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Abstract: The European Union’s recent decision to renew the authorization for the use of glyphosate
until 15 December 2033 has stimulated scientific discussion all around the world regarding its toxicity
or otherwise for humans. Glyphosate is a chemical of which millions of tons have been used in the last
50 years worldwide to dry out weeds in cultivated fields and greenhouses and on roadsides. Concern
has been raised in many areas about its possible presence in the food chain and its consequent adverse
effects on health. Both aspects that argue in favor of toxicity and those that instead may indicate
limited toxicity of glyphosate are discussed here. The widespread debate that has been generated
requires further investigations and field measurements to understand glyphosate’s fate once dispersed
in the environment and its concentration in the food chain. Hence, there is a need for validated
analytical methods that are available to analysts in the field. In the present review, methods for the
analytical determination of glyphosate and its main metabolite, AMPA, are discussed, with a specific
focus on chromatographic techniques applied to cereal products. The experimental procedures are
explained in detail, including the cleanup, derivatization, and instrumental conditions, to give the
laboratories involved enough information to proceed with the implementation of this line of analysis.
The prevalent chromatographic methods used are LC-MS/MS, GC-MS/SIM, and GC-MS/MS, but
sufficient indications are also given to those laboratories that wish to use the better performing
high-resolution MS or the simpler HPLC-FLD, HPLC-UV, GC-NPD, and GC-FPD techniques for
screening purposes. The concentrations of glyphosate from the literature measured in wheat, corn,
barley, rye, oats, soybean, and cereal-based foods are reported, together with its regulatory status in
various parts of the world and its accumulation mechanism. As for its accumulation in cereals, the
available data show that glyphosate tends to accumulate more in wholemeal flours than in refined
ones, that its concentration in the product strictly depends on the treatment period (the closer it is to
the time of harvesting, the higher the concentration), and that in cold climates, the herbicide tends to
persist in the soil for a long time.

Keywords: glyphosate; analytical methods; sample preparation; liquid chromatography; gas
chromatography; mass spectrometry; cereals; occurrence; accumulation mechanism; regulatory status

1. Introduction

Glyphosate, with the IUPAC name N-(phosphonomethyl)glycine, also called
2-(phosphonomethylamino)acetic acid (Figure 1), is the most used herbicide in the world. It
was introduced to the market in 1974 under the trade name of Roundup® for weed control
in agriculture or for eliminating roadside weeds, as well as in orchards, forests, parks,
and squares, and on railways. In traditional agriculture, glyphosate was used only in the
pre-emergence phase, but after the introduction of genetically modified organisms (GMOs)
resistant to Roundup®, it also began to be used in the post-emergence phase. In 1996,
genetically modified soybean, corn, and cotton plants, called ‘Roundup® Ready’ plants,
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were introduced onto the market. Since then, the use of genetically modified organisms
and the use of glyphosate have grown to unprecedented levels: about 660 million kg of
global glyphosate use in 2011 and 826 million in 2014 are reported [1–3].
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However, the improper use of this herbicide in the pre-harvest phase gave rise to
a heated debate. This controversial application method involves applying it directly to
the crop a short time before harvesting for drying purposes, to optimize yields [3,4]. This
happens especially in climates that are not fully suitable for some cultivations. In the US,
in Canada, and elsewhere, there is a practice of using glyphosate to desiccate crops by
spraying the maturing plants, in order to speed up the ‘maturation’ of the crop and make
it more uniform, thereby facilitating harvest [5–12]. This may add to the residue levels of
glyphosate, as shown in field pea, barley, and flax seed. Particularly if the plant is still
growing, translocation of the herbicide within the plant may result in its accumulation
in the seed, both for GM and unmodified soy [13]. Even Mediterranean countries import
significant quantities of wheat from those countries that use glyphosate in the pre-harvest
phase [14]. Plants translocate this systemic herbicide to their roots, shoots, seeds, and fruits,
where it causes the accumulation of shikimic acid and hinders the enzymatic conversion
of shikimic acid to anthranilic acid by inhibiting the enzyme 5-enolpyruvylshikimic acid-
3-phosphate synthase [15–17]. Crops treated with glyphosate slowly die over a period of
days or weeks, and because the chemical is transported throughout the plant, no part sur-
vives [18]. Because plants absorb glyphosate, it cannot be completely removed by washing
or peeling produce or by milling, baking, or brewing grains [1], although in this way, its
content can be somewhat reduced [14]. In the environment, the free pesticide degrades
rapidly, but when it comes into contact with the soil, it adsorbs to soil particles and degrades
very slowly; sometimes, it remains undegraded and inactive in the soil for years [18,19],
dissociating only into its main degradation product [20], namely aminomethylphosphonic
acid (AMPA), which has comparable toxicity to glyphosate and which must always be
analytically determined together with the latter.

In 2017, the IARC, the International Agency for Research on Cancer, classified this
pesticide in Group 2A, ‘probably carcinogenic to humans’ [21]. On the contrary, the
European Commission in 2016 established that ‘on the basis of the information currently
available, no hazard classification for carcinogenicity is justified for glyphosate’ [22], and
therefore, in December 2017, it renewed the authorization for its use until 2022 [22,23]. In
2022, the decision about the use of glyphosate was postponed, and in November 2023,
the Commission authorized the use of glyphosate as a herbicide until 2033 [24], also
based on an opinion delivered by the European Food Safety Authority (EFSA) [25]. Some
studies declare that glyphosate is toxic. New research indicates that glyphosate causes
leukemia in the early life of rats administered the herbicide via drinking water, at doses
currently considered safe by regulatory agencies [26]. The same considered-safe doses
showed endocrine toxicity in rats [27], later confirmed in a human population of mothers
and newborns exposed to glyphosate during pregnancy [28]. A very recent review of
Lacroix and Kurrasch is less conclusive. They observe that co-formulants in Glyphosate
preparations can greatly amplify toxicity; indeed, the co-formulants themselves may be
more toxic than Glyphosate itself [29]. Therefore, the question of toxicity remains open.

In this context, the availability of reliable analytical methods is crucial. The highly
topical debate on a herbicide declared in the past to be of little danger currently requires
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more careful evaluations and a greater number of analytical measurements to understand
its fate once used in the field and how much of it passes into the various final products
intended for consumption, with the consequent degree of exposure for consumers. Due
to some of its molecular characteristics (the absence of UV absorbance, low volatility, and
high hydrophilicity) [1,30–33], the quantitative determination of glyphosate in crops, in
soils, and in waters is challenging. Chromatography is the most successful and the most
used technique, which, very frequently, exploits derivatization (mandatory in gas chro-
matography). When liquid chromatography with derivatization is applied, the prevalent
derivatizing agent is FMOC-Cl (9-fluorenylmethyl chloroformate). FMOC-Cl reacts with
glyphosate and AMPA to give the corresponding derivatives [33–42]. The determination of
glyphosate by liquid chromatography is also possible without derivatization. As regards
gas chromatography (GC), a largely used derivatization is that of using perfluoroalcohols
plus trifluoroacetic anhydride [43–52]. The perfluoroalcohol used is trifluoroethanol (TFE)
or heptafluorobutanol (HFB). In addition, another GC derivation method exists, which
is used to a lesser extent: alkylsilyl derivatization. In the present review, all methods for
determining glyphosate and AMPA in cereals via liquid and gas chromatography will be
discussed in detail.

2. Glyphosate Degradation Pathways

In general, glyphosate degradation proceeds by either of two pathways [53–56] as
shown in Figure 2. They are also called ‘AMPA pathway’ and ‘sarcosine pathway’.
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Glyphosate is either transformed into AMPA and glyoxylic acid by oxidoreductase
or into sarcosine by C-P lyase [57]. Sarcosine is then converted to glycine by sarcosine
oxidase [55], while glyoxylic acid, in turn, is converted to glycine and carbon dioxide by
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the glyoxylic acid cycle [53,55]. AMPA is presumed to be converted to methylamine [54].
Among the degradation products of glyphosate, AMPA is the only persistent compound.
From an analytical point of view, it is of primary importance to always monitor AMPA to-
gether with glyphosate since AMPA is the main metabolite of glyphosate [58,59]; from some
research, it appears to have equal or greater toxicity compared to glyphosate itself [59,60].
The degradation of AMPA is generally slower than that of glyphosate, possibly because
AMPA may adsorb onto soil particles more strongly than glyphosate and/or because it may
be less likely to permeate the cell walls or membranes of soil microorganisms [55]. The con-
version pathway to N-Acetyl-derivatives in Figure 2 is typical of genetically modified (GM)
plants. After glyphosate is applied to GM soybean, the metabolite N-Acetyl glyphosate
is formed [55]. According to the U.S. Environmental Protection Agency, its toxicological
effects are similar to those of glyphosate, while in pursuance of EFSA data, there is a
lack of studies for N-acetyl-glyphosate’s and N-acetyl-AMPA’s toxicological effects [55].
According to the EFSA’s opinion about maximum residue levels, glyphosate is considered
to be a sufficient marker for conventional crops, while for plants with glyphosate-tolerant
GM varieties, N-Acetyl glyphosate should also be determined.

3. Occurrence Data, Accumulation, and Fate

Table 1 shows an overview of the glyphosate and AMPA levels measured in cereals.

Table 1. Glyphosate and AMPA concentrations measured in cereals and related foods.

Cereals and Cereal-Based Foods
Glyphosate

Concentration
(mg kg−1)

AMPA
Concentration

(mg kg−1)
Reference

Barley <0.45 n.a. 1 [61]
Oats <0.08 n.a. 1 [61]
Rye <0.04 n.a. 1 [61]

Durum wheat 0.421 (max.) 0.0247 (max.) [62]
Wheat <0.13 n.a. 1 [61]
Wheat 6.1–11.1 n.a. 1 [4]

Wheat bran <0.7 n.a. 1 [61]
Wheat flour 0.02 n.a. 1 [61]

Bread 0.0458 (max.) traces [62]
Breakfast cereals 0.291 (max.) 0.01 (max.) [62]

Flour and baking mixtures 0.133 (max.) traces [62]
GM soybean 0.4–8.8 0.7–10 [13]

GM corn 0.15 0.49 [63]
Wheat 0.373 0.034 [5]
Barley 2.15 0.041 [5]

Whole grain 0.0257 n.a. 1 [64]
White bread 0.0149 n.a. 1 [64]

Soy-based infant formulas 0.03–1.08 0.02–0.17 [65]
GM soybean 0.1–1.8 0.9 (max.) [66]
Corn flour 0.0052–0.3 2 [67]

Breakfast cereals 0.006–0.034 n.a. 1 [68]
Wheat flour <0.03 n.a. 1 [69]
Wheat bran 1.62 (max.) n.a. 1 [70]

1 not available. 2 sum of glyphosate and AMPA.

3.1. Glyphosate Concentration in Straight-Grade Flour vs. Concentration in Wholemeal Flour

It was observed that glyphosate is more present in bran and less present in white
flour. Granby et al. sampled grains from Danish mills and major producers in 1998–2001
and carried out an analysis of glyphosate residues. The average results for wheat showed
that the glyphosate content in bran was concentrated compared with the grain, while its
content in flour was somewhat lower than in grain [61]. It may be reasonable to further
consider that glyphosate is generally sprayed directly onto the crops and that the extractable
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glyphosate is then directly correlated with the presence of the outer bran. Reasonably, the
differences in glyphosate in whole wheat where the bran remains and the refined flours
where the bran is removed may explain the differences observed in extractable glyphosate
in commercially available food samples [71]. Tittlemier et al. demonstrated that 50% of
the total glyphosate mass resides in the outer 17% of the kernels and that 81% of the total
glyphosate mass in wheat was associated with the bran, shorts, and feeds milling fractions.
They argue that glyphosate concentrations in bread made from straight-grade flour will
be approximately 4× lower than that made from whole-grain flour [72]. The results of a
further one-year study showed that glyphosate residues were more concentrated on top
of grain/seed layers, rather than inside, and that the highest concentrations of glyphosate
residues were found in bran [5]. Other studies confirm such a trend [4,64,73,74] with
Ashley-Martin et al. observing a dose–response relationship between the consumption of
whole-grain bread and higher urinary glyphosate concentrations [75]. Obviously, crops
that are grown without the use of glyphosate do not show any trace of residue in any part
of the grain, not even in the bran [5,13]: this last statement is important for the recognized
beneficial health effects related to the consumption of whole grains [76–80].

3.2. Glyphosate Accumulation in Crops

The period of crop treatment with the herbicide is critical to the concentration of
glyphosate in the final harvested product.

Gélinas et al. applied Roundup® before harvest to some wheat varieties in an amount
of 0.82 kg ha−1, as recommended on the label, and observed a glyphosate residue of
11.1 mg kg−1 in one wheat variety and 6.1 mg kg−1 in another variety. This high residue
content was attributed to the date of treatment, very close to the harvest time [4]. Bøhn et al.
reported that GM soybean treated with Roundup® during the growing season accumulated
glyphosate and AMPA at concentrations of 0.4–8.8 mg kg−1 and 0.7–10 mg kg−1. In contrast,
conventional and organic soybean crops did not contain glyphosate and AMPA [13].

Therefore, the authors confirmed the hypothesis that GM soybeans may contain
high residue levels of glyphosate and AMPA due to repeated spraying of the plants with
glyphosate-based herbicides throughout the production season (Figure 3).
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Kadžienė et al. applied a study protocol to test for glyphosate accumulation in cereals
following a pre-emergence treatment (1 week after sowing) and a pre-harvest treatment
(14–10 days before harvest). From their study, repeated for two seasons, it was found that
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the pre-emergence application had no impact on the final contamination of the cereals
(no residues). Instead, pre-harvest application resulted in maximum concentrations of
2.15 mg kg−1 for glyphosate and 0.04 mg kg−1 for AMPA [5].

3.3. Fate and Degradation of Glyphosate

Studies carried out in crops, and in products derived from them, indicate that washing
wheat grains is able to reduce the concentration of glyphosate. Also, grain processing can
reduce the concentration of the herbicide [71], as can decortication, i.e., the removal of the
external layers of the grains, although glyphosate cannot be eliminated completely as it is
absorbed by the entire plant. It was demonstrated that the preparation of dried pasta from
semolina and flour milling fractions reduced concentrations of glyphosate by a factor of
1.8 [73]. In the same research, the concentrations in cooked pasta decreased significantly
with cooking time: after 15 min of cooking, approximately 73% of the total glyphosate mass
had transferred from the pasta to the cooking water [73]. The malting of barley results in
the gross loss of residues: glyphosate residue levels in beer were found to be about 4% of
the original levels in barley [74].

Conflicting results are available on glyphosate degradation resulting from dough
fermentation during the breadmaking process [4,81]. Regarding storage, it was found that
when glyphosate was applied during the pre-harvest period at the rate indicated by the
label, its level in grain remained steady during a 2-year storage time [5].

Given the hydrophilicity of glyphosate, water bodies adjacent to a treated field are
frequently polluted by glyphosate and AMPA [82–86], with associated possible human
diseases [87]. Pires et al. observed that, with a few exceptions, glyphosate concentration in
water samples was higher than AMPA, at a ratio that could reach almost 30 for groundwater
samples, much higher than in surface samples (highest ratio of 3.6). This is probably
because glyphosate in groundwater is not susceptible to photodegradation, an important
degradation pathway in the environment [88]. Silva et al. measured the proportion of
AMPA to glyphosate in agricultural topsoils of the European Union, deducing that soils
presenting the lowest proportion of AMPA suggest more recent glyphosate applications
and/or slower degradation of glyphosate into AMPA in those conditions [89]. For food
matrices, especially processed ones, the glyphosate/AMPA ratio depends on too many
variables. For example, in honey, this ratio does not show a constant value or any observable
trend [90]. The dissipation rates of the herbicide in the field are influenced by the soil
properties, application methods, and environmental conditions. Greater persistence has
been observed in colder climates [91]: in northern climates with seasonally frozen soils,
field studies have shown clear persistence of glyphosate throughout the winter. After
applications in June and July at two Finnish sites, approximately 10–20% of the applied
glyphosate was detected in June of the following year, demonstrating that the time for
dissipation of 90% of glyphosate (DT 90) was about 11 months. In warmer climates,
glyphosate did not persist beyond the growing season, even after 15 consecutive annual
applications [92].

4. Regulatory Status

The toxicity of glyphosate for human health is still under study, and this can be
deduced from Table 2. In the case of wheat, for example, FAO/WHO and EPA have set the
MRL for glyphosate at 30 mg kg−1, while the European Union and Health Canada have set
it 10 and 5 mg kg−1, respectively. Considering the controversy on glyphosate’s maximum
residue level in foodstuffs [1], there is a possibility that the current MRLs could be modified
in the coming years; future research will have to take into consideration even very low
levels of intake and follow chronic exposures, to ascertain the possible negative effect of
this herbicide on health.
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Table 2. Maximum residue levels (MRLs) for glyphosate in cereals as established by international
organizations (mg kg−1). Values updated as of December 2023.

Cereals and Related Crops
European

Union
[93,94]

FAO/WHO
Codex
[94,95]

U.S.
EPA 1

[96]

Health
Canada

[97]

Barley 20 30 30 10
Buckwheat 0.1 30 30

Maize/corn grains 1 5 5 3
Millet 0.1 30 30
Oats 20 30 30 15
Rice 0.1 0.1
Rye 10 30 30

Sorghum 20 30 30
Soya beans 20 20 20 20

Wheat 10 30 30 5
1 MRLs are referred to as ‘Tolerances’ in U.S.

5. Chemical Analytical Methods

Choosing an analytical method depends on the objective to be achieved. For com-
pliance control purposes, an instrument with sensitivity of at least 1 mg kg−1 would be
suitable for 91% of the established MRLs listed in Table 2. So, the much simpler and
historically widely used HPLC–fluorimetry (HPLC-FLD) [98–101] or HPLC-UV [39,42,85]
would be still suitable for the aim, in fact the limit of quantitation of these techniques is
about 0.5 mg kg−1 [98]. Similar considerations apply to gas chromatography with nitrogen
phosphorus (NPD) or a flame photometric detector (FPD), which are less specific detectors
than mass spectrometers but of higher affordability and of good sensitivity [51,102]. How-
ever, for research work in complex matrices, more performing techniques are preferred.
Currently there is a tendency to use the mass spectrometer as a chromatographic detector
for every purpose given its high sensitivity and specificity.

5.1. Liquid Chromatography

Analyses of glyphosate and AMPA in water have been performed for a long time
by liquid chromatography with FMOC derivatization, and subsequently also codified
by the ISO 16308:2014 standard [103,104]. The ISO 16308:2014 standard involves the use
of a tandem mass spectrometer as a detector, but the method was originally based on
HPLC–fluorimetry. By switching to mass spectrometry as a detection technique, better
sensitivity was obtained. This method uses the derivatization of both molecules with
9-fluorenylmethyl chloroformate (FMOC-Cl), as shown in Figure 4.

This is needed due to the high polarity of the compounds as such, which would make
analysis using reversed-phase liquid chromatography difficult. From the analysis of water,
the liquid chromatography method via FMOC derivatization was quickly extended to the
analysis of foods. In a 2015 interlaboratory ring test for the analysis of glyphosate in wheat
flour, all the laboratories that used liquid chromatography with derivatization exploited
FMOC derivatization, and almost all used tandem mass spectrometry (LC-MS/MS) as
the detection technique [1]. It must be said that out of 12 laboratories, 5 did not use
derivatization. The performance of the laboratories that participated in the study indicates
that LC-MS/MS has a sensitivity of 0.03–0.05 mg per kg of product. Some recent works
claim even better performance [35,62].
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5.1.1. FMOC Derivatization

Pre-column FMOC-Cl derivatization has been proven to be simple and successful.
The complete reaction of glyphosate with FMOC-Cl guarantees stability and successful
chromatographic separation on reversed-phase LC columns [33]. The derivatization takes
place at an alkaline pH: generally, the pH is adjusted to 9 by adding borate buffer and by
adding EDTA. With LC-MS/MS, the parent ions to be monitored are 390 m/z for glyphosate-
FMOC and 332 m/z for AMPA-FMOC [33,34]. The daughter ions are frequently 150 m/z
for glyphosate-FMOC and 110 m/z for AMPA-FMOC, so the transitions of interest are
generally 390→ 150 m/z and 332→ 110 m/z [34,38], but also 168→ 63 m/z and 110→
63 m/z in those cases where derivatization is not used [62]. Detection can be carried out in
positive electrospray mode [36] or in negative electrospray ionization mode [33,34,38,62].
The eluting solvents are often ammonium acetate in LC−MS-grade water, and acetonitrile
(ACN). Martin et al. evaluated the influence of borate addition to the derivative step and
the responses of various borate buffer concentrations (w/v). They found that the reaction
did not occur in the control, for which no borate buffer was added, while when borate buffer
was added to the reaction medium, the peak intensities of the derivative products were
greater: a significantly higher response was obtained with 5% borate addition, compared
to the control, than the other variables [33]. The reactivity of glyphosate’s amino group
was enhanced by increasing the buffer concentration, which improved the derivatization
reagent’s solubility.

Before carrying out the derivatization step, the extraction of glyphosate and AMPA
from the sample must be performed. In the next section, an overview of sample preparation
will be given with some practical examples.

5.1.2. Sample Preparation Used with FMOC Derivatization

A good practical example of the analysis of glyphosate in cereals via liquid chromatog-
raphy is the work conducted in 2021 by Cruz and Murray from the U.S. National Institute of
Standards and Technology (NIST), who analyzed oat products (oatmeal, oat-based cereals,
and oat flour, both conventional and organic). They used a Solid Phase Extraction (SPE)
step. To the ground cereal sample (1 g), internal standard aqueous solution was added
(isotopically labeled glyphosate and AMPA); then, an aliquot of a 50/50 mix of acidified
H2O (0.1% formic acid) and MeOH was added, and a centrifugation step followed. After
centrifuging, the sample was transferred into a polypropylene centrifuge tube containing
borate buffer reagent. After homogenization, FMOC reagent was added, and the sample
was left in the dark during the derivatization reaction. Then, the SPE step was carried out
by adjusting the pH, centrifugating, loading the supernatant onto the SPE cartridge, and
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eluting with a MeOH/NH4OH solution mix in a 2 mL glass vial. The eluate was evapo-
rated, and H2O was added to obtain a final volume of 500 µL. The extracts were filtered
and stored at 6 ◦C until LC–MS/MS analysis. Separation was carried out on a C18 column,
where the injection volume was 20 µL and the monitored transitions for quantification
were 390→ 168 m/z for glyphosate-FMOC and 332→ 110 m/z for AMPA-FMOC [105].

Similar preparation was used for soy protein isolate [36], cereal flour samples by
means of HPLC-FLD [98], tea samples [34], and beebread samples [38].

From the examination of the works cited, it can be deduced that a cleanup step via
SPE is always used for the determination of glyphosate and AMPA in food matrices
such as cereals, which present a certain complexity (while it is not necessary for the
sample preparation of drinking water or groundwater, for example, which are quite clean
themselves). The SPE technique allows the enrichment and purification of target analytes
and is a decisive step before injecting the sample into modern analytical instruments
capable of exceptional sensitivity. The basic principles of SPE are similar to liquid–liquid
extraction, but SPE involves the dispersion of the analyte between a liquid and a solid phase.
A commonly used procedure includes conditioning of the SPE cartridge with solvents.
Then, the extracted sample solution is loaded onto the cartridge. Elution is carried out with
a suitable solvent and the effluent is collected for the next step. SPE materials (carbon, silica,
clay, resins) are available as tubes or cartridges and are commercially known by various
names. One of the most used is Oasis® HLB from Waters (Milford, MA, USA) [34,35,38],
but the following are also widespread: Oasis® WCX [34], Oasis® MAX [34], Oasis® MCX,
C18 sorbents, ion exchange BondElut Plexa PAX® (Agilent, Santa Clara, CA, USA), InertSep
SAX® (GL Sciences, Tokyo, Japan), Extrelut, Florisil, Chromabond® (Macherey-Nägel,
Hœrdt, France) [41], and others [3].

Extraction, i.e., the step prior to SPE purification, is quite simple for glyphosate in
cereals. With glyphosate being a polar compound, the addition of water, acidified water,
or methanol–water mixtures is used, followed by centrifugation. In an ‘Interlaboratory
comparative study on the quantitative determination of glyphosate at low levels in wheat
flour’, participants’ laboratories used water or acidified methanol or a methanol–water
mixture [1]. Zhang et al., for the analysis of glyphosate in corn, used 10.0 mL of HPLC-grade
water which was added to finely ground corn power [35], while Granby et al. analyzed
glyphosate in cereals that were milled and ground to a particle size of 0.5 mm; then,
3 g was extracted twice with 25.0 mL MilliQ water [61]. Sorokin et al. used a similar
extraction procedure for tea samples with 25 mL of deionized water acidified by 0.1 mL of
37% HCl [34].

5.1.3. Advantages of Indirect Determination

Indirect determination means the use of derivatization. Regarding FMOC derivati-
zation, it must be noted that originally, the determination of glyphosate and AMPA via
liquid chromatography took place mainly with fluorimetry, and that in the absence of
derivatization, the two molecules had practically no absorption (analysis not possible).
A precolumn derivatization step with FMOC-Cl yielded highly fluorescent derivatives
of the analytes [106]. Subsequently, even with the use of mass spectrometry, the stan-
dard ISO 16308:2014 has established the use of FMOC derivatization together with the
triple quadrupole analyzer and a C18 column [104]. Derivatization is intended to im-
prove at least one of the principal analytical parameters, namely, detection sensitivity or
separation selectivity, by modifying the hydrophobic/hydrophilic character of the target
molecule [107]. Glyphosate and AMPA are very small and polar compounds that lack
chromophores or other heteroatoms that could facilitate their sensitive detection. In addi-
tion, the amphoteric nature of these agents makes their concentration and purification by
normal-phase or reversed-phase SPE very difficult [108]. Obviously, from what has been
said, the determination of glyphosate and AMPA with C18 columns works properly in
indirect mode only.
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5.1.4. Direct Determination

Several works analyzing glyphosate via liquid chromatography do not make use of
derivatization. Such methods use direct determination and work properly when columns
different from the reversed-phase ones are used. We are talking about ion chromatography,
HILIC, and Hypercarb columns.

Ion chromatography methods for glyphosate determination in cereals often require
simple sample treatment consisting of homogenization, extraction, and centrifugation. Sub-
sequently a purification step by filtration or SPE follows. Granby et al. analyzed glyphosate
in cereals using an anion chromatography column coupled to a triple quadrupole IC-
MS/MS system with ESI in negative-ion mode. They used NaHCO3 as a mobile phase
together with a micro-membrane suppressor for removing Na+ ions since salts may harm
the spectrometer. The transitions monitored (MRM mode) were 168→ 150 m/z and 168→
124 m/z [61]. Similarly, Zoller et al. determined glyphosate and AMPA in cereals and other
foodstuffs via an anion exchange method by using a triple quadrupole IC-MS/MS system
with ESI in negative-ion mode [62].

HILIC (Hydrophilic Interaction Liquid Chromatography) is a suitable technique for
separating polar compounds and is opposite to reversed-phase chromatography. Thus, it is
suitable for underivatized glyphosate, which the reversed phase could not determine as it is.
Ding et al. (2016) used an HILIC/WAX column (WAX = Weak Anion Exchange) to analyze
glyphosate in plant-derived food by means of a triple quadrupole and ESI in negative ion
mode. The column used was a Click TE-Cys (cysteine-based zwitterionic stationary phase).
Samples such as soybean and corn were homogenized, extracted, centrifuged, and SPE-
purified. The transitions monitored were 168→ 150 m/z and 168→ 63 m/z. To eliminate the
matrix interference to the maximum extent, a two-step coupled SPE cartridge system was
used. The matrix effect can lead to ion suppression, which is a well-known phenomenon
for ESI-MS in LC. Ion suppression can also occur in ion chromatography, resulting from
high buffer concentrations in the mobile phase; it leads to reduction in ionization efficiency
with a subsequent negative effect on sensitivity. The limit of quantitation observed by
Ding et al. was 0.02 mg kg−1 [109]. Similarly, Li et al. (2009) used the HILIC technique to
analyze glyphosate in fruit and vegetables [110].

Thermo ScientificTM HypercarbTM columns are porous, graphitic carbon columns
suitable for the analysis of polar compounds by liquid chromatography without the need
for derivatization. Chiarello et al. (2019) analyzed glyphosate and AMPA in edible oils
using a HypercarbTM column with a 100 × 2.1 mm i.d. 5 µm particle size coupled to an
LC-MS/MS triple quadrupole system in ESI negative-ion mode. The matrix effect observed
was negligible; therefore, quantification was performed using solvent standard calibration
and not matrix-matched calibration. In this particular case, such a negligible matrix effect
was observed without the use of a cleaning step, but it could be necessary for grain samples.
The transitions monitored were the same as those mentioned above: the fragmentation of
the deprotonated molecular ion at m/z 168 of glyphosate yielded two product ions at m/z
150 and 63. The transitions monitored for AMPA were 110→ 63 and 110→ 79 [111]. Other
works using the HypercarbTM column coupled to LC-MS/MS for analyzing glyphosate
and AMPA exploit similar transitions [112].

5.1.5. Glyphosate and Glufosinate

It is possible to observe that many of the research papers aimed at analytically deter-
mining glyphosate and AMPA include the compound glufosinate (2-amino-4-[hydroxy
(methyl)phosphoryl]butanoic acid) in the determination. This is due to the similarity in
the chemical structure of glyphosate and glufosinate, but there are no other links between
them, although both can be used as herbicides. Glufosinate is a natural compound [113]
that was first isolated from the bacteria Streptomyces viridichromogenes and Streptomyces
hygroscopicus [114], while glyphosate was first discovered as a synthetic compound.
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5.2. Gas Chromatography

Apart from liquid chromatography, the determination of glyphosate and AMPA can
also be carried out with other instrumental techniques [103,115–117], among which gas
chromatography stands out, with derivatization as a mandatory preliminary step. Initially,
various types of detectors were used, such as FPD, NPD, and ECD [118–120]. Subsequently,
the use of mass spectrometry (GC-MS) became increasingly established, although the
simpler NPD and FPD detectors are still currently exploited in some cases [51,102].

5.2.1. Sample Preparation and Perfluoroalcohol/TFAA Derivatization

From the first works to the present day, the largely prevalent derivatization for deter-
mining glyphosate in gas chromatography is that using perfluoroalcohols and perfluori-
nated anhydrides, with trifluoroacetic anhydride (TFAA) used almost universally. In this
way, all phosphonic and carboxylic acid groups are esterified, and all amino groups are
acylated, as shown in Figures 5 and 6. Such derivatization was first applied by Deyrup et al.
in 1985 [118]. This is also the procedure codified in the AOAC Official method 2000.05
‘Determination of glyphosate and AMPA in crops, gas chromatography with mass-selective
detection’ [121–123]. A variant of the derivatization in Figures 5 and 6 is the use of 2,2,2-
trifluoroethanol (TFE) instead of HFB [46,48–51]. The crops tested in the interlaboratory
study supporting the acceptance of the AOAC method were field corn grain, soya for-
age, and walnut nutmeat, but it is applicable to a wide variety of crops and processed
commodities: over 100 matrices were successfully analyzed with virtually no method
modifications required.

Sample preparation involves the steps of extraction, purification, and derivatization. In
summary, the extraction of grains requires homogenization with water, centrifugation, the
addition of dichloromethane, a second centrifugation, the addition of an acid modifier, and
a third round of centrifugation. The supernatant is so sent for a cation exchange cleanup.

The cleanup is achieved with a cationic exchange SPE column on which the super-
natant from the previous step is loaded. Then, elution with a specific mobile phase is
carried out.

Derivatization is carried out with HFB and TFAA kept at a low temperature until they
are added to the eluate for the reaction, which takes place at 85–90 ◦C. After the addition of
a citral reagent, the solution is ready for the gas chromatographic analysis.
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Figure 6. Derivatization of AMPA with 2,2,3,3,4,4,4-heptafluoro-1-butanol (HFB) and trifluoroacetic
anhydride (TFAA) for determination carried out by gas chromatography.

5.2.2. Instrumental Setup

The apparatus to be used is a gas chromatograph equipped with a capillary column
(0.25 mm ID× 30 m, 0.50 µm film thickness) of cross-linked 95% methyl-5% phenyl silicone
phase. Helium is used as a carrier gas at a flow rate of about 30 cm/s at 180 ◦C, equal to
about 40–50 kPa (6–7 psi) at the column head. The suggested column oven temperature
program is the following: an initial temperature of 90 ◦C, held for 1.5 min, increased to
300 ◦C at 30 ◦C/min (20 ◦C/min if limited by instrument capabilities), and held at 300 ◦C
for 4 min. An alternative program for increased resolution is the following: an initial
temperature of 60 ◦C, held for 1.5 min, increased to 120 ◦C at 10 ◦C/min, held at 120 ◦C for
1.0 min, increased to 300 ◦C at 30 ◦C/min, and held at 300 ◦C for 4 min. The injection port
temperature is 200 ◦C, and the injection volume 2–5 µL in splitless mode.

The AOAC method requires that mass spectrometry is used as a detection technique
by means of a quadrupole instrument, capable of providing electron impact mass spectra
over an amu range up to m/z 650 operated in selected-ion monitoring (SIM) low-resolution
mode. The method qualification data are obtained exclusively with quadrupole instrumen-
tation only, but some participant laboratories in the development of the AOAC method
have proposed the use of an ion trap as a viable alternative after some minor method
modifications are applied. These included the elimination of the citral reagent in the final
ethyl acetate extract, the use of a programmed variable-temperature GC inlet, and the use of
methylene chloride as a keeper during the evaporation of the derivatization reagents [122].
MS/MS determinations are also possible. Royer et al. reported a successful ion-trap tandem
MS application of the HFB/TFAA derivatization procedure to the analysis of glyphosate
and AMPA in water, blackcurrants, and hazelnuts [47].

The major ion fragments that can be used for the determination of glyphosate and
AMPA derivatives via GC-MS, in SIM mode, are indicated in the AOAC method. They are
611.5, 584, and 460 m/z for glyphosate and 502, 446, and 372 m/z for AMPA. Although
611.5 and 446 m/z provide the greatest response for the glyphosate and AMPA derivatives,
respectively, the alternative ions can be used for confirmatory analyses. The alternative ions
may also be helpful for eliminating/reducing problematic interferences. The ion 611.5 m/z
for the glyphosate derivative can be explained as follows. The molecular weight of the
glyphosate derivative in Figure 5 is 811 amu. The need to monitor the ion 611.5 m/z after
ionization results from the loss of an ion of about 199 m/z given that 811−611.5 = 199.5 m/z.
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The fragment lost is the group 2,2,3,3,4,4,4-heptafluoro-1-buthoxy-, as shown in Figure 7,
which is indeed a fragment of about 199 m/z. The fragmentation mechanism is the same
when 2,2,2-trifluoroethanol (TFE) is used in place of HFB, but in such a case, there is the
loss of a 2,2,2-trifluoroethoxy- group (99 m/z). Therefore, with TFE, one of the main ions to
be monitored for the glyphosate derivative (of 511 amu) is 412 m/z.
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glyphosate derivative in Figure 5.

Other ions of interest are those derived from the loss of a CF3 group (69 m/z), which,
for the HFB derivative of AMPA (571 amu), results in a 502 m/z ion fragment, while for
the TFE derivative of AMPA (371 amu), it yields a 302 m/z ion fragment [124]. Other
relevant ions in SIM mode or transitions that are exploited in tandem mass spectrometry
are available from the literature [43–52]. Figure 8 shows the mass spectra of glyphosate
and AMPA when derivatized with heptafluorobutanol and trifluoroacetic anhydride, as
obtained in the work of Alferness and Iwata [123].
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5.2.3. Alkylsilyl Derivatization

Alkylsilyl derivatization is a little-used procedure: it is mainly exploited in the gas
chromatographic analysis of glyphosate and AMPA in biological fluids, such as serum
and urine [125–128]. Furthermore, in some cases, the sensitivity is lower with respect
derivatization with perfluoroalcohols and perfluorinated anhydrides. However, alkylsilyl
derivatization is reported here for the sake of completeness. By far the most used reagent is
N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA), as shown in Figure 9.
Such a reagent is capable of replacing three hydrogens of the glyphosate and AMPA
molecules with three tBDMS groups.
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The chemical reaction yields a glyphosate derivative of 511 amu and an AMPA deriva-
tive of 453 amu. As reported by Tsunoda [129], when MTBSTFA is used, the ions of
interest to be monitored in GC-MS analysis are MW-15 and MW-57; therefore, the ions
to be monitored are 496 and 454 m/z for glyphosate, while for AMPA, they are 438 and
396 m/z [126,127,129].

Other proposed alkylsilyl derivatizations involve the use of N,O-bis(trimethylsilyl)
trifluoroacetamide (BSTFA) [130,131] or N-methyl-N-(trimethylsilyl)trifluoroacetamide
(MSTFA) [132], which replace the hydrogens of glyphosate and AMPA with a trimethylsilyl
group (TMS group).

5.3. High-Resolution Mass Spectrometry

The increasing availability of high-resolution mass spectrometers in analytical labora-
tories has led to the possibility of determining glyphosate in complex matrices in a more
rapid and reliable way. Despite the higher purchase cost, there are some advantages to a
high-resolution instrument compared to a low-resolution one. The ability to work at resolu-
tions of up to 70,000 FWHM (Full Width at Half Maximum) for m/z values of 200 [133,134]
allows us to monitor fragments up to four or five decimal places (exact masses). This
involves the following:

(a) Simplifying sample preparation. Complex matrices may have interfering ion frag-
ments with masses equal to those of the target analyte when measured at low res-
olution (unit resolution) and with the same chromatographic retention time. These
are so-called isobaric interferences [135]. With low-resolution instruments (triple
quadrupoles, ion traps), thorough purification of the sample is required to avoid this
drawback. With high-resolution instruments, there is no such problem because the
exact mass of the target analyte is monitored.

(b) Chromatographic runtimes. It is possible to shorten the chromatographic runs since
possible coelutions of isobaric peaks do not lead to any inaccuracy if the exact mass is
monitored. An extension of this approach is the Flow Injection technique, whose main
feature is the injection of the predefined sample volume directly to the MS source,
with no chromatographic separation [135].
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The high-resolution MS analysis of glyphosate in food matrices is mainly performed
by liquid chromatography with the use of the Orbitrap apparatus that was introduced into
mainstream MS in 2005 [136]. The LC-Orbitrap technique does not require derivatization.
Rajski et al. analyzed glyphosate, AMPA, N-Acetyl glyphosate, N-Acetyl AMPA, and other
highly polar pesticides in fruits and vegetables using Ion Chromatography-Q-Orbitrap
with Electrospray Ionization in negative polarity [134]. The column used was a Dionex
IonPac AS19, and elution was performed with KOH. The injection volume was 50 µL with
an observed limit of quantitation of 0.01 mg kg−1 for all investigated pesticides. Sample
preparation consisted of adding a water/methanol mixture to 10 g of sample, which was
shaken and centrifuged and then diluted with water before the injection. The fragments
monitored for glyphosate were 168.0067 m/z, 62.9637 m/z (quantifier ion), and 78.9588 m/z
(qualifier ion), while for AMPA, they were 110.0012 m/z (quantifier ion), 62.9637 m/z (qual-
ifier ion), and 78.9588 m/z. The fragments 168.0067 and 110.0012 m/z were derived from
MS1 measurements, and the other fragments derived from MS2 (tandem) measurements.
The retention times were 16 and 12 min for glyphosate and AMPA, respectively. Similarly,
Manzano-Sánchez et al. determined glyphosate, AMPA, and other pesticides in fruits and
vegetables by using the following system: UHPLC-Q-Orbitrap apparatus with a Torus DEA
column with diethylamine as a stationary phase [137]. Elution was carried out with water
(0.9% formic acid) and acidified acetonitrile (0.9% formic acid). Sample preparation was
based on the QuPPe method (Quick Polar Pesticide method [138,139]) and involved the
addition of water/acidified methanol to the sample that was homogenized and centrifuged,
and then, 1 mL of the supernatant was filtered and injected. The ion fragments monitored
for glyphosate were 168.00673, 78.95795, and 62.96304 m/z. The ion fragments monitored
for AMPA were 110.00125, 78.95975, and 62.96304 m/z. The retention times were about
8 and 6 min for glyphosate and AMPA, respectively (Figure 10).
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Other works used the Ion Chromatography-Q-Orbitrap system for monitoring glyphosate
and AMPA in honey [140] or UHPLC-Q-Orbitrap with a Torus DEA column to analyze
glyphosate and AMPA in drinking water [133]. In this last work, the fragment ions moni-
tored for glyphosate were 168.00620 (precursor), 107.02619 (quantification; MS2, collision
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energy 25 V), and 133.00546 m/z (confirmation; MS2, collision energy 20 V). For AMPA, the
following fragments were selected: 110.00043 (precursor), 62.96358 (quantification; MS2,
collision energy 25 V), and 80.97415 m/z (confirmation; MS2, collision energy 20 V).

6. Conclusions

The European Union’s decision to allow the use of glyphosate came five months ago.
This happened after a long controversy that lasted a few years and is still ongoing. This
controversy reflects the state of the art: on the one hand, little is known about the toxicity
of this herbicide; on the other hand, there is probably no valid alternative to guarantee
food production that is adequate for global needs. Moreover, this does not consider the
other uses of glyphosate, such as the maintenance of parks, gardens, roads, and railways,
which are equally important. The present review addresses this topic by examining all
points of the issue and delving into its chemical–analytical aspects, since what is currently
needed is accurate information both on the toxicity of glyphosate and its presence in the
food chain. The main outcome of this review is a discussion of the methods for the analysis
of glyphosate in cereals and related matrices: the state of the art is presented without
neglecting any detail necessary for researchers involved in this subject. The other outcomes
are the reporting of reasoned opinions both for and against the toxicity of glyphosate, as
well as the regulatory status, the fate, and finally, the accumulation of the herbicide in the
environment and in the various parts of the cereal grain. Regarding this last point, it was
demonstrated that most of the total glyphosate mass resides in the outer kernel layers, with
higher concentrations in bread from whole-grain flour. Given the alleged health benefits
of wholemeal flours, such a finding is expected to be relevant to future ‘benefit-risk ratio’
assessments.
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