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Sensing technology drives innovation in digital technology, especially in data acquisi-
tion [1], machine learning [2], digital twins [3], sustainable material-based electronics [4],
and human–machine interaction. With the aid of these new technologies in industry [5], a
researchers need to reach a general consensus on their use going forward.

A digital twin refers to the multiphysical, multiscale, and probabilistic simulation
mapping of complex products in the physical world and virtual environments, with the aim
of reproducing their real-world applications [6]. With the help of various types of sensors,
building digital twins has wider applications, ranging from satellites and manufacturing to
smart homes [7–10]. On the one hand, the development of these sensors is significant for
data collecting and distribution in a digital twin [11–13]. Sensor data serve as the foundation
for establishing and maintaining a digital twin model; their integration with the digital
twin concept allows for the synchronization of physical objects with their corresponding
virtual representations. On the other hand, creating a digital twin enables gaining a
comprehensive understanding of the physical entity’s behavior and characteristics, even
under changing conditions, which facilitates the real-time monitoring and analysis of the
object [14]. Once massive sensors with a variety of functions are integrated into the real
scene, the digital twin creates a virtual world that can be controlled by the Internet of Things
and used to monitor physical objects [15–18]. This is a useful framework for representing
and simulating how physical objects interact in target environments [19,20]. Therefore,
sensing integrated into digital twin technology has been studied and extensively applied in
many traditional industrial fields, such as automatic driving [21], smart cities [22], medical
care [23], intelligent robots [24], etc.

This Special Issue features eight research and review articles demonstrating the most
recent advances in physical sensing in machine learning, human–machine interfaces, data
confusion, and various potential applications of sensors within digital twin innovation,
which should give readers a glimpse of the challenges, opportunities, and development
trends in this area.

Five research articles explore novel sensing technologies and detecting approaches for
equipment and systems. Constantinoiu et al. (contribution 1) present several techniques
for evaluating shallow-water bathymetry, employing marine unmanned systems (MUSs)
equipped with cutting-edge and creative sensors such as Light Detection and Ranging
(LiDAR) and multibeam echosounder (MBES). Through comparing the accuracy, precision,
speed, and operational efficiency of each satellite-derived bathymetry (SDB) technique, the
authors enable the reader to easily understand the effectiveness and utilization of these
approaches. To enhance sensing performance in magnetic induction switches, Zhang et al.
(contribution 2) designed a core unit consisting of a magnetic sensing component and
a signal conditioning circuit; it has the capacity to precisely determine the direction of
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magnetic fields using a permalloy layer with the anisotropic magneto-resistance (AMR)
effect. An interface circuit based on a trans-impedance amplifier (TIA) was also designed
for measuring and controlling the output signal of the sensing device. To preserve and
effectively utilize SERS substrates, Song et al. (contribution 3) proposed a novel technique
that uses 3D printing and a ballpoint pen to create them on different kinds of paper. This
method ensured a high enhancement factor, maximizing the utilization of the substrate
and demonstrating excellent SERS sensitivity and spectral reproducibility. To reduce the
impact of gear component malfunction or failure, Lee et al. (contribution 4) implemented
an outlier detection approach to detect and classify defects. This study focused on the
autoencoder long short-term memory (AE-LSTM) model for abnormality identification,
which achieved an accuracy rate of 94.42% in recognizing malfunctioning gearboxes within
an extruder machine system. Meanwhile, Patel et al. (contribution 5) described a non-
destructive technique that uses K-mer frequency encoding to detect cable flaws. The
method of detection combines magnetic leakage detection equipment with artificial in-
telligence, including cable signal acquisition, K-mer frequency encoding, and artificial
intelligence-based identification, achieving an identification accuracy rate of 91% through
repeated sampling.

As for innovative applications of sensing technology in digital twins, Lin et al. (contri-
bution 6) used ZigBee web technology to develop a monitoring system for intensive care
units (ICUs) that can create an interface based on user needs. The suggested GUI makes
it possible to monitor a patient’s many vital signs, effectively reducing the required costs
and time so that patients can achieve timely and appropriate treatment. To reduce the
spread of disinformation, Shushkevich et al. (contribution 7) proposed a method to tackle
fake-news detection (FND) in practical scenarios, using multiclass classification to analyze
a corpus including unknown themes: true, false, partially false, and other categories. The
contributions of this study include exploring three BERT-based models, enhancing results
via ChatGPT-generated artificial data for class balance, and improving outcomes using
a two-step binary classification procedure, with experimental results demonstrating su-
perior performance compared to existing methods. Wu et al. (contribution 8) analyzed
the mapping form of both teaching and cue data on users’ cognitive abilities using an
experimental method. The findings demonstrated the substantial influence that distinct
cue display designs and instructional content have on users’ learning outcomes, which is
of great significance for virtual education research in digital twins.

We would like to thank every one of the authors and reviewers who contributed to
this Special Issue. Furthermore, we hope that the articles showcased here are interesting
and helpful for readers and inspire new innovations in the field.
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