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Abstract: 3D modeling and reconstruction are critical to creating immersive XR experiences, providing
realistic virtual environments, objects, and interactions that increase user engagement and enable
new forms of content manipulation. Today, 3D data can be easily captured using off-the-shelf,
specialized headsets; very often, these tools provide real-time, albeit low-resolution, integration
of continuously captured depth maps. This approach is generally suitable for basic AR and MR
applications, where users can easily direct their attention to points of interest and benefit from a
fully user-centric perspective. However, it proves to be less effective in more complex scenarios
such as multi-user telepresence or telerobotics, where real-time transmission of local surroundings
to remote users is essential. Two primary questions emerge: (i) what strategies are available for
achieving real-time 3D reconstruction in such systems? and (ii) how can the effectiveness of real-time
3D reconstruction methods be assessed? This paper explores various approaches to the challenge
of live 3D reconstruction from typical point cloud data. It first introduces some common data
flow patterns that characterize virtual reality applications and shows that achieving high-speed
data transmission and efficient data compression is critical to maintaining visual continuity and
ensuring a satisfactory user experience. The paper thus introduces the concept of saliency-driven
compression/reconstruction and compares it with alternative state-of-the-art approaches.

Keywords: point cloud; compression; 3D live reconstruction; saliency; visual attention

1. Introduction

Nowadays, the 3D representation of objects and environments is increasingly utilized
in common applications like telepresence and remote collaboration [1,2], autonomous
driving [3], remote operations in hazardous environments [4,5], telemedicine [6,7]. Specifi-
cally, thanks to the use of special sensors such as depth (RGB-D) cameras or LiDAR scanners,
it is possible to faithfully reconstruct reality and reproduce it in virtual environments, en-
abling new forms of interaction. The typical representation used in this kind of application
is the point cloud; it involves the storage and visualization of large sets of points in 3D
space, where each point typically corresponds to a single spatial coordinate along with
optional attributes such as color, intensity, or surface normal. One of the main advantages
of point cloud representation is its ability to capture detailed geometric information of
complex surfaces and environments, making it a valuable tool in various contexts for tasks
such as object recognition, scene reconstruction, and measurement. However, managing
and processing large point cloud datasets can be computationally intensive and challenging
due to their high dimensionality and potentially massive size. Moreover, in the case of
network transmission, several factors come into play to ensure efficient and reliable transfer:
for example, data compression turns to be a critical aspect when dealing with large dataset,
and latency can cause delays in data transmission, affecting the responsiveness of the
applications. Overall, efficient network transmission of point cloud data requires a balance
between data size, transmission speed, reliability, and latency to meet the requirements of
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specific applications [8]. For this reason, the quest for methods to compress or reduce 3D
live data is gaining considerable interest within the scientific community.

The objective of this study is twofold. First, a novel approach for the compression
and reconstruction of point cloud representations is proposed; this approach is based on
the detection of saliency points within a scene and is inspired by the way human vision
operates. Just as the human eye does not attempt to capture every detail in the visual
field but instead focuses on specific areas or points, this approach optimizes the amount
of information captured and consequently processed. More precisely, two novel encoding
methods are introduced: the Alternate Depth Compression (ADC) and the Log-Polar (LP)
method, detailed in Section 3.1 and Section 3.2, respectively. Both methods utilize depth
maps and RGB data as inputs and share the same basic idea, although they employ different
compression filters.

Second, in order to assess the effectiveness of the proposed solutions, the developed
methods are compared with state-of-the-art compression techniques. The comparison takes
into account both the compression efficiency and the quality of reconstructed surfaces.
Two distinct scenarios are explored in detail: telepresence in video conferencing, which
emphasizes the faces of participants as the focal point of attention, and telerobotics, where
a dynamically updated 3D environment captured by a mobile remote camera is shared
with telepresence users. In both scenarios, the system autonomously extracts and utilizes
a subset of available points, aiming to minimize data size while ensuring high-quality
3D information.

2. Background
2.1. 3D Live Reconstruction for Mixed Reality

Although both 3D live reconstruction and traditional 3D reconstruction aim to generate
3D models from acquired data, they differ significantly in terms of real-time processing
and scope. In live reconstruction, the goal is to reconstruct a 3D model of a scene or
object at the moment it is captured, allowing for immediate visualization and interaction
in a virtual environment. Reconstruction algorithms can, therefore, prioritize speed over
accuracy to ensure that 3D models can be generated quickly enough for real-time interaction.
Differences also exist in relation to acquisition systems. Real-time capture devices such as
depth cameras, LiDAR sensors, or RGB-D cameras, can provide depth information along
with color imagery. These devices are optimized to acquire data quickly and efficiently, and
this enables real-time reconstruction, but often at the expense of resolution and accuracy.

A point-based representation relative to the observer (in the form of depth) is the most
widely used of those provided by real-time acquisition devices. Depth data can either
undergo pre-processing (for example, background cleaning or generation of a point cloud
independent from the observer) or be directly utilized as input data to compute a full
3D representation of the target scene, employing approaches such as surface meshes or
volumetric fusion [9,10].

With reference to Figure 1, it is worth noting that a full 3D reconstruction performed
immediately after acquisition (server side) greatly affects the transmission phase. In fact,
in this case, the amount of data to be transmitted is very large (fine-scale volumetric
representations are usually memory-greedy) and requires specific manipulation in order
to limit the transmission time. For example, an online system for large and fine-scale
volumetric reconstruction has been proposed in [11]. This approach uses a memory-efficient
spatial hashing scheme, enabling real-time access and updates of implicit surface data
without relying on hierarchical grid structures. Surface data are stored densely only where
measurements are observed, and efficient data streaming ensures scalability, especially
during sensor motion. SLAM-CAST [12] is a novel scene representation and transmission
protocol based on Marching Cubes (MC) indices, enabling operation in low-bandwidth
remote connection scenarios. Instead of reconstructing geometry on the server side or
performing server-side rendering, the scene is encoded as a compressed sequence of voxel
block indices and values. The final geometry reconstruction is left to the exploration client.
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This approach significantly reduces bandwidth requirements compared to previous voxel-
based methods. In [13], a method for producing a single full 3D reconstruction surface of a
moving user in real-time is introduced by using multiple depth sensors and a marching
square approach to produce a single full 3D reconstruction surface. This method has been
specifically designed for Mixed Reality (MR) telepresence.

Figure 1. Data flow for 3D live reconstruction before (left) and after (right) transmission.

Figure 1 also shows an alternative approach to 3D live reconstruction. In this case,
direct use of point cloud is favored due to its ability to reduce the computational burden
on the server side and limit the overall memory requirements associated with volumetric
approaches [14]. Obviously, 3D reconstruction, in this case, occurs after transmission (client
or exploration side). Point cloud compression and transmission can be achieved either
by considering the raw 3D data and attempting to regularize the non-uniform and sparse
structure of point clouds or by converting (or keeping) the point cloud into the original
depth format [15,16]. In this case, data can be compressed and transmitted over a network
in a way quite similar to what is done for common 2D images [17,18]. The main 2D-based
techniques leverage traditional image or video compression methods, such as JPEG, MPEG,
or dictionary-based compression [19].

2.2. Depth Compression

Although depth image compression has been studied for many years, it remains an
open discussion topic in the scientific community. Various lossy and lossless methods have
been proposed [15,19]; however, a standard reference method has not yet been established.

Several methods adopt standard RGB compression techniques to compress depth. For
instance, in [20], the original 16-bit depth map is encoded into an 8-bit, three-channel image,
which is then processed by a video encoder and transferred over the network.

Other methods rely on the segmentation of depth or RGB data. In [21], a compression
method based on segmenting the contour of the image is proposed. Depth information
for each segment within the depth image is represented by a piecewise-linear function,
enabling the representation of surfaces not parallel to the image plane and characterized
by a linear gradient in the depth image. In [22,23], segmentation of depth based on planar
information is exploited.

In [24], Microsoft introduces a 2D lossless method named RVL, which attains compa-
rable compression rates to commonly used lossless techniques but operates notably faster.
The proposed method is a blend of Run Length Encoding and Variable Length Encoding
schemes, which consider the number of zeros, the number of non-zeros, and the differences
(deltas) of successive non-zero pixel values.

In [25], Intel introduces a colorization method for depth images utilizing the Hue color
space. This enables the treated image to be regarded as a standard RGB image, thereby
facilitating compression using widely available standard compression methods. In 2022, a
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novel approach was proposed by Chen and colleagues [26], leveraging shared structural
information within RGB-D data to reduce cross-modal redundancies in the depth map.
This method utilizes machine learning techniques, employing convolutional layers and
activation layers to extract structural information from the latent features of RGB data.

FitDepth [27] is one of the most recent methods proposed, relying on multiple curve
fittings for encoding noisy depth images. The compression mechanism processes each row
of the depth image, describing it as a set of polynomial functions. This method claims
superior speed and compression performance compared to JPEG2000 and PNG formats.

In contrast to the above methods, attention-based compression methods have been
proposed in [28,29]. Both methods are grounded in the concept of region-of-interest (ROI),
defined through segmentation approaches that extract edges or main objects.

In [30], a similar approach is applied to 3D medical images, introducing the concept of
volume-of-interest (VOI). This compression scheme relies on object-based coding, employ-
ing segmentation approaches to separate objects from the background and compressing
object and background regions separately.

2.3. Saliency

In the field of computer vision, saliency detection has long been a tool for the identi-
fication of the most visually significant regions within an image. Traditional approaches
to saliency detection are based on low-level features such as color, intensity, texture, and
orientation. Examples include the Itti–Koch model [31], an implementation of earlier
psychological theories of bottom-up attention, and the Koch and Ullman Computational At-
tention Architecture [32]. Although effective for simple images with few featured elements,
these methods struggle in complex scenes with cluttered backgrounds. To overcome this
problem, Liu and colleagues [33] reformulated saliency detection as an image segmentation
problem, focusing on the separation of a “salient object” from the image background. For
this purpose, they proposed a set of novel features, including contrast analysis over multi-
ple spatial scales and color spatial distribution, and suggested the use of Random Fields
to effectively combine these features. Deep Learning-Based Techniques have also been
recently adopted; leveraging neural networks, deep learning models have revolutionized
the field [34] showing how to capture hierarchical saliency information from deep, coarse
layers (global saliency response) to shallow, fine layers (local saliency response). The CNNs
have proven to be highly effective in identifying areas of greatest interest, although the
relationship between CNN results and the prediction of human visual attention remains
largely obscure and subject to study [35,36].

3. Methodology

In this paper, we present and compare different innovative techniques for optimizing
remote 3D data reconstruction. Two novel compression methods are proposed: the Alter-
nate Depth Compression (ADC) and the Log-Polar (LP) method, detailed in Section 3.1 and
Section 3.2, respectively. Furthermore, two distinct application scenarios characterized by
different attention mechanisms are taken into consideration: the single-attention scenario
described in Section 3.3 and the multi-attention scenario presented in Section 3.4.

3.1. ADC Compression Method

The ADC uses quantization to reduce the overall amount of information. Essentially,
it preserves maximum resolution for the portion of the image that is most interesting to
the viewer (i.e., the focus of attention) while under-sampling pixels in other areas. ADC
was designed specifically for telepresence applications, where the face of the interlocutor
is considered the focal point for the observer. For this purpose, ADC exploits a basic face
detection tool [37] and selects through this the face bounding box (FBB) of interest. As
depicted in Algorithm 1, the ADC code accepts as inputs the image file (RGB or depth),
the quantization step, and a data structure FBB defining the face bounding box. The
code iterates through each row of the matrix derived from the input image, examining



Multimodal Technol. Interact. 2024, 8, 36 5 of 16

individual pixels. If a pixel falls within one of the rows defined by the quantization steps
or resides within the region delineated by the FBB, it is appended to the encoded list. This
list constitutes the ultimate output of the encoding procedure.

Algorithm 1 ADC compression

procedure ADC(image, step, FBB)
w = width of the depth file
h = height of the depth file
encoded = newList()
jumpCounter ← 0
for y← 1, h do

if jumpCounter = step then
jumpCounter ← 0

end if
for x ← 1, w do

if (x, y) ∈ FBB OR jumpCounter = 0 then
encoded.Append(depth[x, y])

end if
end for
jumpCounter ← jumpCounter + 1

end for
return encoded

end procedure

3.2. Log-Polar Compression Method

Log-polar compression is a well-known type of 2D compression based on the log-
polar transformation and inspired by the mapping of retinal receptive fields. Images
or depth images are transformed from their usual Cartesian coordinates to log-polar
coordinates (ρ, θ), where ρ represents the eccentricity (logarithm of the distance from the
origin) and θ represents the angle. Log-polar compression is particularly useful in computer
vision tasks where variations in scale and rotation need to be accommodated. It can also be
applied in tasks like feature extraction and pattern matching, where the inherent properties
of log-polar coordinates facilitate robust and efficient processing. Since the late eighties, the
log-polar has been successfully applied to shape analysis [38], video compression [39] and
robotics [40]. The log-polar transformation applied to the case study is the one described
in [41] but with a number of receptive fields (24 radial fields along 32 angular directions)
suitable to ensure the quality of the reconstruction. Figure 2 shows the application of LP
compression to a single frame; in analogy with ADC, the FBB is placed on the subject’s face.

Figure 2. (left) Example of the LP compression scheme applied to a single frame (424 × 240 pixels),
the center of the filter is the subject’s face. (right) Resulting in LP image (24 × 32 pixels, enlarged for
visualization purposes).

Algorithm 2 shows the pseudo-code of the log-polar compression implementation.
The image serves as the input file (RGB or depth), while cx and cy denote the center of
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the filter. Parameters overlayAngles and overlayRad govern the degree of oversampling
of the log-polar filter, while numAngles and numRads determine the dimensions of the
log-polar filter. As a preliminary step, the method computes the positions of all filtering
areas (receptive fields) using the functions CalculateAngles() and CalculateRads(). Thus,
for each radial distance, a kernel is computed with the CreateMeanKernel() function, which
is then iteratively applied along the circumference. The final output is the compressed
pixels stored in the encoded list.

Algorithm 2 Log-polar compression

procedure LOGPOLAR(image, cx, cy, overlayAngles, overlayRad, numAngles, numRads)
angles← CalculateAngles()
rads← CalculateRads()
encoded = newList()
for i← 1, numRads do

kernel ← CreateMeanKernel()
for j← 1, numAngles do

x ← cx + cos(angles[j]) ∗ rads[i])
y← cy + sin(angles[j]) ∗ rads[i])
encoded.Append(ApplyKernel(image, x, y))

end for
end for
return encoded

end procedure

3.3. Single-Attention Scenario

The single-attention scenario pertains to a scene where the focus of attention is clear:
the observer is looking at a specific point, typically in the foreground, and directs his
attention to it. An example of this is a telepresence application where the observer’s
attention is primarily focused on a person, specifically the face, represented in the virtual
environment. In Figure 3, the schema of the enconding-decoding mechanisms for the single
attention scenario is shown.

Figure 3. Single-attention compression schema for ADC and the LP method.

The RGB image is processed with the face detector, which generates a bounding
box (FBB) around the subject’s face in the scene. This FBB can then be utilized to apply
an ADC or log-polar compression method to either the depth or RGB data. The resulting
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compressed data can be transmitted over the network. At the receiver, the decoder generates
the 3D data in the form of a point cloud. If the ADC method has been employed, missing
data resulting from lossy compression are estimated using bilinear interpolation. If the log-
polar method has been utilized, the final value assigned to each point of the cloud (either
depth or color) is computed as the average of all affected (overlapping) receptive fields.

3.4. Multiple-Attention Scenario

The multiple-attention scenario assumes that the observer does not have a specific
subject to focus on but is instead actively observing a scene, such as an environment
that needs to be reconstructed remotely. This applies, for example, to applications like
telerobotics or remote operations. In this case, simple saliency detection techniques, based
on the Laplacian of Gaussian (LoG) filter, are applied [42], and the most prominent points
are used to guide the log-polar or ADC compression (Figure 4).

Figure 4. Example of a frame (left) processed with the LoG filter in order to extract local presence
(density) of image contrast; prominent points (excluding the image borders) are indicated (right).

In Figure 5, the encoding-decoding blocks of the multiple-attention scenario are
depicted. In this scenario, a set of frames is supplied as input. The RGB image of the initial
frame is employed to extract the saliency points using the LoG filter. These points are
then fed into the log-polar or ADC compressor, which, for each frame (to both depth and
RGB), applies a log-polar or ADC filter, respectively, with a new saliency point as the center.
Once transferred, the compressed data are used for the reconstruction. A 3D reconstruction
refinement process generates the point cloud by merging the newly compressed frame
with the previously received frames. The final outcome is a cumulative point cloud with a
progressively increased resolution.

Figure 5. Multiple-attention compression schema using ADC and LP methods.
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3.5. Comparison Metrics

To ensure a fair comparison, two classes of metrics have been selected: one for evalu-
ating compression performance and the other for assessing the final reconstruction quality.
Performance metrics are based on 2D data generated from the encoder; quality metrics,
instead, evaluate the decoder’s output, i.e., the point cloud. For the point cloud quality
assessment, both Full-Reference (FR) and No-Reference (NR) metrics are used; while FR
metrics compare a reconstructed point cloud against its original reference, NR metrics can
estimate the subjective quality score of point clouds without relying on a reference. The
metrics chosen are listed and briefly described below.

3.5.1. Performance Metrics

• Bit per pixel (BPP): size in bit used to represent a single pixel;
• Bit-rate (BR): total size of the computed frames divided by the frame transmission rate;
• Compression ratio (CR): the ratio between the BPP raw image and the BPP of

encoded image;
• Encoding and decoding time (ET, DT): time to process the data and generate the

corresponding output.

3.5.2. Quality Metrics

• Peak Signal-to-Noise Ratio (PSNR)—FR metric: is the ratio between the peak signal
and the MSE error. The peak is calculated as the diagonal distance of the bounding
box containing all the points of the point cloud [43]. Both the PNSR point-to-point
(PSNR-D1), which calculates the intra-point MSE error and the PSNR point-to-plane
(PSNR-D2), which calculates the distances with respect to a plane, are used;

• PointSSIM (PSSIM)—FR metric: is a family of statistical dispersion measurements for
the prediction of perceptual degradations of point cloud data. It encompasses four
types of attributes: colors, curvatures, normals, and geometry [44]. In this work, only
colors (luminance values) and geometry (Euclidean distances) have been considered;

• Video Quality Assessment Point Cloud (VQA-PC)—NR metric: spatial and temporal
features extracted from a point cloud are used to estimate the quality level through an
ML model [45];

• Multi-Modal Point Cloud Quality Assessment (MM-PCQA)—NR metric: the point
cloud is split into various 3D sub-models and rendered into 2D image projections
used for feature extraction. Both sub-models and projections are then encoded with
two neural networks, and symmetric cross-modal attention is performed. Finally, the
quality level is estimated through a quality regression block [46].

4. Comparison Experiments

The frames used for the comparison were captured using the Intel® RealSense™
Depth Camera D455 (Intel Corporation, 2200 Mission College Blvd. Santa Clara, CA 95052
USA), an off-the-shelf device equipped with a depth sensor, an RGB camera, and an IMU
unit, ensuring a comprehensive capture of the scene. The depth field of view (FOV) of
the device spans 87 × 58 degrees, with a depth range between 0.6 and 60 m. RGB data
have been acquired and aligned with the depth map for each frame to obtain the RGB-D
data used for the point cloud generation. Both the depth and RGB images acquired by
the RealSense camera have a resolution of 424 × 240 pixels. Note that the data acquired
with this equipment constitute a partial scan of a scene (persons or objects, background),
capturing only the visible portion thereof. To achieve a comprehensive scan, various frames
need to be stitched together, considering the acquisition position of the device. Illustrative
samples of acquisition data (RGB and depth) for both scenarios are reported in Figure 6.
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Figure 6. Visual comparisons of the reconstructed point clouds for all compression methods employed
in the experiments are provided for both the single attention (1) and multiple attention scenarios (2).
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Two experiments have been conducted based on the scenarios described in Section 3.
In Table 1, the parameters used for the encoding/decoding filters in both scenarios are
reported. The computing hardware utilized for the experiments comprised a Dell Alienware
workstation equipped with an Intel i7 processor, 32 GB of RAM, and an RTX1080 GPU with
8 GB of memory.

Table 1. Specifications of the filters used in the two scenarios.

Scenario ADC (Quantization Step) Log-Polar (Receptive Fields)

Single-attention 10 px 30 × 32

Multiple-attention 40 px 24 × 32

In the absence of an actual standard, RVL lossless compression method [24], has been
chosen as a reference for the evaluation of the results. Furthermore, an extensive comparison
with two recent methods retrieved from the literature has been conducted: the FitDepth
compression method [27] and the Realsense Depth Colorization (Colorization) [25]. Both
these methods stand out as particularly noteworthy among the recent advancements in
in-depth image compression techniques.

Regarding FitDepth, we opted for linear polynomial encoding without residual en-
coding, as it demonstrated superior performance compared to other encoding modalities
characterizing the method. For Realsense Depth Colorization, we used JPEG compression
with a quality level set to 25. This decision was made to attain a high compression ratio
while preserving the quality of the colorized depth frame.

When employing the log-polar or ADC method for RGB data compression, the same
compression approach is applied to the corresponding RGB images, along with JPEG
compression. Conversely, for the RVL, FitDepth, and Colorization methods, only the
standard JPEG compression is employed.

5. Results

Table 2 shows the results concerning performance metrics. Note that, for both scenar-
ios, coding of the original raw frame requires 40 BPP (Bits Per Pixel), with a BR (Bit Rate)
at 30 fps of about 117.6 Mbps. The results show a superior performance of the log-polar
method in both scenarios, considering BPP, BR, and CR metrics. ADC instead outperforms
other methods only in the multiple-attention scenario. However, both proposed methods
entail longer encoding and decoding times (ET and DT metrics), primarily due to the
non-optimized code utilized in the experiments.

Table 2. Performance metrics calculated for all methods considered across both single-attention and
multiple-attention scenarios. Arrows in the columns heading indicate whether a higher or lower
value is preferred. In bold, the values with the best performance.

Scenario Method BPP BR@30fps CR ↑ ET DT
[bit] ↓ [Mbps] ↓ [ms] ↓ [ms] ↓

Single

RVL 6.24 18.38 6.40 4.41 6.4
Colorization 1.35 3.99 29.62 4.0 4.0
FitDepth 2.31 6.79 17.31 53.0 15.0
ADC 2.60 7.67 15.33 11.93 57.42
Log-polar 0.21 0.62 187.1 10.6 4.5

Multiple

RVL 4.65 13.70 8.58 3.87 3.17
Colorization 1.59 4.67 25.15 4.0 4.0
FitDepth 1.75 5.17 22.85 52.0 16.0
ADC 1.25 3.67 32.0 11.20 54.94
Log-polar 0.17 0.50 231.3 8.45 4.46
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In Table 3, the results of the quality analysis are reported. For RVL compression, PSNR
and PSSIM metrics are not reported due to the lossless nature of the method.

Table 3. Quality metrics calculated for all methods considered across both single-attention and
multiple-attention scenarios. Higher values are better. In bold, the values with the best quality.

Scenario Method
PSNR

D1
PSNR

D2 PSSIM PSSIM VQA-PC MM-PCQA
[dB] [dB] Color Geom

Single

RVL – – 0.97 – −0.53 31.74
Colorization 35.05 40.56 0.85 0.78 −1.02 7.35
FitDepth 39.79 44.43 0.84 0.82 −0.55 22.86
ADC 40.46 41.85 0.89 0.90 −0.60 1.51
Log-polar 29.41 38.87 0.73 0.73 −0.85 2.81

Multiple

RVL – – 0.97 – −0.325 27.38
Colorization 27.61 31.08 0.91 0.81 −0.89 9.92
FitDepth 41.09 44.55 0.80 0.86 −0.58 5.12
ADC 39.97 41.70 0.92 0.98 −0.328 21.45
Log-polar 31.28 55.79 0.78 0.84 −0.53 7.26

Upon examining the quality results presented in the table for the single-attention
scenario for the proposed methods, it is evident that ADC surpasses log-polar in most of
the FR and NR metrics. Notably, the ADC PSSIM Geom score approaches the peak value
of 1, indicating a close resemblance to the geometric quality of the original frame. Similarly,
the VQA-PC score for ADC closely aligns with the score achieved by the RVL compression
method. Extending the comparison to other methods, again, in the single attention scenario,
ADC outperforms others considering FR metrics (except for PSNR D2), whereas FitDepth
emerges as the top performer for NR metrics.

In the multiple-attention scenario, ADC maintains superior performance across all
metrics except for PSNR, where FitDepth and Log-polar achieve higher values. In the
multiple-attention scenario, the log-polar and ADC quality value refers to the fully re-
constructed point cloud after applying all filters to every salient point. Compared to the
single-attention scenario, where only one log-polar or ADC center is processed, we observe
higher values, approaching the quality achieved by lossless methods like RVL.

The improvement is even more evident when we look at Figure 7, which shows
the trend over time of the quality metrics for the multiple-attention scenario obtained by
the log-polar and ADC methods. Note that both VQA-PC (Figure 7c) and MM-PCQA
(Figure 7d) output a score value indicating a subjective quality level of the point cloud.
These metrics are learned by training the system on human subjective scores, referred to as
Mean Opinion Scores (MOS), which usually range from 0 to 5 points. As reference values
for these NR metrics, we can look at the scores achieved by the RVL method (−0.325 and
27.38), which is the only lossless method considered; RVL values can thus be regarded as
the upper bound achievable by this type of data. The graph shows the gradual increase
in quality as the point cloud is reconstructed frame by frame for both metrics. Initially,
the quality curve shows some instability, especially for NR metrics. However, after about
fifteen frames, quality increases steadily until it stabilizes at higher values. It is worth
noting that the initial instability most likely depends on the order in which the salient
points are processed. However, this aspect has not been extensively tested.

Finally, it should be noted that the VQA-PC and MM-PCQA NR models were trained
on datasets containing humans and small objects [47], thus very different from the large
environments that characterize the experiments performed. This inconsistency does not
compromise the assessment of the quality of the point cloud; in fact, one can still appreciate
an increasing trend for both metrics as the number of frames computed in the multiple
attention scenario increases.
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(a) PSNR D1 and PSNR D2 (b) PointSSIM

(c) VQA-PC (d) MM-PCQA
Figure 7. Comparison of the quality of reconstructed point clouds post-compression using the two
proposed techniques (ADC and LP) for the multiple-attention scenario. (a) PSNR expressed as a value
in dB indicating the robustness of the signal. (b) SSIM expressed as an index capturing perceptual
quality. (c) VQA-PC expressed as a score capturing the video quality. (d) MM-PCQA expressed as a
score indicating the quality level of the point cloud.

In Figure 6, a visual comparison of all the methods employed for the experiments
along with the input files are shown: images confirm the results presented in Table 3. The
methods selected from the literature (i.e., RVL, Color, and FitDepth) exhibit good quality,
albeit at the expense of compression performance. The ADC method demonstrates a
reconstruction quality comparable to that of methods from the literature for both scenarios.
The log-polar method, despite achieving superior compression performance, exhibits more
noise that compromises the quality of the reconstruction. However, in the single-attention
experiment, the focus of the observer’s attention (such as the face of a person) is well
reconstructed, whereas the background appears to be more confused. This is also evident in
Figure 8, which depicts the visual comparison of a detail from the single-attention scenario
for ADC, LP, and FitDepth methods. It is worth noting that while the FitDepth method
achieves very good quality performance for the global frame (as reported in Table 3 for
VQA-PC and MM-PCQA metrics, which score −0.55 and 22.86, respectively), upon closer
inspection of the detail of the face, the superior quality of the proposed methods becomes
evident (see Figure 8b,c).
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(a) FitDepth (b) ADC (c) LogPolar
Figure 8. Visual comparison of a detail of the face for the single-attention scenario among the
FitDepth, ADC, and Log-polar methods.

6. Conclusions

This paper introduces a new approach for compression and live reconstruction of
point clouds suitable for augmented and mixed reality applications. The approach exploits
the concept of observer attention and outlines two different application scenarios: single
attention, where attention is focused on a single object or point in the scene, and multiple
attention, where attention is distributed over multiple points in the scene, resulting in
an incremental reconstruction that stabilizes after a few frames. The proposed method
involves two different types of compression: ADC, which quantizes RGB and depth data
and uses linear interpolation for point cloud reconstruction, and log-polar filtering centered
on one or more salient points.

Experimental evaluations, utilizing performance and quality metrics, were conducted
across both scenarios, comparing the proposed techniques with a benchmark lossless
compression method (RVL) and two recently released state-of-the-art methods (Intel Col-
orization and FitDepth). Results reveal the superior performance of the Log-polar method
for the performance and ADC for the quality, albeit with slightly longer execution times.
Specifically, in the single-attention scenario, ADC surpasses log-polar in quality, while in
multiple-attention, log-polar achieves commendable quality levels after approximately
fifteen frames, significantly reducing transmitted data due to its robust compression.

Despite being exploratory in nature, both approaches demonstrate promising potential
and applicability to live 3D reconstruction applications, including telepresence, remote
operations in hazardous environments, and telemedicine. Future endeavors encompass the
exploration of alternative attention mechanisms, such as Vision Transformers or CNNs, for
salient point identification, integration of segmentation models to distinguish foreground
from background, and use of eye-tracking systems embedded in standard headsets to
actively guide live 3D reconstruction.
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