
Citation: Chen, C.; Yang, G.; Li, Z.;

Xiao, F.; Chen, Q.; Li, J.

Privacy-Preserving Multi-Party

Cross-Chain Transaction Protocols.

Cryptography 2024, 8, 6.

https://doi.org/10.3390/

cryptography8010006

Academic Editor: Josef Pieprzyk

Received: 22 November 2023

Revised: 20 January 2024

Accepted: 26 January 2024

Published: 4 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

Privacy-Preserving Multi-Party Cross-Chain
Transaction Protocols
Chang Chen , Guoyu Yang , Zhihao Li, Fuan Xiao, Qi Chen * and Jin Li *

Institute of Artificial Intelligence, Guangzhou University, Guangzhou 511370, China;
zhihaoli@e.gzshu.edu.cn (Z.L.)
* Correspondence: chenqi@gzhu.edu.cn (Q.C.); lijin@gzhu.edu.cn (J.L.)

Abstract: Cross-chain transaction technologies have greatly promoted the scalability of cryptocurren-
cies, which then facilitates the development of Metaverse applications. However, existing solutions
rely heavily on centralized middleware (notary) or smart contracts. These schemes lack privacy
considerations, and users’ cross-chain transactions are easy to master by other parties. Some signature-
based payment schemes have good privacy but do not support multi-party cross-chain protocols
or rely heavily on some time assumptions. The uncertainty of user behavior makes it difficult to
design a secure multi-party cross-chain protocol. To solve these problems, we investigate how to
design a secure multi-party cross-chain transaction protocol with offline tolerance. We propose a new
signature algorithm called the pre-adaptor signature scheme, an extension of the adaptor signature
scheme. The pre-adaptor signature scheme combines the multi-signature and adaptor signature
schemes, which can realize the secret transmission channel between multiple parties. To provide
offline tolerance, we encode our protocol into the P2SH script. Our protocol provides better privacy
due to no dependence on smart contracts. The performance evaluation was conducted with ten
participants. For each participant of our cross-chain protocol, the initialization and execution process
can be performed in 3 milliseconds and with 6 k bytes of communication overhead at most. The cost
increases linearly with the increase in the number of participants.

Keywords: cross-chain transaction; blockchain transaction; digital signature; preserving privacy

1. Introduction

After the advent of Bitcoin [1], cryptocurrency has become a new payment choice in
which users can transact with each other without relying on a trusted third party. However,
influenced by the size of the block and the efficiency of the consensus mechanism, the
transaction efficiency is not high. Later, new technologies such as the Lightning Network [2]
and sharding [3] were presented to reduce management overhead and resource demand.
Although the ecosystem of cryptocurrency is developing rapidly, effective interconnection
and communication between different blockchains remain a problem. Traditional payment
services are supported by national credit and allow almost all transactions and exchange
services between currencies in the world. Traditional payment services offer significantly
faster and more flexible transaction speeds when compared to the most widely used cryp-
tocurrencies. This is because each cryptocurrency operates independently and possesses its
unique encryption and consensus system.

Cross-chain technologies were proposed to improve chain interoperability. In appli-
cations like Decentralized Finance and the Metaverse, various blockchains are needed
to serve the interconnection with each other [4,5]. However, apart from cross-chain data
access, the exchange of assets and funds across different chains is also important in the
current Metaverse ecosystems [6,7], which drove us to dive into the research within this
scope. A typical cross-chain transaction scenario [8] is that in which Alice, Bob, and Calorie
have assets A, B, and C on different chains, respectively. Calorie wants to exchange asset C

Cryptography 2024, 8, 6. https://doi.org/10.3390/cryptography8010006 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography8010006
https://doi.org/10.3390/cryptography8010006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0003-4165-3545
https://orcid.org/0000-0002-9777-6790
https://doi.org/10.3390/cryptography8010006
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography8010006?type=check_update&version=3

Cryptography 2024, 8, 6 2 of 22

for asset B, and Alice wants asset C but only owns asset A, so they find Bob as the converter
of asset A and asset B. Then, they can exchange assets by running a cross-chain transaction
protocol to ensure atomicity. Once the protocol is completed, the ownership of assets on
the cryptocurrency ledger will change as originally defined.

Known cross-chain protocols provide practical ways to realize the above-mentioned
transactions such as Binance (the largest exchange), Polkadot [9], InterLedger [10], and
others. The earliest cross-chain technology is the notary scheme [11]. All the transaction
participants transfer their assets to a trusted third party (an individual or a service such
as an exchange) and exchange assets fairly. However, the notary scheme requires a strong
promise of trust which destroys the decentralization feature of blockchain and is vulnerable
to the attack of hackers. To address these problems, the side chain technique [12] was
proposed. This technique can be applied to verify inter-chain transactions, implement
complex transaction protocols, and achieve a good balance between decentralization and
practicability. However, the side chain technique still has some limitations, described
as follows:

• Its implementation depends on smart contracts, which makes it incompatible with
those chains that do not support smart contracts.

• It lacks privacy considerations such that the information exposed by transactions on
different cryptocurrencies is sufficient for cross-chain transaction tracing.

• It requires long-term on-chain state maintenance, which makes attackers capable of
destroying the entire network by conquering the weakest side chain.

To correct the above problems, scriptless scripts [13] were proposed to avoid the usage
of a smart contract as well as the maintenance of the chain state. A derivative technique
of a scriptless script—an adaptor signature—is used to construct a cross-chain protocol,
which achieves higher flexibility and privacy as described in [14,15]. However, existing
schemes do not consider multi-party transaction scenarios. Therefore, to enhance the
interoperability and privacy of cryptocurrencies, a cross-chain protocol that does not rely
on smart contracts and supports multi-party transactions is necessary. This prompts us to
ask the following question:

Can we build a secure multi-party cross-chain protocol that only relies on the underlying
scripts and signatures?

In this work, we give a positive answer to this question. In addition, our protocol also
provides offline tolerance to achieve higher robustness. Before describing the details of our
approach, we elaborate on the potential challenges.

1.1. The Challenges of Constructing Secure Cross-Chain Protocols

Transaction Topology. Similar to the network communication model, cross-chain
transaction methods can be roughly divided into four types, as shown in Figure 1a–d,
according to the situation and complexity. The dots represent transaction participants, and
the directed lines represent the flow of assets. An atomic swap is the simplest form of cross-
chain asset exchange which can be achieved by the hashed time-lock contract (HTLC) [2,16]
or an adaptor signature [14,15]. Based on smart contracts, more complex multi-party
transaction protocols (Net topology) could be achieved by encoding the principles. A
Payment Channel Network (PCN) [2] realized a Linear payment topology, where there
is only one sender and receiver and several intermediate nodes. Such schemes can be
extended to cross-chain scenarios easily [17,18]. A payment hub [19,20] is another way to
achieve cross-chain payments by introducing an intermediary without any trusted settings.

In particular, a transaction model with a Ring topology exists, as shown in Figure 1e,
which can be regarded as a compromise between a Net topology and Linear topology.
Compared with constructing a transaction model with a Linear topology, constructing
one with a Ring topology will face more significant security challenges. In the previous
scenario, the sender hopes that the receiver will eventually receive the token; otherwise,
the transaction will fail. So, they will be willing to play a role as a supervisor to monitor

Cryptography 2024, 8, 6 3 of 22

the execution process of the entire transaction. Therefore, the existence of a responsible
supervisor can lower the difficulty of protocol design and provide other features such
as offline tolerance and resistance to wormhole attacks [17,18]. However, in the second
scenario, every participant will send and receive tokens. In this circumstance, no participant
can be the supervisor, since everyone is likely to deviate from the protocol after receiving
the token. The excellent work of Thyagarajan [21] can achieve a secure transaction protocol
under a Ring topology by linearly constructing an n-to-ñ atomic swap between adjacent
participants. However, their approach has higher complexity, both in protocol rounds (two
rounds of operations per path) and computational overhead (Verifiable Timed Dlog [22]).

(a) Atomic (b) Net

(c) Linear (d) Hub (e) Ring

Figure 1. Transaction topologies of different types of cross-chain transactions.

Without Smart Contracts. At present, most of the multi-party cross-chain transaction
protocols are realized by using smart contracts. Alexei et al. [23] presented such a protocol
in terms of smart contracts to encourage users to pledge a certain amount of cryptocurrency
to become a “warehouse”, and their participation in the protocol can be viewed as an
intermediary for cross-chain transactions. Moreover, in [23], chain relays and security logs
were used to restrict the behavior of warehouses and users and to eliminate absolute trust
in the middleman. Liu et al. [24] proposed a unified cross-chain programmable framework
and a universally composable security [25] protocol to restrict the behavior of parties in
cross-chain transactions.

Smart contracts provide great programmability in the construction of the cross-chain
protocols so that exchange rate fluctuations, offline, and other conditions can be taken into
consideration. But it has certain privacy and security defects. Chen [26] showed that the
internal and external transaction data of smart contract platforms can be obtained via trans-
action replay. In addition, once all the transaction details are reconstructed, logically related
transactions can be easily associated under specific heuristics settings [27,28]. Although the
privacy of smart contracts can be enhanced by introducing cryptographic techniques [29,30]
such as Bulletproofs [31], the Pederson Commitment [32], and others, they are not easy
to use in practice due to the huge computational overhead. Moreover, there are many
cryptocurrencies [33,34] that do not support smart contracts.

Atomicity. The participants of the transaction may behave maliciously. In particular,
all the participants may be malicious except one, which will put them at risk of a collusion
attack. Therefore, we define the atomicity requirement in our multi-party cross-chain
protocol. That is, if a user does not deviate from the protocol, then either the asset swap is
successfully carried out, or the user’s assets are refunded. It is worth mentioning that the
traditional “all-or-nothing” atomic concept was proven to be inapplicable in multi-party
transaction scenarios in [35]. Compared with the protocol in the PCN scenario [18], there is
a greater challenge to achieve atomicity under cross-chain situations. Because in the PCN
scenario, the transaction graph is a directed acyclic graph, the initiator of the transaction can
act as a third party to supervise the operation of the entire capital flow. In the cross-chain
transaction scenario, the transaction flow is a directed graph with at least one loop; thus,
each participant only cares about the assets flowing to themselves [8], and no one has the
incentive to maintain the stable operation of the entire protocol.

Offline Tolerance. Based on the adaptor signature algorithm, a participant can calculate
the pre-negotiated secret from the signature signed by the previous participant. Then, they
can construct a valid signature as well as sign a transaction to obtain target assets. However,
if the participant goes offline, not only will their assets be lost, but also the protocol will be
terminated due to their offline behavior because the secret information cannot be delivered

Cryptography 2024, 8, 6 4 of 22

to the subsequent participant as expected. As an improvement, our protocol provides
offline tolerance.

1.2. Our Contributions

In this paper, we study how to design and construct a privacy-preserving cross-chain
transaction protocol with unlinkability and public verifiability . Our protocol only relies
on the basic scripting language of Bitcoin to assist the protocol design. Theoretically, any
cryptocurrencies with signatures that support an adaptor signature can be compatible with
our protocol.

To realize secure multi-party cross-chain transactions, we propose a novel signature
algorithm called the pre-adaptor signature scheme, which is an extension of the adaptor
signature scheme. To the best of our knowledge, known adaptor signature schemes can
only achieve secret transfer channels between two users. Nevertheless, our pre-adaptor
signature scheme can achieve a secret transfer channel between several users by combining
a multi-signature and Schnorr signature scheme. Informally, our signature scheme can be
regarded as the adaptor signature affiliated with the time attribute.

Moreover, our protocol provides offline tolerance. We use P2SH technology to encode
our protocol. With the combination of the participant’s public keys, the unlocking condi-
tions of our protocol are strictly coded into the script. Before our work, smart contracts are
indispensable to implementing a cross-chain protocol with offline tolerance.

We implemented our cross-chain protocol and showed that each participant takes at
most 3 milliseconds to calculate and requires a communication overhead of fewer than
6 bytes in the scenario of ten participants. These two kinds of consumption increase linearly
with the increase in participants. The results show that our protocol is practical.

1.3. Related Work

Affected by the development of blockchain techniques, the earliest cross-chain tech-
nique is the notary mechanism [10] where the transaction is completed with the help of a
trusted third party. Later, the side chain technique was proposed in [12] such that block
data of the side chain can be read and verified before publishing the relevant transaction on
the main chain. HTLC [2] was first constructed based on the concept of two-party atomic
transfer proposed by Nolan [36], in which both parties can set up a contract on different
blockchains involved in the transaction and use the pre-image of a certain hash value to
trigger the contract. However, these methods have some limitations, as follows:

1. Notary: It needs a strong trust system; thus, the decentralized nature of the blockchain
is destroyed, and it is easy to become the target of hackers.

2. Side chain: Computing power attack is its potential risk. In side chain schemes, the
attacker only needs to destroy the weakest chain to attack the entire network because
most of these schemes only check whether the coins involved are from the longest
known chain and do not trace the historical source of the coins to the genesis block.

3. Hashed time-lock contract: It is mainly based on the strong anti-collision characteristic
of the hash function. However, using the same hash value on different blockchains
will make the associated transactions easy to track.

In addition, by using smart contract technology, complex transaction logic can be
coded into programs and executed automatically. Some works [23,24,37–39] implemented
cross-chain transaction protocols based on smart contracts. However, these protocols do
not consider the privacy of transactions and need long-term condition maintenance. In [40],
adaptor signatures were used to achieve cross-chain atomic swaps between two parties,
but this type of protocol is capable only in specific chains. Apoorvaa [14] used a similar
technology to implement the atomic exchange protocol using Schnorr signatures, but the
protocol does not provide support for cross-chain transactions between multiple parties.
Zhang [41] maps all heterogeneous tokens to a special consortium chain for trading and
auditing. However, the introduction of the consortium chain increases the complexity of
cross-chain transactions. Chen [42] proposes a three-stage cross-chain protocol based on

Cryptography 2024, 8, 6 5 of 22

transaction and verification notary groups, which can address efficiency and centralization
issues in cross-chain transactions. But the notary group remains fragile under the circum-
stances, while the number of malicious opponents exceeds one-third. In conclusion, none
of the known results can simultaneously (i) construct a multi-party transaction protocol
without the help of smart contracts or high-level scripting languages, (ii) protect the privacy
of transaction participants, and (iii) provide offline tolerance.

1.4. Organization

The rest of the paper is organized as follows. Section 2 introduces some preliminaries
about the script, transaction of Bitcoin, and signature schemes. Section 3 gives a brief
description of our cross-chain transaction protocol. Section 4 presents three core algorithms
that will be applied to construct the full cross-chain transaction protocol. Section 5 provides
the construction of the full protocol. Section 6 gives the security analysis of our protocol.
Section 7 studies the implementation and performance of our protocol.

2. Preliminaries
2.1. Pay To Script Hash

The principle of Pay To Script Hash (P2SH) technology [43] is shown in Figure 2,
where the script is essentially a payment condition that describes how to withdraw the
funds stored in the P2SH address. The generation of the P2SH address is similar to the
generation of the Pay To Public Key Hash (P2PKH) address, which is the most common
form of transaction on Bitcoin. Instead of hashing the public key, it hashes the script content
into script hash and maps it to an address. This is also the biggest difference between it and
P2PKH. The participant who sets the fund withdrawal conditions changes from the sender
to the receiver. Due to the introduction of programmability, P2SH technology is capable of
constructing complex payment conditions, so it is often used to implement multi-signatures
and time locking. In this work, we will use P2SH technology to construct our cross-chain
protocols. Specifically, in our protocol, all participants can generate and verify the scripts
according to some special rules, and hence, the script can be viewed as a substitute for
smart contracts, which play a role as a trusted medium.

Locking Script

OP_HASH160

Script Hash

OP_EQUAL

Unlocking Script

OP_0

Signature

Redeem Script

OP_t n Public Keys OP_n

OP_CHECKMULTISIG

EXPIRE TIME

Redeem Script

Figure 2. Overview of P2SH scheme.

2.2. Transaction Generation

A transaction is defined concerning a blockchain B, and two kinds of information
are needed to generate it, including the source of the funds and where it will be sent.
In the Bitcoin system, the two kinds of information can be represented as two scripts.
The construction of the transaction data in Bitcoin is shown in Table 1. We focus on the
following problems:

1. Input: This attribute represents an Unspent Transaction Output (UTXO) in the trans-
action referred to with the Transaction ID (TXID). “ScriptSig” is a script that meets
unlocking conditions.

2. Output: A script will be used to lock the output, which makes it a new UTXO.
“ScriptPubKey” is a script that locks the output. The locking mechanism has some

Cryptography 2024, 8, 6 6 of 22

specific format depending on the transaction type, and its availability can be easily
verified.

3. TXID: The unique identifier for a transaction, which is obtained by hashing transaction
data through the SHA256 function twice. All the signatures in unlocking scripts are
essentially the signatures of the current TXID.

Table 1. The construction of Bitcoin transaction.

Field Description

Version The version of transaction data structure

Input Count The number of inputs

Input The set of input UTXOs. A UTXO is uniquely specified
by fields “TXID”, “VOUT”, “ScriptSig”, etc.

Output Count The number of outputs

Output The set of output UTXOs, including fields “Value”, “ScriptPubKey”, etc.

Locktime Set a locktime that this transaction can be included in the block

In summary, to complete a transfer, users need to construct complete transaction
contents, such as input UTXO, output UTXO, and TXID, and then obtain the “ScriptSig”
corresponding to TXID.

2.3. Adaptor Signature and Multi-Signature

In this section, we introduce the adaptor signature and multi-signature schemes,
both of which are based on the Schnorr signature scheme [44]. The group parameters are
(G, p, g), where g is a generator of G and p is a k-bit integer and the prime order of group
G. Let λ be the security parameter andH(x) be a strong anti-collision hash function. The
algorithm mainly consists of three parts:

• KeyGen(λ): Randomly select the parameter x ←$ Zp, and calculate X = gx, where x
and X denote the private key and the public key, respectively.

• Sign(x, m): Randomly select the parameter r ←$ Zp. Calculate and broadcast R = gr,
s = r +H(X|R|m) · x. The signing message is σ = (R, s).

• Veri f y((R, s), X, m): Receive {(R, s), X, m} as input and verify the equation gs = R ·
XH(X|R|m).

2.3.1. Adaptor Signature

The adaptor signature algorithm can be constructed based on the Schnorr signa-
ture [45]. It uses signature information to construct a secret transmission channel. Only
those who know the adaptor signature and the complete signature can calculate the value
of secret t. The algorithm is described as follows:

• KeyGen(λ): The same as the basic Schnorr algorithm.
• AdaptSig(x, m): Randomly select the signing parameter r ←$ Zp and the secret

t ←$ Zp. Calculate R = gr and T = gt and broadcast the adaptor signature
sapt = r +H(X|R · T|m) · x and the full signature s = t + sapt. The signing mes-
sage is σapt = (R · T, sapt).

• AdaptVeri f y((R, T, sapt), X, m): The adaptor signature σapt is not complete, but it can
be verified by calculating gsapt = R · XH(X|R·T|m).

• SecExtract((R · T, s), (R · T, sapt), X, m): The validity of the complete signature can be
verified by calculating gs = R · T · XH(X|R·T|m). If the verification is passed, the secret
t can be obtained by calculating s− sapt.

2.3.2. Multi-Signature

The traditional multi-signature scheme is implemented by adding (or multiplying)
signatures, which makes it vulnerable to rogue public key attacks [46]. Precisely, a malicious
user can randomly select public and private key pair (Xn, xn) and declare that their public

Cryptography 2024, 8, 6 7 of 22

key is X′n = Xn · (∏n−1
i=1 Xi)

−1. In this case, the aggregated public key is “forged” into his
real public key, that is, apk = X′n ·∏n−1

i=1 Xi = Xn, and thus, the malicious user obtains the
ability to generate an illegal multi-signature.

Maxwell [47] proposed a secure multi-signature scheme based on Schnorr signatures
which improved the practicability of the signature aggregation technique. Before the
signing stage, the user needs to use the aggregated public key list L = {X1, . . . , Xn} and
the hash functionHagg to calculate the additional parameter ai. The improved signature
algorithm can be described as follows:

• KeyAggregation(L): For all i ∈ {1, . . . , n}, calculate ai = Hagg(L, Xi) and aggregated
public key apk = ∏n

i=1(Xi)
ai .

• Sign(apk, ai, xi, m): First, calculate R = ∏n
i=1 Ri, then, calculate the global challenge

c = Hsig(apk, R, m), and finally, calculate si = ri + c · ai · xi mod p.
• AggSig(s1, . . . , sn): Calculate s = ∑n

i=1 si mod p. The signing message is σ = (R, s),
where s is the multi-signature.

• AggVeri f y((R, s), L, m): With {L, R, m}, the aggregated public key apk and challenge c
can be calculated. If the equation gs = R ·∏n

i=1(Xi)
ai ·c = R · apkc holds, the verification

is passed.

3. Brief Description of the Cross-Chain Protocol

In this section, we design a multi-party cross-chain protocol under the Ring topology
scenario (Figure 1e). Our main observation is that most cross-chain transaction protocols are
implemented on top of smart contracts with complicated judging conditions and control
flows to support complex application requirements. To better illustrate the possibility of
adaptor signatures and the basic scripting language of blockchain in building multi-party
cross-chain protocols, we did not use the complex topology of mesh topology to describe
our protocol. The transaction scenario is described below.

We assume that n protocol participants are labeled from 0 to n− 1. The protocol initia-
tor (usern−1) owns assets (assuming coinn−1) in a cryptocurrency and wants to exchange
them for assets (assuming coin0) in another cryptocurrency. Due to the privacy considera-
tions of the initiator, they do not want to use exchanges to realize the cross-chain transaction.
Then, they can find another n− 1 currency exchange service provider, where the ith par-
ticipant (useri) has coini and is willing to change it into coinj with i ∈ {0, 1, . . . , n − 1}
and j = i + 1 mod n. Under this circumstance, the initiator themselves will play a role
as usern−1, so that the services provided by the currency exchange service providers can
be linked together and meet the initiator’s asset exchange demand. The asset flow of the
transaction will form a ring.

Nevertheless, multi-party cross-chain transactions are hard to be safely realized in this
case because there are problems such as participants’ offline behavior or malicious deviation.
Therefore, some necessary rules must be designed to prevent malicious participants from
doing evil while protecting the rights and interests of honest participants.

3.1. Overview

To briefly explain our cross-chain protocol, we use the HTLC scheme [2]. The brief
process is shown in Figure 3. The arrows between users represent the execution direction
of the protocol. gammai is the secret value exposed by useri while obtaining assets from
userj with i ∈ {0, ..., n− 1} and j = i + 1 mod n.

Cryptography 2024, 8, 6 8 of 22

user0

γ0

user1

γ1

user2 usern−3

γn−3

usern−2

γn−2

usern−1

Figure 3. Workflow of the proposed protocol.

Initialization:

1. According to the flow of currency exchange, the participants will play the roles of
user0 to usern−1 in turn. The transaction initiator is usern−1. For all useri, they own
the assets coini and hope to obtain coinj by paying coini;

2. user0 (who owns the asset coin0 and hopes to exchange for coin1) is the first to execute
the protocol. Value s will be selected as the “solution” of the HTLC. user0 then
calculates h = H(s) and sends h to all other participants. H(x) is a hash function;

3. For each adjacent useri and userj, they construct an HTLC which locks coinj, and
they set the timeout timei for assets refound. Notice that timei increases with i. By
providing the correct answer x such that h = H(x), useri can obtain the assets locked
in the contract.

Execution:

1. user0 releases the secret s to the HTLC between themselves and user1 and withdraws
coin1;

2. For each subsequent useri, they will obtain the secret s if useri−1 triggers the smart
contract. Then, they can take coinj and pass the secret s to userj.

If each participant is honest and active, then the whole protocol will be executed
normally as expected. After the protocol procedure, each participant can obtain the funds
that meet the pre-negotiated conditions. Finally, the currency exchange demand of the
transaction initiator can be supplied.

As mentioned above, we describe an ideal protocol to implement the basic multi-
party cross-chain transaction functionality, but it is far from fulfilling our requirements for
preserving privacy. Specifically, the ideal protocol has the following defects:

1. The use of smart contracts does not meet the generality and privacy demands;
2. It is vulnerable under the wormhole attack [18]. Any two malicious participants

can collude to steal the transaction fees of intermediate participants since the smart
contracts can be triggered by the same secret;

3. The offline behavior of a single participant will terminate the protocol. When useri is
offline, the secret s cannot be transmitted in the subsequent transaction path.

3.2. Some Improvements

In this section, we propose some necessary principles to attack the defects presented
in Section 3.1. We will give three algorithms in Section 4 based on these principles to design
a privacy-preserving multi-party cross-chain transaction protocol.

For defect defect1, we will use the adaptor signature and multi-signature schemes to
improve it. The function of the smart contract will be implemented using signature schemes.
For defect defect2, different secret values will be used to evade the attack. Inspired by the
definitions of atomicity and balanced security in [17], we plan to introduce two principles to
optimize defect defect3 of the ideal model.

For every i ∈ {2, . . . , n− 1}, let j = i + 1 mod n.

Cryptography 2024, 8, 6 9 of 22

3.2.1. Principle 1

For useri, if coini is taken away, then useri will obtain enough information to trigger
the “contract” and obtain coinj.

This principle guarantees the security of the assets of participants. Furthermore, it
achieves a kind of weak atomicity. That is, it ensures the consistency of the participant’s
payment and collection. This principle will also make the collusion attacks (including
wormhole attacks) invalid in our protocol because the attackers cannot steal a participant’s
assets without paying them back.

3.2.2. Principle 2

For useri, if all previous participants have correctly executed the protocol except useri−1,
then useri can still gather enough information to trigger the “contract” and obtain coinj.

Principle 2 indicates that the protocol will not be interrupted by a participant’s offline
behavior. In addition, this principle is a tradeoff between the realizability and robustness
of the protocol. To handle the problem caused by the offline behavior of users, highly
programmable smart contracts are usually needed [35,37]. In addition, the transactions
that have been packaged into blocks are irreversible, that is, transaction rollback is not
supported. This is also one of the significant differences between the signature-based
method and the method based on smart contracts in cross-chain transactions.

We assume that user0 (the starting point of the protocol) and user1 are not included in
both principles due to the particularity of their order.

3.3. Design Goals

We present the design goals of our cross-chain transaction protocol.
Unlinkability: A PPT adversary A which did not participate in the protocol cannot

determine whether the two transaction records on different chains belong to the same
cross-chain transaction or not, just through information collision.

Public Verifiability:This property requires that all the parts of our cross-chain transac-
tion protocol can be publicly observed and verified. This implies that our protocol will not
affect the normal transaction verification process.

Offline Tolerance:Offline tolerance means that the protocol can continue executing if
one of the participants has not completed the protocol steps.

Privacy Preservation:Our protocol is designed to protect the membership privacy of
the participants. By only analyzing on-chain information, observers cannot distinguish
whether there exists a cross-chain transaction. And no one can obtain the membership
information of a cross-chain transaction except the participant.

4. Algorithm Definition

In response to the principles proposed in Section 3.2, we propose three algorithms
to implement our protocol, which are the script generation algorithm, adaptor signature
algorithm with multi-signature, and pre-adaptor signature algorithm. The first one is a theoretical
framework that achieves the goals of both principles mentioned in Section 3.2. The second
algorithm extends the usage scenario of the adaptor signature by combining it with the
multi-signature algorithm. The last algorithm adds a time-sequential attribute to the
adaptor signature.

4.1. Script Generation Algorithm

The script plays a role in building a trusted transfer station between adjacent partic-
ipants. Based on P2SH technology, the script can be used to specify the identity of the
participant, payment condition, or other information. Moreover, the script can also be used
to generate the corresponding collection address.

The script generation algorithm realizes both principles mentioned in Section 3.2,
and its content is shown in Figure 4. The script for useri will be used to obtain assets
from another participant. Fagg is a key aggregation function. CLTV, CS, and CMS are

Cryptography 2024, 8, 6 10 of 22

abbreviations of BTC opcodes: OP_CHECKLOCKTIMEVERIFY, OP_CHECKSIG, and
OP_CHECKMULTISIG. The <expiry time> in each script for userx could be calculated
as timeinit + x · ∆t, while timeinit is the initialization time of the protocol and ∆t is the
operation time for each participant during different stages. γ and Γ denote the participant’s
secret value and its statement.

The algorithm combines the public keys of the participants according to a certain
strategy and sets the timeout for each type of script. After the timeout, the participant
can sign the transaction and refund the assets. According to the participant sequence,
the algorithm divides the participants into four parts, namely, user0, user1, useri, where
i ∈ {2, . . . , n − 2}, and usern−1. We will elaborate on the details of the combination of
public keys below.

For user0

IF

< expiry time > CLTV OP_DROP

< X1 > CS

ELSE

< Fagg(X0,X1) > CS

ENDIF

For user1

IF

< expiry time > CLTV OP_DROP

< X2 > CS

ELSE

< Fagg(T0,X1,X2) > CS

ENDIF

For useri, i ∈ {2, . . . , n− 2}

IF

< expiry time > CLTV OP_DROP

< Xi+1 > CS

ELSE

1

< Fagg(Ti−1,Xi,Xi+1) >

< Fagg(T0, . . . ,Ti−2,Xi,Xi+1) >

2 CMS

ENDIF

For usern−1{

IF

< expiry time > CLTV OP_DROP

< X0 > CS

ELSE

1

< Fagg(T0, Tn−2,Xn−1) >

< Fagg(T0, . . . ,Tn−3,Xn−1) >

2 CMS

ENDIF

Figure 4. Script generation algorithm. We mark the redeem condition (expire time) as R and the
withdraw condition (Fagg) as C.

1. For user0, the first one to execute the protocol, the script contains two public keys X0
and X1. user0 can construct an adaptor signature with user1 to obtain the ability to
sign a valid signature. Once the signature is revealed, user0 will obtain coin1 as well
as reveal its secret value γ0 to other participants.

2. For user1, the script contains three public values Γ0, X1, and X2. user1 can construct an
adaptor signature with user2 to obtain the ability to sign a valid signature and reveal
γ1 later. Since the secret value of user0 is known to all, user1 only needs to negotiate
with user2.

3. For useri, the script contains the combinations of two different types of public values,
which are {Γi−1,Xi,Xi+1} and {Γ0,. . . ,Γi−2,Xi,Xi+1}. Both key combinations corre-
spond to the principles proposed in Section 3.2.

4. For usern−1, the script contains combinations of two different types of public values,
which are {Γ0, Xn−2, Xn−1} and {Γ0,. . . ,Γn−3,Xn−1}. The negotiation for an adaptor
signature with user0 is not required since the secret value of user0 was leaked early in
the protocol.

In summary, the secret value revealed by the participants can be regarded as their pre-
vote on subsequent transactions. To achieve this, the secret value will be used as a “special”
private key and random number which will be used to construct a multi-signature later.

4.2. Adaptor Signature with Multi-Signature

In Section 2.3, we introduce the adaptor signature algorithm and the multi-signature
algorithm. Among them, the adaptor signature algorithm realizes the secret transmission
channel by introducing additional addition operations and modifying the parameter in

Cryptography 2024, 8, 6 11 of 22

the challenge generation process. The multi-signature algorithm hides the public key list
of the participants by submitting an additional multiplication coefficient ai in the signing
and verifying processes and modifying the first parameter in the challenge generation
process. The changes of both signature algorithms to the Schnorr signature algorithm are
orthogonal, so there is a possibility of combining them.

Here, we give the formal definition of the adaptor signature with multi-signature scheme:

• Setup(λ): It assigns key pairs to every participant which are denoted as (x, X). It
randomly selects γ, with Γ = gγ, as the secret value to be revealed. Every participant
secretly selects a signature parameter r and publicly shares R = gr.

• (c, apk)← KeyAgg({X}, {R}, Γ, m): It receives all public keys {X}, all signing param-
eters {R}, the witness of the secret Γ, and a message m as input, and it outputs the
public challenge c and the aggregated public key apk.

• σ̂ ← pSign(x, m, c, apk): It receives participant secret key x, a message m, and the
public challenge c as input, and it calculates a partial signature σ̂ as output.

• ⊥ /1← pVr f (apk, X, c, σ̂): It receives the aggregated public key apk, signer’s public
key X, public challenge c, and partial signature σ̂, and it outputs 1 if the pre-signature
is legitimate and ⊥ otherwise.

• σ̃← AggSig({σ̂}): It receives the partial signatures σ̂ from all users and aggregates
them as σ̃.

• σ← Adapt(σ̃, γ): It receives the aggregated partial signature σ̃ and secret value γ as
input, and it calculates a signature σ as output.

• γ ← SecExt(σ̃, σ): It receives the aggregated partial signature σ̃ and signature σ as
input, and it calculates the secret value γ = σ− σ̃ as output.

The execution process of the algorithm is shown in Figure 5. The hash function Hcom is
used in the commitment phase, Hagg is to compute the aggregated key, and Hsig is to compute
the signature. As mentioned in [47], these hash functions could be constructed from a single
one with proper domain separation. In the rest of the paper, we will continue to use these
definitions. This algorithm broadens the scope of the application of the adaptor signature
scheme. Now, multiple participants can establish a secret transmission channel by only relying
on the signature algorithm.

4.3. Pre-Adaptor Signature Algorithm

In this section, we introduce a novel signature algorithm based on an adaptor signature.
Figure 6 shows the detail of the pre-adaptor signature scheme. The public key list L varies
according to the situation. It can be regarded as a weaker version of the adaptor signature
scheme. The protocol assumes that some secret information, which can turn a pre-adaptor
signature into an adaptor signature, will be released with the execution of the protocol.

Cryptography 2024, 8, 6 12 of 22

Adaptor Signature with Multi-signature

Situation:

· Let Xi and xi be the public and private keys of useri , respectively.

Preparation:

1. Each useri generates a random ri ←$ Zp, calculates Ri = gri , ti = Hcom(Ri), and sends ti to other
participants. The (n− 1)th participant selects γ←$ Zp as the secret and broadcasts Γ = gγ.

2. After receiving T = {t0, . . . , tn−1} from others, all users broadcast their Ri , and everyone can verify

the correctness of Ri by checking ti
?
= Hcom(Ri).

Signature Generation:

1. All participants can calculate:

ai = Hagg(L, Xi),

X̃ =
n−1

∏
i=0

Xi
ai ,

R =
n−1

∏
i=0

Ri · Γ,

c = Hsig(X̃, R, m).

where m is the hash of the transaction content.
2. Each useri calculates and broadcasts si = ri + c · ai · xi mod p. The correctness can be verified by

checking gsi
?
= Ri · Xi

c·ai .
3. Calculate sapt = s1 + · · ·+ sn mod p. The correctness can be verified by checking

gsapt ?
=

n−1

∏
i=0

(Ri · Xi
ai ·c) =

R · X̃c

Γ
.

4. Calculate s = sapt + γ mod p.

Figure 5. The combination of adaptor signature and multi-signature schemes.

The adaptor signature algorithm has online requirements for participants during the
negotiation process. In addition, once the adaptor signature is successfully generated,
one participant will be able to construct a valid signature. These features will lead to
two contradictions.

Sequential execution of the protocol. Our cross-chain protocol defines a task where
a sequence of exchanges takes place at each cryptocurrency. Specifically, the sequence
corresponds to the sequential transmission of the secret value. Thus, the adaptor signatures
on each payment path cannot be negotiated in the initialization stage of the protocol.
Otherwise, any intermediate participant can complete the transaction in advance regardless
of the sequence.

The offline tolerance. To ensure the security of assets, participants need to join the
negotiation process before letting others take away their assets. However, this requires
the intermediate participants to be online during the execution stage of the protocol. If
useri goes offline, the former participant (useri−1) will face the risk of losing assets whether
useri−1 acts honestly or not.

These two contradictions are also a pair of paradoxes. Therefore, based on the script
generation algorithm, we propose the concept of a pre-adaptor signature. It integrates
the demand of sequential execution into the adaptor signature algorithm and realizes the
dynamic generation of the adaptor signature.

Cryptography 2024, 8, 6 13 of 22

Pre-adaptor Signature

Situation:

· This is for the negotiation stage between userk and userk+1.
. The secret value γk from userk will be released.
· The secret values (γi , and the corresponding commitment is Γi) from the former participants

will play the role of “special” private keys. Thus, the public key list is denoted by L =
{Γ0, Γ1, . . . , Γk−1, Xk , Xk+1}.

Preparation:

1. userk randomly selects the parameter rk ←$ Zp, calculates Rk = grk , tk = Hcom(Rk), and broadcasts
tk . The adaptor signature constructed here will eventually reveal userk’s secret value γk .

2. userk+1 randomly selects the parameter rk+1 ←$ Zp, calculates Rk+1 = grk+1 , tk+1 = Hcom(Rk+1), and
broadcasts tk+1.

3. After receiving tk+1/tk from the other side, Rk and Rk+1 will be broadcast and the correctness can be
verified.

Signature Generation:

1. m is the hash of the transaction content. All the participants can calculate:

ai = Hagg(L, Xi) or Hagg(L, Γi),

X̃ =
k−1

∏
i=0

Γi
ai · Xk

ak · Xk+1
ak+1 ,

R =
k−1

∏
i=0

Γi · Rk · Rk+1 · Γk ,

c = Hsig(X̃, R, m).

2. userk calculates and broadcasts sk = rk + c · ak · xk mod p.
3. userk+1 calculates and broadcasts sk+1 = rk+1 + c · ak+1 · xk+1 mod p.
4. Calculate spre = sk + sk+1 = rk + rk+1 + c · (ak · xk + ak+1 · xk+1) mod p.
5. Assume that all secret values (γi) are revealed with the implementation of the protocol. Thus, all

partial signatures si = γi + c · ai · γi = (1 + c · ai) · γi mod p can be calculated, where γi also plays a
role as a “special” random number.

6. All participants can calculate sapt = spre + s0 + · · ·+ sk−1 mod p.
7. userk calculates s = sapt + γk mod p and releases.

Figure 6. Pre-adaptor signature based on multi-signature.

5. Protocol Instantiation

Assume that there are n participants in the protocol. Let the initiator of the protocol
be usern−1. For each useri (i ∈ {0, . . . , n− 1}), they wish to exchange some coini+1 with
the coini they possess. In addition, j and k refer to the previous and next sequences of i,
respectively, where j = i + 1 mod n and k = i− 1 mod n. In Figure 7, we give an example
which shows the interaction steps of useri when the protocol is running normally. Each
time userk triggers a withdraw condition, the secret value γk will be leaked due to the
feature of adaptor signature. Then, useri will be able to calculate a full signature to trigger
the withdraw condition of the P2SH address where coinj is stored.

Figure 8 shows the detailed protocol workflow. Other parameters are displayed in
Table 2. Arrows between the participants represent the execution direction of the protocol. It
is worth mentioning that the preparation and construction stages constitute the initialization
phase, while the operation stage represents the execution phase.

Cryptography 2024, 8, 6 14 of 22

userk useri userj

Script that stores coini

1. Redeem conditionRi

2. Withdraw condition Ci,1

3. Withdraw condition Ci,2

Script that stores coinj

1. Redeem conditionRj

2. Withdraw condition Cj,1

3. Withdraw condition Cj,2

(1)Trigger Ci,1
(2)

γk

(3)

Calculate full signature with γk

(4)Trigger Cj,1
(5)

γi

Figure 7. A running example for useri during the protocol execution.

Table 2. Parameters of our protocol.

Field Contents Description

P {P0,1, P1,2, . . . , Pn−1,0} The set of all P2SH scripts

D {D0,1, D1,2, . . . , Dn−1,0} The set of addresses (script hash) corresponding to P

T {T0,1, T1,2, . . . , Tn−1,0} The set of the transactions that transfer the assets from
D to users’ private accounts

Spre {spre1,0 , spre1,1 , . . . , spren−2,n−1} The set of all pre-adaptor signatures

Sapt {sapt0,0 , sapt1,0 , sapt1,1 , . . . , saptn−2,n−1} The set of all adaptor signatures

S {s0,0, s1,0, s1,1, . . . , sn−1,0} The set of all valid signatures

Initialization:
For all participants useri with i ∈ {0, 1, . . . , n− 1}:

1. Randomly select xi ←$ Zp as the private key, and then calculate and broadcast the
public key Xi;

2. Generate P and D according to the script generation algorithm;
3. Transfer their assets coini to the P2SH address Dk,i which was constructed by userk

and useri;
4. Create a transaction Ti,j that transfers the assets from Di,j to the private account of

useri, and broadcast it;
5. Randomly select the parameter r ←$ Zp and construct a pre-adaptor signature sprei,0

(and sprei,1 , if necessary) with userj, and broadcast it.

Cryptography 2024, 8, 6 15 of 22

Preparation
Stage

n

Participants

x, X, r, R, γ, Γ

Random
Oracle

secret key

x0

x1

...
xn–1

random r

r0,x

r1,x

...
rn–1,x

Elliptic Curve

X0 X1 ... Xn–1

R0,x R1,x ... Rn–1,x

Check the
Commitment

Construction
Stage

0 1 2 n–2 n–1

T0,1

P0,1

T1,2

P1,2

T2,3

P2,3

Tn–2,n–1

Pn–2,n–1

Tn–3,n–2

Pn–3,n–2

Tn–1,0

Pn–1,0
...

Operation
Stage

A
bo

rt

γ0 γ1 γn–2

Protocol
Processes

Sort users

Generate key
pairs and other

values

coinn–1coinn–2coin1coin0 coin2 coinn–3

Generate scripts

T ransfer coins to
P2SH address

Generate adaptor
signature and pre-
adaptor aignature

Construct adaptor
signature

Take the coin

Expose the secret
value

1 2 n–1

0

secret value

γ0

γ1

...
γn–2

Γ0 Γ1

... Γn–2

Figure 8. A detailed workflow of our protocol.

After the initialization stage, all the participants will obtain the content of P, D, T, and
Spre. If all data pass validation, then continue. Otherwise, abort.

Execution:

1. user0 uses a valid signature s0,0 to obtain coin1 from address D0,1 corresponding to
script P0,1;

2. Other participants can then calculate

γ0 = s0,0 − sapt0,0 = s0,0 − spre0,0 mod p,

sapt1,0 = spre1,0 + γ0 + c1,0 · a0 · γ0.

Notice that a0 (so as all ai) can be publicly calculated as mentioned in Section 2.3.2;
3. user1 uses a valid signature s1,0 = sapt1,0 + γ1 to obtain coin2 from address D1,2

corresponding to script P1,2;
4. Other participants can then calculate

γ1 = s1,0 − sapt1,0 mod p;

5. For useri, where i ∈ {2, . . . , n− 2}:
(a) If no participant has become offline yet:

i. If userk’s secret value γk was released, then calculate

sapti,0 = sprei,0 + γk + ci,0 · ak · γk;

A valid signature si,0 = sapti,0 + γi mod p can be used to obtain coinj.
Other participants can then calculate

γi = si,0 − sapti,0 mod p;

Cryptography 2024, 8, 6 16 of 22

ii. If userk went offline and their secret value γk was not released, then
calculate:

sapti,1 = sprei,1 + γ0 + · · ·+ γi−2 + ci,1·
(a0 · γ0 + · · ·+ ai−2 · γi−2).

A valid signature si,1 = sapti,1 + γi mod p can be used to obtain coinj.
Other users can then calculate:

γi = si,1 − sapti,1 mod p.

(b) If a participant has already become offline:

i. If userk’s secret value γk was released, then calculate:

sapti,0 = sprei,0 + γk + ci,0 · ak · γk.

A valid signature si,0 = sapti,0 + γi mod p can be used to obtain coinj.
Other users can then calculate:

γi = si,0 − sapti,0 mod p;

ii. If userk goes offline, the protocol will terminate.

6. For usern−1:

(a) If usern−2’s secret value γn−2 was released, then calculate a valid signature:

sn−1,0 = γ0 + γn−2 + rn−1,0 + cn−1,0 · (a0 · γ0

+an−2 · γn−2 + an−1 · xn−1) mod p

to obtain coin0;
(b) If only usern−2 went offline and their secret value γn−2 was not released, then

calculate:

sn−1,1 = γ0 + · · ·+ γn−3 + rn−1,1 + cn−1,1 · (a0 · γ0

+ · · ·+ an−3 · γn−3 + an−1 · xn−1) mod p.

(c) If more than one user goes offline, the protocol will terminate.

For different P2SH scripts, it is sometimes necessary for the participants to negotiate
and generate two kinds of signatures. For example, while dealing with the script between
user2 and user3 (that is, P2,3), both signature s2,0 and s2,1 can meet the unlocking conditions
of it. It is worth mentioning that usern−1 does not need to construct an adaptor signature
with user0 since they are the last to execute the protocol.

6. Security Analysis

Our schemes are mainly based on adaptor signatures. It is reasonable that the same
security bases of adaptor signatures were preserved, including pre-signature correctness,
existential unforgeability under chosen message attack for security for adaptor signature
(aEUF-CMA), pre-signature adaptability, and witness extractability, as illustrated in [48].
In our protocol, we have modified the signature scheme to a certain extent (the so-called
pre-adaptor signature scheme). The security definition of the modified signature scheme
will be given below.

As mentioned in [48], a valid pre-signature with respect to Γ cannot be completed
as a valid signature if and only if the corresponding secret γ for Γ is unknown and vice
versa because it is computationally hard to find a secret γ under the assumption that the
discrete logarithm problem is hard [49]. In addition, if the Schnorr signature scheme ΣSch

Cryptography 2024, 8, 6 17 of 22

is SUF-CMA-secure and Rg is a hard relation, then the adaptor signature scheme ΞRg ,ΣSch is
secure.

Furthermore, the pre-adaptor signature scheme plays an important role in our protocol.
With several additional secret values, it can be composed into a valid adaptor signature
and become capable of leaking a secret value via a valid signature. Let θ be the list of the
secret values, which is still unknown, and Θ be the statement of θ. ΞRg ,ΣSch ,Θ denotes the
pre-adaptor signature scheme.

Lemma 1. The correctness of a pre-adaptor signature is verifiable under scheme ΞRg ,ΣSch ,Θ.

Proof. Assume that x, k, γ, γi ←$ Zq, and let X = gx, K = gk, Γ = gγ and Γi = gγi .
The secret list is θ = {γ0, . . . , γn} and Θ = {Γ0, . . . , Γn}. The public key list is L =
{Γ0, Γ1, . . . , Γn, X}. Let γ be the secret value that the target adaptor signature aims to
release. The public parameters can be calculated:

ai = Hagg(L, Γi) and a = Hagg(L, X),

X̃ =
n

∏
i=0

Γi
ai · Xa,

R =
n

∏
i=0

Γi · K · Γ,

c = Hsig(X̃, R, m).

Then, the goal adaptor signature will be:

sapt = (γ0 + · · ·+ γn + k) + c · (a0 · γ0 + · · ·+ an · γn + a · x).

For the pre-adaptor signature spre = k + c · a · x, it can be completed as sapt, since

gspre = K · (Xa)c

=
∏n

i=0 Γi · K
∏n

i=0 Γi
· (X̃

∏n
i=0 Γi

ai
)c

=
g(γ0+···+γn+k)+c·(a0·γ0+···+an ·γn+a·x)

g(γ0+···+γn)+c·(a0·γ0+···+an ·γn)

= gsapt−((1+c·a0)·γ0+···+(1+c·an)·γn+(1+c·a)·x).

The adaptor signature sapt can be constructed with corresponding secret list θ and
valid spre. Thus, the correctness of spre can be verified.

Lemma 2. The cross-chain protocol we proposed is unlinkable if the multi-signature based on the
Schnorr signature is provably secure under the discrete logarithm assumption [47].

Proof. According to the multi-signature algorithm, the public key needs to be calculated in
the form X̃ = ∏n

i=0 Γi
ai · Xa. Without the knowledge of the secret value γ of a user secret

key x, X̃ can perfectly hide the public keys that make up the aggregated public key. So,
the observers of the cryptocurrencies will not be able to link transactions from different
blockchains together.

Lemma 3. The cross-chain protocol we proposed achieves public verifiability if the blockchain is
publicly verifiable.

Proof. Due to the decentralized P2P network of blockchain, everyone can join the Bitcoin
network freely to verify transactions. In addition, in our protocol, the signatures, as well as

Cryptography 2024, 8, 6 18 of 22

the scripts, will be uploaded on Bitcoin, and anyone can easily obtain them and verify that
the script can be executed correctly.

Lemma 4. The cross-chain protocol we proposed satisfies offline tolerance if participants with
adjacent serial numbers will not collude to destroy the protocol and there is no more than one offline
participant.

Proof. In the script generation phase, the rule is set that the locked assets can be redeemed
by the owner if timeout occurs. If participants with adjacent serial numbers will not collude,
then after every successful execution of the script, the other participants will be able to
extract the secret value γ from the signature. The participant with the corresponding
pre-adaptor signature can transfer them by constructing a full signature by collecting the
secret value of Ti−1 or {T0, . . . , Ti−2}. When the second offline participant occurs (the
first one was marked as userx), the other participants can only collect the secret value of
{T0, . . . , Tx−1, Tx+1, . . . , Ti−2}, so the script cannot be executed until the timeout.

7. Performance Analysis

The implementation of our cross-chain protocol is written in Rustlang, and it relies on
the multi-party Schnorr library [50] for signature operations in groups. We implemented
the cryptographic operations of the algorithms depicted in Section 4. We instantiated
Schnorr over the elliptic curve secp256k1 (the one used in Bitcoin), and the basic adaptor
signature algorithm was implemented. Then, we tested the runtimes of these main func-
tionalities without considering the impact of communication. But we gave the size of the
communication message. The source code will be available online.

Testbed. We conducted our experiments on a machine with an Intel Xeon Silver,
2.2 GHz, and 32 GB RAM. We consider the Preparation, Construction, and Operation stages as
shown in Figure 8. Moreover, key generation and random number selection were executed
only once, upon creating a payment link and secret channel, and thus did not affect the
other two stages.

Computation and communication. We measured the computation time and commu-
nication overhead required by the participants. The experiment was conducted in the
scenario of 10 participants. Table 3 shows the consumption of the basic operations in each
stage, including the computation time spent generating some necessary objects (e.g., the
aggregate public key) and the communication overhead cost from transferring some impor-
tant information (e.g., the statement of random numbers). The most time-consuming part
of the protocol was completed before the operation stage. Figure 9 shows the time cost of
different participants. When the protocol runs smoothly (Figure 9a), the time cost increases
approximately linearly from user2 to user8 because the participants at the back of the se-
quence need to calculate the secret information corresponding to all the previous users. If
a participant goes offline (as shown in Figure 9b, where user5 goes offline), then a longer
public key list is required for user6 to generate a valid adaptor signature. Correspondingly,
the latter participants who want to obtain the secret of user6 also need to compute more
calculations. Figure 10 shows the communication cost of different participants. Similar to
the computation time cost, communication overhead increases approximately linearly as
the protocol runs, since later participants need to collect more information broadcast by the
earlier participants to calculate the secrets hidden in the signatures.

Cryptography 2024, 8, 6 19 of 22

0 1 2 3 4 5 6 7 8 9

Participants

0

500

1000

1500

2000

2500

3000

Co
mp

ut
at

io
n

ti
me

 (
s)

(a) No one goes offline

0 1 2 3 4 5 6 7 8 9

Participants

0

500

1000

1500

2000

2500

3000

Co
mp

ut
at

io
n

ti
me

 (
s)

(b) user5 goes offline
Figure 9. Computation times of different participants under different situations. The color blocks in
the upper left corner of the figures (from blue to red) represent Gen KeyPair, Gen Random Nums, Gen
Script, Gen Pre-adaptor Signature, Extract Secret, and Gen Signature respectively.

0 1 2 3 4 5 6 7 8 9

Participants

0

1000

2000

3000

4000

5000

6000

Co
mm

un
ic
at

io
n
ov

er
he
ad
 (

by
te

s)

PublicKey

RandomNumber

Pre-adaptor Signature

Figure 10. Communication costs of different users.

Table 3. Computation time and communication costs.

Stage Time (µs) Comm (Bytes)

Preparation pub_key 23.7 80
random 17.9 112

Construction

script 24.5 0
X̃ 14.2 n 0
R 7.8 n 0
c 29.8 0

pre-adaptor signature (part) 35.3 16
pre-adaptor signature (aggregated) 18.4 0

Operation signature adapt 23.1 0
secret extract 23.7 0

8. Conclusions

In this paper, we proposed a privacy-preserving multi-party cross-chain transaction
protocol based on adaptor signatures and P2SH scripts. We leveraged the capability of
digital signature and the basic scripting language of blockchain to construct a protocol with
properties such as unlinkability, public verifiability, offline tolerance, and privacy preservation.
We introduced novel cryptographic primitives like pre-adaptor signatures and pre-adaptor
signatures to support the protocol design. Furthermore, we provided security analysis to
ensure that our proposals satisfied the essential security requirements. The performance
analysis shows that the computational and communication overhead of our protocol are ac-
ceptable. For future work, supporting more complex transaction topologies is an interesting
direction. And the tradeoff between privacy and efficiency can also be further optimized.

Cryptography 2024, 8, 6 20 of 22

Author Contributions: Conceptualization, C.C.; methodology, C.C. and G.Y.; validation, C.C.; formal
analysis, Q.C.; investigation, Z.L.; data curation, C.C. and G.Y.; writing—original draft preparation,
C.C. and G.Y.; writing—review and editing, C.C. and F.X.; visualization, G.Y.; supervision, Q.C. and
J.L.; project administration, Q.C. and J.L.; funding acquisition, Q.C. and J.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This work is supported by the National Key Project of China (Grant No. 2020YFB1005700),
the National Natural Science Foundation of China (Grant No. 62261160651, 62172117, 62272118,
62132018).

Data Availability Statement: No data were used to support this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://assets.pubpub.org/d8wct41f/3161

1263538139.pdf (accessed on 30 October 2023).
2. Poon, J.; Dryja, T. The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments. 2016. Available online:

https://static1.squarespace.com/static/6148a75532281820459770d1/t/61af971f7ee2b432f1733aee/1638897446181/lightning-
network-paper.pdf (accessed on 23 October 2023).

3. Corbett, J.C.; Dean, J.; Epstein, M.; Fikes, A.; Frost, C.; Furman, J.J.; Ghemawat, S.; Gubarev, A.; Heiser, C.; Hochschild, P.; et al.
Spanner: Google’s globally distributed database. ACM Trans. Comput. Syst. TOCS 2013, 31, 3.

4. Werner, S.; Perez, D.; Gudgeon, L.; Klages-Mundt, A.; Harz, D.; Knottenbelt, W. Sok: Decentralized finance (defi). In Proceedings
of the 4th ACM Conference on Advances in Financial Technologies, Cambridge, MA, USA, 19–21 September 2022; pp. 30–46.

5. Ren, Y.; Lv, Z.; Xiong, N.N.; Wang, J. HCNCT: A Cross-chain Interaction Scheme for the Blockchain-based Metaverse. ACM Trans.
Multimed. Comput. Commun. Appl. 2023. [CrossRef]

6. Jiang, Z.; Zha, C.; Li, X.; Xu, Z.; Zhang, X.; Yin, H. A Cross-Chain framework for Industry Collaboration and Transaction. In
Proceedings of the 2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital
Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta),
Haikou, China, 15–18 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 2436–2443.

7. Wang, Y.; Su, Z.; Zhang, N.; Xing, R.; Liu, D.; Luan, T.H.; Shen, X. A survey on metaverse: Fundamentals, security, and privacy.
IEEE Commun. Surv. Tutor. 2022, 25, 319–352. [CrossRef]

8. Herlihy, M. Atomic cross-chain swaps. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing,
Egham, UK, 23–27 July 2018; pp. 245–254.

9. Wood, G. Polkadot: Vision for a heterogeneous multi-chain framework. White Pap. 2016, 21, 4662.
10. Thomas, S.; Schwartz, E. A Protocol for Interledger Payments. 2015. Available online: https://interledger.org/interledger.pdf

(accessed on 15 August 2023).
11. Buterin, V. Chain Interoperability. 2016. Available online: https://allquantor.at/blockchainbib/pdf/buterin2016chain.pdf

(accessed on 16 August 2023).
12. Back, A.; Corallo, M.; Dashjr, L.; Friedenbach, M.; Maxwell, G.; Miller, A.; Poelstra, A.; Timón, J.; Wuille, P. Enabling Blockchain

Innovations with Pegged Sidechains. 2014. Available online: http://kevinriggen.com/files/sidechains.pdf (accessed on 15
August 2023).

13. Jedusor, T.E. Mimblewimble. 2016. Available online: https://docs.beam.mw/Mimblewimble.pdf (accessed on 7 March 2023).
14. Deshpande, A.; Herlihy, M. Privacy-preserving cross-chain atomic swaps. In Proceedings of the International Conference

on Financial Cryptography and Data Security, Kota Kinabalu, Sabah, Malaysia, 10–14 February 2020; Springer International
Publishing: Cham, Switzerland, 2020; pp. 540–549.

15. Hoenisch, P.; del Pino, L.S. Atomic Swaps between Bitcoin and Monero. arXiv 2021, arXiv:2101.12332.
16. Koutsos, V.; Papadopoulos, D.; Chatzopoulos, D.; Tarkoma, S.; Hui, P. Agora: A privacy-aware data marketplace. In Proceedings

of the 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS), Singapore, 29 November–1 December
2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1211–1212.

17. Thyagarajan, S.A.K.; Malavolta, G. Lockable Signatures for Blockchains: Scriptless Scripts for All Signatures. In Proceedings of
the 2021 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 24–27 May 2021.

18. Malavolta, G.; Moreno-Sanchez, P.; Schneidewind, C.; Kate, A.; Maffei, M. Anonymous multi-hop locks for blockchain scalability
and interoperability. In Proceedings of the 26th Annual Network and Distributed System Security Symposium, NDSS 2019,
San Diego, CA, USA, 24–27 February 2019; pp. 1–15.

19. Tairi, E.; Moreno-Sanchez, P.; Maffei, M. A2l: Anonymous atomic locks for scalability in payment channel hubs. In Proceedings
of the 2021 IEEE Symposium on Security and Privacy (SP), Francisco, CA, USA, 24–27 May 2021; IEEE: Piscataway, NJ, USA,
2021; pp. 1834–1851.

https://assets.pubpub.org/d8wct41f/31611263538139.pdf
https://assets.pubpub.org/d8wct41f/31611263538139.pdf
https://static1.squarespace.com/static/6148a75532281820459770d1/t/61af971f7ee2b432f1733aee/1638897446181/lightning-network-paper.pdf
https://static1.squarespace.com/static/6148a75532281820459770d1/t/61af971f7ee2b432f1733aee/1638897446181/lightning-network-paper.pdf
http://doi.org/10.1145/3594542
http://dx.doi.org/10.1109/COMST.2022.3202047
https://interledger. org/interledger. pdf
https://allquantor.at/blockchainbib/pdf/buterin2016chain.pdf
http://kevinriggen.com/files/sidechains.pdf
https://docs.beam.mw/Mimblewimble.pdf

Cryptography 2024, 8, 6 21 of 22

20. Heilman, E.; Alshenibr, L.; Baldimtsi, F.; Scafuro, A.; Goldberg, S. Tumblebit: An untrusted bitcoin-compatible anonymous
payment hub. In Proceedings of the Network and Distributed System Security Symposium (NDSS 2017), San Diego, CA, USA, 26
February–1 March 2017; pp. 1–15.

21. Thyagarajan, S.A.; Malavolta, G.; Moreno-Sanchez, P. Universal atomic swaps: Secure exchange of coins across all blockchains. In
Proceedings of the 2022 IEEE Symposium on Security and Privacy (SP), Francisco, CA, USA, 22–26 May 2022; IEEE: Piscataway,
NJ, USA, 2022; pp. 1299–1316.

22. Thyagarajan, S.A.K.; Bhat, A.; Malavolta, G.; Döttling, N.; Kate, A.; Schröder, D. Verifiable timed signatures made practical. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual, 9–13 November 2020;
pp. 1733–1750.

23. Zamyatin, A.; Harz, D.; Lind, J.; Panayiotou, P.; Gervais, A.; Knottenbelt, W. Xclaim: Trustless, interoperable, cryptocurrency-
backed assets. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–22 May
2019; IEEE: Piscataway, NJ, USA, 2019; pp. 193–210.

24. Liu, Z.; Xiang, Y.; Shi, J.; Gao, P.; Wang, H.; Xiao, X.; Wen, B.; Hu, Y.C. Hyperservice: Interoperability and programmability across
heterogeneous blockchains. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
London, UK, 11–15 November 2019; pp. 549–566.

25. Canetti, R. Universally composable security: A new paradigm for cryptographic protocols. In Proceedings of the 42nd IEEE
Symposium on Foundations of Computer Science, Newport Beach, CA, USA, 8–11 October 2001; pp. 136–145.

26. Chen, T.; Li, Z.; Zhu, Y.; Chen, J.; Luo, X.; Lui, J.C.S.; Lin, X.; Zhang, X. Understanding ethereum via graph analysis. ACM Trans.
Internet Technol. TOIT 2020, 20, 1–32. [CrossRef]

27. Yousaf, H.; Kappos, G.; Meiklejohn, S. Tracing transactions across cryptocurrency ledgers. In Proceedings of the 28th {USENIX}
Security Symposium ({USENIX} Security 19), Santa Clara, CA, USA, 14–16 August 2019; pp. 837–850.

28. Kalodner, H.; Möser, M.; Lee, K.; Goldfeder, S.; Plattner, M.; Chator, A.; Narayanan, A. Blocksci: Design and applications of a
blockchain analysis platform. In Proceedings of the 29th {USENIX} Security Symposium ({USENIX} Security 20), Berkeley, CA,
USA, 12–14 August 2020; pp. 2721–2738.

29. Bünz, B.; Agrawal, S.; Zamani, M.; Boneh, D. Zether: Towards privacy in a smart contract world. In Proceedings of the
International Conference on Financial Cryptography and Data Security, Kota Kinabalu, Sabah, Malaysia, 10–14 February 2020;
Springer International Publishing: Cham, Switzerland, 2020; pp. 423–443.

30. Kosba, A.; Miller, A.; Shi, E.; Wen, Z.; Papamanthou, C. Hawk: The blockchain model of cryptography and privacy-preserving
smart contracts. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2016.
IEEE: Piscataway, NJ, USA, 2016; pp. 839–858.

31. Bünz, B.; Bootle, J.; Boneh, D.; Poelstra, A.; Wuille, P.; Maxwell, G. Bulletproofs: Short proofs for confidential transactions and
more. In Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–24 May 2018;
pp. 315–334.

32. Pedersen, T.P. Non-interactive and information-theoretic secure verifiable secret sharing. In Proceedings of the Annual
International Cryptology Conference, Santa Barbara, CA, USA, 11–15 August 1991; Springer: Berlin/Heidelberg, Germany, 1991;
pp. 129–140.

33. Kumar, A.; Fischer, C.; Tople, S.; Saxena, P. A traceability analysis of monero’s blockchain. In Proceedings of the European
Symposium on Research in Computer Security, Oslo, Norway, 11–15 September 2017; Springer: Berlin/Heidelberg, Germany,
2017; pp. 153–173.

34. Möser, M.; Böhme, R. Anonymous alone? measuring Bitcoin’s second-generation anonymization techniques. In Proceedings of
the 2017 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Paris, France, 29–30 April 2017; pp. 32–41.

35. Herlihy, M.; Liskov, B.; Shrira, L. Cross-chain deals and adversarial commerce. VLDB J. 2021, 31, 1291–1309. [CrossRef]
36. Nolan, T. Alt Chains and Atomic Transfers. 2013. Available online: https://bitcointalk.org/index.php?topic=193281.0

(accessed on 8 September 2023).
37. Dziembowski, S.; Eckey, L.; Faust, S. Fairswap: How to fairly exchange digital goods. In Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018; pp. 967–984.
38. Zakhary, V.; Agrawal, D.; El Abbadi, A. Atomic Commitment Across Blockchains. Proc. VLDB Endow. 2020, 13, 1807–2800.

[CrossRef]
39. Xiong, A.; Liu, G.; Zhu, Q.; Jing, A.; Loke, S.W. A notary group-based cross-chain mechanism. Digit. Commun. Netw. 2022,

8, 1059–1067. [CrossRef]
40. Gugger, J. Bitcoin-Monero Cross-chain Atomic Swap. Cryptol. ePrint Arch. 2020, 2020, 1126.
41. Zhang, Y.; Hu, S.; Wang, Q.; Qin, B.; Wu, Q.; Shi, W. PXCrypto: A Regulated Privacy-Preserving Cross-Chain Transaction Scheme.

In Proceedings of the International Conference on Algorithms and Architectures for Parallel Processing, Copenhagen, Denmark,
10–12 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 170–191.

42. Chen, L.; Yao, Z.; Si, X.; Zhang, Q. Three-Stage Cross-Chain Protocol Based on Notary Group. Electronics 2023, 12, 2804. [CrossRef]
43. Okupski, K. Bitcoin developer reference. In Working Paper; Technische Universiteit Eindhoven: Eindhoven, The Netherlands,

2016; pp. 1–43.
44. Schnorr, C.P. Efficient signature generation by smart cards. J. Cryptol. 1991, 4, 161–174. [CrossRef]

http://dx.doi.org/10.1145/3381036
http://dx.doi.org/10.1007/s00778-021-00686-1
https://bitcointalk.org/index.php?topic=193281.0
http://dx.doi.org/10.14778/3397230.3397231
http://dx.doi.org/10.1016/j.dcan.2022.04.012
http://dx.doi.org/10.3390/electronics12132804
http://dx.doi.org/10.1007/BF00196725

Cryptography 2024, 8, 6 22 of 22

45. Aumayr, L.; Ersoy, O.; Erwig, A.; Faust, S.; Hostáková, K.; Maffei, M.; Moreno-Sanchez, P.; Riahi, S. Generalized channels from
limited blockchain scripts and adaptor signatures. In Proceedings of the Advances in Cryptology–ASIACRYPT 2021: 27th
International Conference on the Theory and Application of Cryptology and Information Security, Singapore, 6–10 December 2021;
Proceedings, Part II 27; Springer: Berlin/Heidelberg, Germany, 2021; pp. 635–664.

46. Bellare, M.; Neven, G. Multi-signatures in the plain public-key model and a general forking lemma. In Proceedings of the 13th
ACM conference on Computer and Communications Security, Alexandria, VA, USA, 30 October–3 November 2006; pp. 390–399.

47. Maxwell, G.; Poelstra, A.; Seurin, Y.; Wuille, P. Simple schnorr multi-signatures with applications to bitcoin. Des. Codes Cryptogr.
2019, 87, 2139–2164. [CrossRef]

48. Aumayr, L.; Ersoy, O.; Erwig, A.; Faust, S.; Hostáková, K.; Maffei, M.; Moreno-Sanchez, P.; Riahi, S. Generalized Bitcoin-
Compatible Channels. IACR Cryptol. ePrint Arch. 2020, 2020, 476.

49. Kiltz, E.; Masny, D.; Pan, J. Optimal security proofs for signatures from identification schemes. In Proceedings of the Advances in
Cryptology–CRYPTO 2016, Santa Barbara, CA, USA, 14–18 August 2016; pp. 33–61.

50. ZenGo-X. Multi-Party-Schnorr. 2018. Available online: https://github.com/ZenGo-X/multi-party-schnorr (accessed on 2
September 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10623-019-00608-x
https://github.com/ZenGo-X/multi-party-schnorr

	Introduction
	The Challenges of Constructing Secure Cross-Chain Protocols
	Our Contributions
	Related Work
	Organization

	Preliminaries
	Pay To Script Hash
	Transaction Generation
	Adaptor Signature and Multi-Signature
	Adaptor Signature
	Multi-Signature

	Brief Description of the Cross-Chain Protocol
	Overview
	Some Improvements
	Principle 1
	Principle 2

	Design Goals

	Algorithm Definition
	Script Generation Algorithm
	Adaptor Signature with Multi-Signature
	Pre-Adaptor Signature Algorithm

	Protocol Instantiation
	Security Analysis
	Performance Analysis
	Conclusions
	References

