16 rules,
summarized in Table 6, which is a variation of the table found in the standard (Table 1),
where the risk numbers have been replaced with corresponding fuzzy sets (1—Very Low,
2—Low, 3—Medium, 4—High, 5—Very High). Each element of Table 6 represents a rule.
The element of row i, column j becomes the rule with the antecedent (Impact is i) AND
(Feasibility is j), while the consequent is the value in position (i, j). For example, for the row
Moderate and the column High, the rule is the following:

IF Impact is Moderate AND Feasibility is High THEN Risk is Medium



Safety 2024, 10, 41 12 of 21

The rules corresponding to the last row of Table 6 can be combined together and
expressed as a single rule:

IF Impact is Negligible THEN Risk is Very Low

Note that every rule uses an AND connector in the antecedent (which translates to the
min operator under the max–min composition), since both the impact and the feasibility
rating must be taken into account at all times to determine the resulting risk.

Defuzzification. Finally, the defuzzification technique needs to be selected to obtain
a crisp value from the fuzzy conclusion set and quantitatively express the level of risk
associated with the analyzed attack. As previously stated, there are several different ways
to perform defuzzification [22]. We choose to apply the Centroid method, which is the most
commonly used, and is calculated as follows:

Centroid =

∫
x · µ (x) dx∫

µ (x) dx
(6)

Table 6. Rule base (derived from the risk matrix in ISO/SAE 21434, Annex H).

Feasibility Rating

Very Low Low Medium High

Impact
Rating

Severe Low Medium High Very High

Major Very Low Low Medium High

Moderate Very Low Low Low Medium

Negligible Very Low Very Low Very Low Very Low

4.3. Risk Assessment Procedure

Given an attack, once the input factors have been evaluated (Impact Rating and Feasi-
bility Rating, above), the fuzzy inference system can be used to derive the risk associated
with the attack. Figure 4 shows the proposed fuzzy-logic-based procedure to assign a rating
to the risk associated with a cyber-attack; each step is explained in more detail below.

Step 1—Fuzzification: The attack is evaluated based on the two risk factors mentioned
above, i.e., impact rating and feasibility rating. The values are then mapped onto the
respective fuzzy sets according to their membership functions. The result of this step is a
fuzzified input, i.e., represented in terms of its degree of truth with respect to each input
fuzzy set:

AImpact(x) = {µNegligible(x), µModerate(x), µMajor(x), µSevere(x)}

AFeasibility(x) = {µVeryLow(x), µLow(x), µMedium(x), µHigh(x)}
(7)

where AImpact(x) is the set of results of the impact rating membership functions related to
the input value x.

Step 2—Inference: During inference, the fuzzified input is compared with the rule
base to generate a fuzzy conclusion. More precisely:

• Every rule is fired to a degree that depends on the degree to which its antecedent
matches the inputs. The firing strength of each rule is equal to the minimum (due to
the AND operator) truth value among the fuzzy sets contained in its antecedent;

• Rules having the same consequent (and firing strength higher than 0) are aggregated
(by using the max operator) in order to obtain a single truth value for each output
fuzzy set.

A graphical and intuitive representation of this process is shown in Figure 5.
Step 3—Defuzzification: Finally, the fuzzy conclusion is defuzzified and translated

into a crisp one using the centroid method.
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Note that the procedure described above takes place after the identification of item,
asset, and damage scenarios, according to the TARA pipeline (Figure 1). Once those are
identified, the impact rating can be calculated immediately, whereas the feasibility rating
requires additional steps consisting of the identification of threat scenarios and related
attack paths.

In the following section, we provide a case study showing the risk assessment made
according to the domain reference standards approach and the proposed fuzzy-logic-based
methodology.

5. A Case Study

In this section, we present a case study of the application of the proposed method-
ology, using the example provided by the annex H of the ISO/SAE 21434 as a reference.
We selected this case study because, despite its simplicity, it is part of a standard and
hence widely recognized among practitioners. This provides an easily understandable yet
plausible example of application, which aligns with the main aim of this section.

The item under consideration is a headlamp system, functionally defined in the
following way: “The headlamp system turns on/off the headlamp in accordance with the
switch by demand of the driver. If the headlamp is in high-beam mode, the headlamp
system switches the headlamp automatically to the low-beam mode when an oncoming
vehicle is detected. It also returns the headlamp automatically to the high-beam mode if
the oncoming vehicle is no longer detected”.

For space constraints, we will focus on one specific asset, the integrity of the data
communication channel that forwards the turn on and turn off requests to the lamp system.
Once the asset is identified, the damage scenarios must be defined. Contextually, each
damage scenario must be evaluated in terms of severity and controllability according
to (3) to associate it with an impact rating. Table 7 contains a few examples of damage
scenarios to use in the case study.

Table 7. Damage scenarios—impact rating.

ID Damage Scenario Severity Controllability Impact

1

Front collision with a narrow stationary
object (e.g., a tree) caused by unintended

turning off of headlamp during night
driving at medium speed

3 3 3

2

Front collision with a narrow stationary
object (e.g., a tree) caused by unintended

turning off of headlamp during night
driving at low speed (<30 km/h)

2 2 2

3

Front collision with a narrow stationary
object (e.g., a tree) caused by unintended

turning off of headlamp during night
driving at low speed (<30 km/h) and on

an icy road surface

2 3 2.5

4

Front collision with a pedestrian caused by
unintended turning off of headlamp

during night driving in dimly lit parking
lot, at very low speed (<15 km/h) and on

an icy road surface.

2 3 2.5

5

Front collision with a pedestrian caused by
unintended turning off of headlamp

during night driving in dimly lit parking
lot, at very low speed (<15 km/h)

2 1 1.5
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Damage Scenario 1 is taken from the standard, while Damage Scenarios 2 and 3 are
variants to include different vehicle speeds and road surfaces. Damage Scenarios 4 and 5,
which consider the collision with a pedestrian, are introduced with aim of enriching the
case study. For each damage scenario, the associated impact rating was determined by
applying the steps provided by the reference standards (ISO/SAE 21434 and ISO 26262)
with the support of an expert in automotive functional safety. For instance, considering
Damage Scenarios 2 and 3, it can be noticed that the icy surface affects the overall impact
rating as it reduces the vehicle’s controllability.

Damage scenarios must then be linked with threat scenarios, i.e., potential cause of
compromise of the asset that can lead to the realization of the damage. Threat scenarios are
then evaluated in terms of the feasibility of their associated attack paths. Table 8 shows two
threat scenarios (which are directly taken from the ISO/SAE 21434 and are valid for all the
above damage scenarios).

Table 8. Threat scenarios.

ID Threat Scenario

1
Spoofing of a signal leads to a loss of integrity of the data communication of

the “LampRequest” signal to the power switch actuator ECU, potentially
causing the headlamp to turn off unintentionally.

2
Tampering with a signal sent by body control ECU leads to a loss of integrity
of the data communication of the “Lamp Request” signal to the power switch
actuator ECU, potentially causing the headlamp to turn off unintentionally.

Table 9 shows some attack paths related to the threat scenarios in Table 8 to be
considered to calculate the feasibility rating. The TARA process provided by the standard
was used as a guide to define attack paths and rate their feasibility with the support of an
expert in the specific field. For example, let us consider Threat Scenario 1. Attack Path (A)
is executed through the cellular interface and was therefore assigned an Attack Vector (V)
value of 0.85, which, based on Table 4, corresponds to Network. Similarly, Complexity (C)
was assigned a value of 0.77 (corresponding to Low), and Privileges Required (P) and User
Interaction (U) values of 0.85 (both corresponding to None). According to Equation (4),
these values result in a feasibility rating of 3.89. Attack Path (B) is similar, the only
difference being that, in this case, the attack is enacted through the Bluetooth interface.
As a consequence, its Attack Vector (V) value is lower (0.62, corresponding to Adjacent),
resulting in a feasibility rating of 2.84. Analogous reasoning was applied to determine the
feasibility ratings for all the other attack paths.

Finally, it is possible to apply our methodology to calculate the risk value in terms of
safety using the impact rating and feasibility rating obtained previously. The input and
output fuzzy sets, the membership functions, and the rule base used in this case study are
those defined in Section 4.2.

The fuzzy inference system was implemented using the Fuzzy Logic Designer Tool-
box [41]. The toolbox is built to help the user to design, tune, and test a fuzzy inference
system. This includes definition of the membership functions and rule base as well as
behavior analysis, involving visualization of the inference process and output surface maps.
Most importantly, once the FIS is designed (input and output membership functions and
the rule base are defined), the toolbox allows the risk calculation step to be performed
automatically.

Figure 5 shows an example of risk calculation on the MATLAB interface with reference
to the following cases:

• Damage Scenario number 3, with Impact rating equal to 2.5 (Table 7);
• Threat Scenario number 2 and the related attack path A, with Feasibility rating equal

to 2.22 (Table 8).
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Table 9. Attack path feasibility rating calculation.

Threat
Scenario Attack Path

Feasibility Rating

V C P U Value

1

Attack Path (A):

(a) Attacker compromises navigation ECU from cellular interface.
(b) Compromised navigation ECU transmits malicious control signals.
(c) Gateway ECU forwards malicious signals to power switch actuator.
(d) Malicious signals spoof the lamp request (ON).

0.85 0.77 0.85 0.85 3.89

Attack Path (B):

(a) Attacker compromises navigation ECU from Bluetooth interface.
(b) Compromised navigation ECU transmits malicious control signals.
(c) Gateway ECU forwards malicious signals to power switch actuator.
(d) Malicious signals spoof the lamp request (ON).

0.62 0.77 0.85 0.85 2.84

Attack Path (C):

(a) Attacker sends malicious control signals from OBD2 connector.
(b) Gateway ECU forwards the malicious signals to power switch actuator.
(c) Malicious signals spoof the lamp request (ON).

0.2 0.77 0.85 0.85 0.91

2

Attack Path (A):

(a) Attacker compromises navigation ECU from cellular interface.
(b) Compromised navigation ECU transmits malicious tampering signals.
(c) Gateway ECU forwards tampering signals to the communication bus.
(d) Original control signal sent by Body ECU is altered.

0.85 0.44 0.85 0.85 2.22

Attack Path (B):

(a) Attacker sends malicious tampering signals from OBD2 connector.
(b) Gateway ECU forwards tampering signals to the communication bus.
(c) Original control signal sent by Body ECU is altered.

0.2 0.44 0.85 0.85 0.52

Given these input values, the toolbox allows us to visualize the complete inference
process that leads to the final risk value. More precisely, every row in the figure corresponds
to a rule in the rule base, and the white boxes contain the membership functions associated
with the fuzzy sets (labels) that appear in the antecedent (input) and consequent (output) of
that specific rule. In the images, the rules appear in the same order as they are presented in
Table 6. The vertical lines running across the two input columns represent the input values.
The points where those lines intersect with the input membership functions determine the
firing strength of each rule, which can clearly be seen in the output column (represented by
the blue area obtained by truncating the output membership function for the rules that have
firing strengths greater than 0). In the example, the rules 2, 3, 6, and 7 are activated, with
firing strengths of 0.04, 0.5, 0.04, and 0.5, respectively. The resulting area (i.e., representation
of the fuzzy conclusion) is shown in the last box of the output column. Finally, the red
vertical line in such a box marks the result of the defuzzification process, applied to obtain
the final crisp value of 3.44.

Table 10 shows a complete comparison of the results obtained using the fuzzy inference
system (ref. Column FIS) as opposed to the traditional approach contained in the reference
domain standards as the ISO/SAE 21434 (ref. Column TARA, for which the output is
obtained through the risk matrix presented in Table 1).

The results reported in Table 10 provide interesting evidence. We can notice that
the major differences between risks occur for Damage Scenarios 3, 4, and 5 for both the
Threat Scenarios considered. According to the risk assessment methodology provided by
the ISO/SAE 21343 standard, those damage scenarios are evaluated as having the same
risk (risk value 4 in the case of Threat Scenario 1 and risk value 3 in in the case of Threat
Scenario 2), while the corresponding risks calculated according to the FIS vary significantly.
In particular, if we focus on Damage Scenarios 4 and 5, we can see that the corresponding
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driving conditions are substantially different. Notably, in Damage Scenario 4, the road
surface is icy. The risk calculated according to the FIS methodology is able to consider such
a condition (the risk in the case of Damage Scenario 4 is significantly higher than in Damage
Scenario 5), while the risk calculated according to the ISO/SAE 21343 methodology is not.
Similar considerations can be made for Damage Scenarios 2 and 3. In summary, the finer
level of granularity provided by the FIS methodology in risk calculation leads to more
detailed risk values which are able to better represent the real driving situations. The
ISO/SAE 21434 methodology, on the other hand, occasionally assigns identical risk values
to driving scenarios that differ significantly in terms of potential safety consequences.

Table 10. Comparison between risks derived with the FIS approach and risk derived according to the
method provided by ISO/SAE 21434.

Threat Scenario Damage Scenario FIS Result ISO/SAE 21434
Result

1

1 5.00 5

2 4.00 4

3 4.41 4

4 4.41 4

5 3.50 4

2

1 3.94 4

2 2.94 3

3 3.44 3

4 3.44 3

5 2.50 3

6. Discussion and Conclusions

Based on the outcomes shown in the previous section, we discuss the effectiveness
of the risk assessment methodology based on fuzzy logic described in this paper and the
related benefits for practitioners. The strengths of the proposed risk assessment methodol-
ogy with respect to the ones used in the industry (that are based on the domain reference
standards) are schematically argued as follows:

• Granularity of the risk value: As pointed out in previous sections, traditionally, the
numerical input ranges are discretized into a certain number of disjoint subintervals,
each associated with a (human-understandable) linguistic label and are finally used to
extrapolate the risk value, usually with the support of domain experts. This, however,
leads to a loss of information, since it does not fully capture the uncertainty deriving
from the fact that such values are intrinsically imprecise, as they are the result of a
qualitative assessment made by humans. Fuzzy logic is designed to explicitly model
such uncertainties while retaining the ability to work with linguistic variables. The
output of the process is, therefore, richer in information, as it can be represented by
a linguistic variable or numerically, in a way that it also measures the scatter and
dispersion around the calculated value, indicating the risk trend. Differently from the
risk assessment methodologies proposed by the reference domain standards, the fuzzy
inference system provides the output on a continuous scale rather than a discrete
one. Figure 6 provides a graphical representation of the risk values calculated with
the fuzzy-logic-based methodology described in this paper (Figure 6b) and the risk
values calculated according to the methodologies proposed by the domain reference
standards (Figure 6a). The surface representing the possible risk values provided by
the fuzzy-logic-based methodology is continuous and smooth, while the one resulting
from the risk assessment methodologies proposed by the domain reference standards
has a stepped surface, showing a rougher risk calculation. This means that the risk
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assessment methodology we proposed allows for fine-grain output values, while the
traditional approaches give coarse-grain output values. This allows for a finer level of
granularity that can be crucial to the overall risk management process when the output
of the risk assessment process must be used for prioritization of risks related to cyber
threats. In fact, with reference to the results of the case study provided in Table 10, it
can be noticed that several risk values that would have had the same value according
to the standard methodology actually have significantly different values using the
methodology based on fuzzy logic. Let us take, for example, the damage scenarios
3 and 5 of the threat scenario 2. The related risks would be both rated 3 according
to the methodology proposed by the standards, while they are rated 3.44 and 2.50,
respectively, according to the methodology proposed in this paper.

• Automatic tools support the mitigation of the increased computational and structural
complexity of the proposed methodology with respect to the complexity of the method-
ologies proposed by the domain reference standards. The methodology we propose in
this paper is more complex than those proposed by the domain reference standards for
risk assessment. In fact, the latter are easily applicable as they do not require significant
computational effort, being based on simple tables. The methodology proposed in
this paper presents a higher level of computational complexity (e.g., the defuzzifi-
cation phase), and it also requires the construction and graphical representation of
the membership functions. Nevertheless, such an overhead of complexity is strongly
mitigated by the availability of ready-to-use automatic tools supporting the methodol-
ogy for both the computation of the risks and the definition and representation of the
membership functions (the use of tools is described in Section 5).

• The results provided by our method are numerically similar to those obtained by
applying the traditional methodology suggested by the reference domain standards
(e.g., ISO/SAE 21434 and ISO 26262). In some instances, the output is the same; in
others, there is a difference, which, however, is never greater than 0.5. We cannot state
that our methodology is conservative in risk calculation (in the sense that risks are
always greater or equal) with respect to the methodologies suggested by the domain
reference standards. Our methodology is not to assess risks more severely, but to
increase the accuracy of the risk assessment. Consequently, it reduces overestimated
risks and increases underestimated risks. From the observation of Figure 6, we can
derive that, as the surface of Figure 6b represents basically a non-decreasing monotonic
function, the linear ordering among the risks calculated according to the risk assess-
ment methodologies proposed in this paper is maintained. In other words, given that
the risk R is calculated as Rf,I = F(f, I) (where f is the feasibility rating and I the impact
rating), increasing values of f and I correspond to non-decreasing values of R. This
allows the outcomes of this methodology to be effectively used in risk management
and risk prioritization, and can be compared with the results derived according to the
risk assessment methodologies suggested by the reference domain standards.

• The application of a Mamdani fuzzy logic inference system preserves the explainability
of the process. The rule base and the labels associated with input and output fuzzy
sets are expressed in natural language and are therefore interpretable for a human.
The calculation process that the system enacts to correlate input and output is also
transparent, and it is possible to trace back the steps that led to a certain conclusion
given a certain set of inputs (see Figure 5). This is a crucial property, especially in a
safety-critical domain, as it allows one to have full insight into the risk assessment
process and, therefore, on the decisions that are taken based on it.

Given the characteristics listed above, we can consider the presented methodology
easily applicable in practice, without any particular limitation with respect to traditional
techniques.
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To conclude, in this paper, we have provided a new methodology, based on fuzzy
logic, to assess cyber-security risks considering the safety impact of cyber-attacks. Risk
assessment is a key activity in the development process of systems with implications
in terms of safety and cyber-security, in particular for the HARA (Hazard Analysis and
Risk Assessment) in the safety context and TARA in the cyber-security context. Available
domain standards provide guidance on how to conduct risk assessment. In particular, in the
automotive domain, the availability of effective risk assessment methodologies is pivotal, as
new-generation connected cars present strong concerns in terms of safety and cybersecurity,
and new technologies are expected to be more and more pervasive in modern vehicles [42].
Moreover, cybersecurity vulnerabilities may represent a source of safety issues, as successful
cyber-attacks may lead to potentially hazardous behavior that needs to be addressed from a
safety point of view. In such a context, the risk assessment methodology we have proposed
is able to explicitly model the uncertainty and ambiguousness of input data typical of the
risk assessment process, providing an output on a more detailed scale.

The risk assessment methodology described in this paper, and applied in a case
study taken from the ISO/SAE 21434 standard, presents several advantages, such as the
increased granularity of the risk value (that allows risk management and prioritization to
be improved), the capability to be easily handled by humans as preserving explainability,
and the substantial preservation of the linear ordering of calculated risks. The applicability
of the risk assessment methodology is assured by the support provided by available, easy-
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to-use, automatic tools. We believe that these features make for a practically impactful
methodology, especially in a context where vehicles are becoming more complex by the
day, allowing for a finer and more streamlined risk assessment and prioritization while
retaining interpretability and ease of use.

In the future, we intend to extend the work presented in this paper by applying the
risk assessment methodology to automotive industrial case studies in order to thoroughly
validate its applicability in real contexts. A comparative analysis of the results will then be
carried out. We believe that such an effort will provide a precise evaluation of the practical
implications and benefits of the presented approach. Moreover, it will foster the assessment
of the impact of the emerging technologies on the presented risk assessment methodology
for the automotive domain.
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