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Abstract: MicroRNAs (miRNAs) play a crucial role in cancer development, but not all miRNAs are
equally significant in cancer detection. Traditional methods face challenges in effectively identifying
cancer-associated miRNAs due to data complexity and volume. This study introduces a novel,
feature-based technique for detecting attributes related to cancer-affecting microRNAs. It aims to
enhance cancer diagnosis accuracy by identifying the most relevant miRNAs for various cancer types
using a hybrid approach. In particular, we used a combination of particle swarm optimization (PSO)
and artificial neural networks (ANNs) for this purpose. PSO was employed for feature selection,
focusing on identifying the most informative miRNAs, while ANNs were used for recognizing
patterns within the miRNA data. This hybrid method aims to overcome limitations in traditional
miRNA analysis by reducing data redundancy and focusing on key genetic markers. The application
of this method showed a significant improvement in the detection accuracy for various cancers,
including breast and lung cancer and melanoma. Our approach demonstrated a higher precision
in identifying relevant miRNAs compared to existing methods, as evidenced by the analysis of
different datasets. The study concludes that the integration of PSO and ANNs provides a more
efficient, cost-effective, and accurate method for cancer detection via miRNA analysis. This method
can serve as a supplementary tool for cancer diagnosis and potentially aid in developing personalized
cancer treatments.

Keywords: cancer diagnosis; neural network; particle swarm optimization algorithm; microRNAs

1. Introduction

In the contemporary era, the role of information technology is pivotal and beneficial
across various facets of human life. A fundamental human need is the provision of optimal
and efficient medical diagnostics and treatment, especially for rapid, cost-effective, and
non-invasive management of critical illnesses such as cancer. Advances in medical research
have enabled the conversion of specific physical attributes and vital metrics into numerical
data, facilitating analysis through diverse biological methods [1–4].

The challenge of handling vast data, represented in multiple formats and colour
codes, necessitates the development of efficient processing techniques. Historically, a
range of software approaches and algorithms have been applied across various domains,
significantly improving the accuracy and speed of information categorization. Recent
advancements in laboratory research have allowed the storage of genetic data in digital
formats, like images or computer data structures, rather than on paper. However, the
redundancy in these digital structures precludes the use of conventional extraction or
feature selection techniques, due to the overwhelming volume of data, thus requiring
sophisticated processing methods for effective data extraction and analysis [3,5–8].
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Gene expression microarrays, which employ microscopic technologies and medical
testing, have become vital in modern medicine. These microarrays, which can be used for
the prevention, detection, and treatment of terminal cancers, involve the analysis of genetic
expressions either as images or numeric datasets from genetic tests. The complexity of
microarrays, containing expressions of hundreds of genes, poses a significant challenge
in understanding and interpreting the data without specialized knowledge and specific
gene tests [2,9,10]. The last decade has witnessed significant discoveries in cellular biology,
particularly the identification of a diverse range of non-coding RNAs, including microRNAs
(miRNAs). These miRNAs, which are part of the non-coding RNA family, play a crucial
role in regulating biological processes by impeding protein translation through mRNA
inhibition [1,3,5–7,11]. Despite their importance, the practical identification of microRNA
genes is challenging. The inefficiency of some miRNAs in diagnostics, coupled with the high
cost and time-intensive nature of laboratory tests, limits their practicality. To overcome these
hurdles, computational methods have been introduced, broadly categorized into adaptive
filtering and machine learning. Adaptive filtering narrows down the number of target genes
based on statistical, environmental, structural, and thermodynamic parameters. Conversely,
machine learning, employing techniques like artificial neural networks (ANNs) and support
vector machine (SVM) classifiers, analyze various attributes for each microRNA and target
gene pair. Addressing the challenges in the predictive and categorical analysis involves
balancing the learning algorithms’ capacity with class specificity, establishing negative
datasets, achieving targeted outcomes, selecting appropriate inputs, and managing class
imbalances. Our research delves into the intersection of computational methods and
medical diagnostics, aiming to address the inherent challenges in microRNA analysis and
gene expression profiling. In pursuit of this objective, we have developed and implemented
a series of innovative approaches and methodologies. The main contributions of our
research are outlined below:

• Innovative Integration of PSO and ANNs: While the use of particle swarm optimiza-
tion (PSO) and artificial neural networks (ANNs) in various domains is not novel
in itself, our work introduces an innovative integration method of these two tech-
nologies specifically tailored for miRNA-based cancer detection. This hybrid model
uniquely optimizes the feature selection process using PSO in a way that specifically
enhances the pattern recognition capabilities of ANNs for this application, addressing
the complexity and high dimensionality of genetic data in a novel manner.

• Dynamic Feature Selection for Enhanced Accuracy: Our research introduces a dy-
namic feature selection mechanism that iteratively refines the set of miRNAs con-
sidered for analysis. This approach, powered by PSO, continuously adapts based
on feedback from the ANN’s performance, leading to a significant improvement in
detection accuracy. This method of iteratively optimizing the feature set for miRNA-
based cancer detection has not been extensively explored in previous works, marking
a significant step forward in the field.

• Application-Specific Model Optimization: The customization and optimization of the
PSO-ANN model parameters were conducted with a specific focus on miRNA data
related to cancer detection. This tailored approach, including the choice of hyper-
parameters and the architecture of the neural network, contributes to the novelty of
our work by significantly enhancing model performance in this particular application.

• Comprehensive Evaluation Across Multiple Cancer Types: Our research extends be-
yond the scope of existing studies by conducting a comprehensive evaluation of the
proposed model across multiple types of cancer, including breast cancer, lung cancer,
and melanoma. This broad-based evaluation demonstrates the model’s versatility and
effectiveness in a variety of contexts, contributing new insights into the application of
machine learning techniques in oncology.

• Empirical Validation of Model Efficiency: Another novel aspect of our work is the
empirical validation of the model’s computational efficiency and accuracy in real-
world settings. By documenting the computational time alongside accuracy metrics,
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we provide a holistic view of the model’s performance, offering valuable insights for
clinical applications and further research.

The remainder of this paper is organized as follows: Section 2—Literature Review
delves into existing research and advancements, providing a critical analysis of previous
methodologies and findings. Section 3—Methodology describes in detail the combined
use of particle swarm optimization and artificial neural networks in our approach, empha-
sizing their application in miRNA analysis for cancer detection. Section 4—Experimental
Setup and Data Analysis outlines our experimental procedures, including data collection,
algorithm implementation, and analysis techniques. Section 5—Results and Discussion
presents and interprets the findings of our research, comparing them with existing studies
and discussing their implications in the field of cancer diagnosis. Section 6—Conclusion
and Future Work summarizes the study’s outcomes, highlights its contributions to the
field, and suggests directions for future research. This structure ensures a comprehensive
presentation of our study from its foundational concepts to its practical implications.

2. Related Work

Traditional image processing approaches produced respectable findings and perfor-
mance in medical illness identification when used with infected and uninfected pictures, but
they were confined to tiny datasets and theoretical results, which made them unsuitable for
practical use. Considering how deep learning (DL) has revolutionized the field of computer
vision [7,12–14], specifically image detection as well as object classification and recognition,
it is now considered a promising tool to improve such automated diagnosis systems to
achieve higher outcomes, broaden disease scope, and perform applicable real-time medical
imaging [15–22] for disease classification systems, among other things. When it comes to
DL, it is a field of Artificial Intelligence that is reliant on algorithms for data processing,
thinking process modelling, or the development of abstractions [23–25]. Recent research
by [26] emphasizes the critical role of microRNAs (miRNAs) as biomarkers for various
diseases, including cancer. The study underscores the challenges in traditional miRNA
detection methods, such as RNA sequencing and qRT-PCR, which are time-consuming
and costly. It advocates for the development of sensitive, specific, rapid, and easy-to-use
POCT methods for miRNA detection, leveraging portable instruments and visual read-
out methods. This advancement in miRNA detection technology represents a significant
stride towards more accessible and efficient diagnostic solutions, aligning with our re-
search’s focus on improving miRNA-based diagnostics through machine learning. In their
groundbreaking work, ref. [27] analyzes serum miRNA expression profiles from pancreatic
cancer (PC) patients to identify potential biomarkers using advanced machine learning
algorithms, including support vector machine-recursive feature elimination (SVM-RFE),
least absolute shrinkage and selection operator (LASSO), and random forest. The study
presents an artificial neural network model that demonstrates high accuracy in distin-
guishing between normal and PC samples, contributing a novel approach to early PC
diagnosis. This approach of combining machine learning with miRNA analysis for PC
diagnosis complements our research’s aim to leverage computational techniques for cancer
detection. The study [28] introduces an improved method for cancer-type classification
based on microRNA expression data, employing a hybrid model that combines radial basis
function (RBF) with particle swarm optimization (PSO) for feature selection. By achieving
high accuracy in cancer-type classification, this work highlights the effectiveness of PSO in
identifying the most relevant miRNA features, a methodological cornerstone also central to
our research. The success of this hybrid approach in enhancing diagnostic accuracy and
computational efficiency further validates the potential of integrating machine learning
algorithms in miRNA-based cancer diagnostics. The study [29] introduces a pioneering
approach to miRNA detection through a surface acoustic wave (SAW) sensor array. This
method utilizes photocatalytic silver staining on titanium dioxide (TiO2) nanoparticles to
enhance signal sensitivity and incorporates an internal reference sensor to achieve high
reproducibility. By employing sandwich hybridization, the SAW sensor array can simulta-
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neously capture and detect multiple miRNAs (miRNA-21, miRNA-106b, and miRNA-155)
known to be up-regulated in cancer. This technique’s ability to normalize sensor responses
and screen out background interferences underscores its potential for precise and reliable
miRNA detection in clinical samples, including cancer cell-derived exosomal miRNAs.
Further advancing the field, the work presented in [30] addresses the critical need for
predicting the regulatory relationships between miRNAs and small molecules (SMs), which
is vital for miRNA-target therapy. The proposed computational model leverages the Large-
scale Information Network Embedding (LINE) algorithm, the General Attributed Multiplex
Heterogeneous Network Embedding (GATNE) algorithm, and the Light Gradient Boosting
Machine (LightGBM) algorithm to accurately predict whether miRNA-SM regulatory re-
lationships are up-regulated or down-regulated. With average accuracies exceeding 79%
in fivefold cross-validation, this model demonstrates the remarkable potential for accel-
erating miRNA-targeted therapy research, as evidenced by the successful identification
of candidate miRNAs for 5-FU treatment validation through the related literature. These
studies [29,30] highlight the dynamic nature of miRNA research, showcasing innovative
methods that enhance detection accuracy and computational models that provide new
insights into miRNA regulation. By integrating such cutting-edge approaches, our work
builds upon these advancements, aiming to further the understanding and application of
miRNA analysis in cancer diagnostics and therapy.

DL uses layers of algorithms to process, analyze, and identify hidden patterns in
data, as well as to interpret human speech and recognize visual objects [31–33], among
other things. Information is transferred through each layer of a deep network, with the
output of the previous layer serving as the input for the next layer of the deep network.
The input layer is the first layer in a network, while the output layer is the final layer in a
network, with the input layer being the first. All of the layers that are positioned between
the input and output layers are collectively referred to as the network’s hidden layers. In
most cases, each layer is comprised of a basic, homogeneous algorithm that has just one
kind of activation function [23,34–36].

Although CNN analysis was not widely discussed at computer vision conferences
and journals until 2011, a study presented at the major conference CVPR in June 2012
demonstrated how max-pooling CNNs on GPU may significantly improve several vi-
sion benchmark records. In October 2012, a comparable approach proposed by [37] won
the large-scale ImageNet [38] competition by outperforming standard machine learning
techniques by a wide margin in classification accuracy. Ref. [39]’s system was also the
winner of the ICPR contest on the analysis of huge medical pictures for cancer diagnosis in
November 2012 and the MICCAI Grand Challenge on the same issue the following year.
Coming then, several advancements in deep CNNs greatly lowered the error rate on the
ImageNet job in the following years. Following each yearly challenge of the ImageNet
Large-Scale Visual Recognition Competition (ILSVRC), several typical CNNs, such as VG-
Gnet, GoogLeNet, and Residual Neural Network (ResNet), made considerable advances.
On the ImageNet [38] dataset classification challenge, a model dubbed Xception [40] was
proposed that employs depth-wise separable convolutions to outperform the Inception-V3
model [41] and is referred to as the Xception model. Ref. [42] presented a novel CNN
version dubbed densely connected convolutional networks (DenseNet), which employs a
network design in which each layer is directly linked to every subsequent layer. DenseNet
has made considerable gains above the state-of-the-art while requiring much fewer param-
eters and computations than the previous generation of algorithms. RNA sequencing data
from The Cancer Genome Atlas (TCGA) is used by [43], which focuses on identifying 33
different kinds of cancer patients. The authors developed five machine learning methods,
namely, deep learning (DL), the kernel neural network (KNN), the linear support vector
machine (linear SVM), the polynomial support vector machine (poly SVM), and an artificial
neural network (ANN). The best result demonstrates that linear SVM is the best classifier
in this investigation, with a classification accuracy of 95%. Ref. [44] devised a novel strat-
egy for identifying possible biomarkers for each kind of tumour that they studied. The
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approach was given with a wealth of information on 33 common cancer tumour types
based on the information included in the pan-cancer atlas. They employed a convolutional
neural network to categorize tumour kinds, and a visualization neural network approach to
determine the most important tumour genes from the input datasets. The high-dimensional
RNA-Seq data was integrated into 2-D pictures, and a convolutional neural network was
utilized to classify the 33 different malignant tumor types based on their characteristics.
They created a significant heat map for all of the genes using the Guided Grad Cam (GGC)
concept, with a heat map for each class based on the notion of GGC.

Using a train/test split, the suggested method had a 95.59% success rate. According
to the authors [45], they attempted the build of a pan-cancer atlas that could detect 9096
TCGA tumour samples from 31 different cancer types. In the training set, they allocated
75% percent of the samples (about 6800 samples), whereas, in the testing set, they assigned
25 percent of the samples (approximately 2300 samples), evenly distributing samples from
each tumour type. They omitted all tumour forms that are sex-specific from consideration
for the non-sex-specific tumour categorization, including BRCA, CESC, OV, PRAD, TGCT,
UCEC, and UCS, from consideration. In the case of the other tumour types, the samples
were divided into two groups depending on the gender of the patients. Because of the
limited gender-specific sample numbers, three more tumour types (CHOL, DLBC, and
KICH) were removed from the study. When it comes to iteratively creating a subset of
genes (features), the authors used a genetic algorithm and the k-nearest neighbours (KNN)
approach, followed by the KNN method to test for correctness, as described in the paper.
With this strategy, an accuracy of 90 percent was reached across 31 tumour types, and a
collection of top genes for each tumour type was established.

In our study, we aim to bridge several gaps identified in previous research within
the domain of miRNA analysis for cancer diagnosis. First, we address the limitations of
traditional feature selection techniques, which often fail to manage the high dimension-
ality and heterogeneity of miRNA data, by implementing an advanced particle swarm
optimization algorithm for more nuanced feature selection. Additionally, we focus on
effectively integrating computational methods with biological data analysis, balancing the
two to ensure that our computational models are deeply rooted in biological relevance, a
balance often neglected in earlier studies. Our research also enhances diagnostic accuracy
by employing a hybrid model that combines particle swarm optimization with artificial
neural networks, specifically targeting the challenge of differentiating between cancer types
based on miRNA patterns. Addressing the common issue of class imbalance in miRNA
data, our study implements strategies within our machine-learning models to ensure more
equitable and accurate outcomes. Furthermore, we tackle the challenges of scalability and
efficiency, particularly relevant when dealing with large-scale miRNA datasets, proposing
a scalable and efficient approach that maintains the integrity of the analysis.

Lastly, our research delves into the latest developments in deep learning, especially
convolutional neural networks, bringing a fresh perspective to miRNA-based cancer diag-
nosis. By addressing these critical gaps, our research not only contributes significantly to
the existing body of knowledge but also paves the way for future advancements in cancer
diagnosis using miRNA analysis, offering more accurate, efficient, and biologically relevant
diagnostic methods.

3. Proposed Method Framework

In this research, we address the challenge of selecting a subset of miRNAs that are
most indicative of cancer presence from a larger set. The complexity of this task can be rep-
resented by the formula 2d2d, where dd denotes the total number of available miRNAs in
the dataset. This formula represents the size of the search space, that is, the total number of
possible miRNA subsets. Given the large number of miRNAs typically involved in genetic
studies, the search space (2d2d) becomes exponentially large, making exhaustive search
computationally impractical and far from optimum. To navigate this vast search space
efficiently, we employ particle swarm optimization (PSO), a metaheuristic approach known
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for its ability to find near-optimal solutions in complex, nonlinear search spaces. PSO
mimics the social behaviour of birds flocking or fish schooling to explore the search space.
Each particle in the swarm represents a potential solution, i.e., a specific subset of miRNAs
in this context. The particles iteratively adjust their positions in the search space based on
their own experience and the success of their neighbours, converging towards the most
promising areas of the search space. This process is guided by a fitness function designed
to evaluate the effectiveness of each subset in distinguishing cancerous from non-cancerous
samples, based on criteria such as the differential expression power of the selected miRNAs.
The adoption of PSO for miRNA selection allows us to efficiently reduce the dimension-
ality of the data by focusing on miRNAs that provide the most significant information
for cancer classification. A well-chosen subset of miRNAs enhances the accuracy of the
subsequent classification process, carried out using an artificial neural network (ANN).
The ANN classifier is trained on these optimized miRNA subsets to recognize patterns
indicative of cancer. By eliminating irrelevant and redundant miRNAs, we not only stream-
line the learning process but also significantly reduce the computational burden, making
the classification task more manageable and efficient. In essence, our modified technique
leverages the strengths of PSO to address the computational challenges inherent in miRNA
feature selection, paving the way for a more accurate and efficient cancer diagnosis method.
This novel approach demonstrates the potential of combining computational intelligence
techniques to improve the inference systems in biomedical applications, specifically for the
early detection and diagnosis of breast cancer. The assessment of the proposed approach
is meticulously designed to validate the effectiveness of our particle swarm optimization
(PSO)-based miRNA selection method in conjunction with the classification capabilities of
an artificial neural network (ANN). This dual strategy emphasizes selectivity by identifying
a subset of miRNAs that are most informative for cancer detection, thus enhancing the clas-
sification accuracy. The efficiency of this method is demonstrated through its application on
three distinct Gene Expression Omnibus (GEO) datasets, each related to different types of
cancer: breast cancer, lung cancer, and melanoma. To ensure a robust evaluation, we intro-
duce a novel independence and resolution criterion focused on reducing the dimensionality
of cancer data while preserving its discriminative properties. This involves analyzing the
inter-batch and intra-batch dispersion matrices of miRNA subsets. The optimal subset is
identified based on a batch independence score, which reflects the subset’s relevance to the
classification task. This score is calculated by considering the ratio of the subsets’ inter-batch
dispersion matrix to their intra-batch dispersion matrix. A higher score suggests a subset
with less redundancy and more relevance to distinct cancer classifications. Additionally,
the feature selection process accounts for the removal of redundant miRNAs by analyzing
the dispersion matrix between variables, which indicates the correlation of miRNAs with
specific cancer class tags. The selection and evaluation of miRNAs are carried out using
a correlation technique that assesses the relationship between individual miRNAs and
cancer categorization. This method leverages the pattern recognition strengths of ANNs,
which are well suited for processing and generalizing complex data patterns found within
miRNA expression profiles. For the assessment, this study utilizes three comprehensive
GEO datasets, specifically chosen for their relevance to lung, breast, and melanoma cancer
research. These datasets are described as follows:

• Breast Cancer Dataset: Comprises 98 blood samples, with a total of 309 distinct
miRNAs analyzed. This dataset provides a diverse range of expression profiles,
offering insights into the miRNA patterns associated with breast cancer.

• Lung Cancer Dataset: Contains 36 samples and explores the expression of 866 miR-
NAs. The extensive number of miRNAs covered in this dataset facilitates a detailed
examination of the genetic markers relevant to lung cancer diagnosis.

• Melanoma Dataset: Includes 57 samples, also analyzing 866 miRNAs. Similar to the
lung cancer dataset, this provides a broad spectrum of miRNA expression data, crucial
for identifying melanoma-specific genetic signatures.
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The utilization of these datasets allows for a comprehensive evaluation of the pro-
posed PSO-ANN framework across different cancer types. By analyzing the expression
of hundreds of miRNAs within these datasets, we aim to demonstrate the versatility and
accuracy of our method in distinguishing between cancerous and non-cancerous samples,
thereby underscoring its potential utility in clinical diagnostics.

3.1. PSO Algorithm

Kennedy and Eberhart established the notion of particle swarm optimization (PSO) in
1995, inspired by the mass behaviour and movement of bees, fish, and birds [7]. Indeed,
PSO is a very effective and random approach for evolutionary calculations based on the
intelligent displacement of animals in pursuit of food. It is gaining popularity due to its
success in solving genetic design issues, particularly those containing continuous design
variables. Optimal yields are greater throughout the country [9].

PSO has several benefits, including simplicity of implementation, early convergence,
and adaptability versus optimum local problems, as well as an internal memory that
retains the best circumstances from its history and neighbourhood without requiring new
input [46]. This approach utilizes the standard technique for evolutionary computations:

• It begins with a randomly generated population of potential responses.
• It performs generational updates and seeks the optimum solution.
• Populations are evaluated using prior generations.

The alternative solutions, which are identical particles, are displaced in the solution
space of the issue by the optimum current particles in the discrete PSO utilized in this
research. This displacement happens as a result of an evaluation of the quality of each
particle by a fit function. Additionally, the particle’s velocity (position changes) may be
represented by another dimensional vector D:

Xi = {xi1 , xi2 , . . . , xiD} (1)

Vi = {vi1 , vi2 , . . . , viD} (2)

Equation (1) defines the position of the i-th particle in a D-dimensional solution space. Each
component xi1 of the vector xi represents the value of the d-th dimension of the solution
represented by the i-th particle. Equation (2) denotes the velocity of the i-th particle, which
dictates the particle’s movement across the solution space. The velocity vector Vi consists
of D components, each corresponding to the change in position along a specific dimension
from one iteration to the next.

Pbesti and xpbesti are used to represent the best fit achieved for the i trusted particle
(the personal best) and the associated location, xgbest, gbest, xgbest. It has been shown that
using inertia w increases the algorithm’s performance; this weight defines the influence of
the particle velocity in the previous step on the present speed. Hence, using a big quantity
of inertia weight improves the algorithm’s general search capacity and saves space. The
following equations [46] are used to update particles with their inertia weight in a discrete
PSO system:

Vk+1
id = wvk+1

id + c1r1(xbestid − xid) + c2r2(xgbestid − xid) (3)

xk+1
id = xk

id + vk
id (4)

where d = 1, 2, 3, . . . , D; I = 1, 2, . . . , N and N denote the group’s population, and c1 and c2
denote positive coefficients. The coefficients r1 and r2 are random values spread uniformly
throughout the range [1, 0] and signify the number of iterations k = 1, 2, . . . Because each
iteration of the method is expected to run one second (t = 1S), the relationships are
dimensionally valid.

Unlike the standard PSO, the binary version of PSO is able to optimize in discrete
spaces. Implementation and execution selected. It starts with considering a binary array for
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each BPSO particle. In this field, zero indicates the deletion of the attribute and 1 indicates
the selection of that attribute. The only difference from the standard PSO is the particle
position improvement equation, which is modified as follows [20]:

S(vk+1
id ) = 1

1+exp(−vk+1
id )

i f S(vk+1
id ) > rand then xk+1

id = 1

else xk+1
id = 0

(5)

where rand is a random number that is evenly distributed in the interval [1, 0]. To prevent
saturation of the sigmoid function, the BPSO inventors recommend limiting the speed in
the interval [−4,+4] [46]. Such solutions are usually encrypted in a binary string of zeros
and ones. In the zero binary chain, it indicates that the associated miRNAs have not been
selected and have been removed from the miRNA set.

3.2. Degree of Ionic Resolution

The goal of the degree of resolution is to select the optimal miRNAs for classifica-
tion. Imagine (x, y) ∈ (Rd × Y) is an example where Rd is a next miRNA d space and
Y = 1, 2, . . . , c is the set of batch labels. The symbol ni represents the number of samples
belonging to the i-th class, N represents the total number of samples, and c represents the
number of classes. Suppose that xij denotes the sample j in category i, u is the average of
all the categories, and ui is the average of the sample in category i.

u =
1
N

C

∑
i=1

ni

∑
j=1

xij (6)

ui =
1
ni

ni

∑
j=1

xij (7)

So the scatter matrix between the Sb classes and the scatter matrix between the Sw classes
are defined as follows:

Sb =
C

∑
i=1

ni(ui − u) (8)

SW =
C

∑
i=1

ni

∑
j=1

(ui − xij) (9)

Here, Sb measures the average vector distances of each category and the overall average,
while Sw measures the average scatter of the categories around their average vectors. For a
given miRNA subset, the batch resolution is based on the scatter matrix, which evaluates
the tracking ratio or determinant of the dispersion matrix between the batch and the
intragroup scatter matrix. The RM category resolution is as follows:

RM =
Sb
Sw

(10)

A subset with a large RM is considered a good subset and means a small batch dispersion
and a large batch dispersion. Hence, a large RM ensures that the batches are well dispersed
by their scattering averages. This is a simple, powerful, and integrated benchmark for
categorization.

3.3. Proposed Algorithm

The particle swarm optimization algorithm is used to find the optimal miRNA subset
through the evolution process. The proposed proportionality function, the particle swarm
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optimization algorithm, is used to evaluate the performance of an individual, which is
referred to as a particle. This algorithm consists of two words. The first, called the RM
resolution score, measures the resolution of samples belonging to different classes and the
duplication between miRNAs. The latter involves a subset of cardinality for the proposed
solutions with a smaller number of miRNAs. The significance of these two words is
controlled by a weight coefficient, w, defined by the user and has a value between zero and
1. The larger w, the higher the share of the first sentence for the overall fit value and the
lower the error imposed on the selected subset function. The fitness function is presented
by the following equation, which is the proposed formula of this paper, which is Fitness:

F = W × RM + (W − 1)× n(Fs)
d

(11)

Here, the symbol n(Fs) represents the cardinality of the subsets of the Fs attribute (i.e., 1 s
per particle) and d is the total number of miRNAs available. On the one hand, the particle
swarm optimization algorithm will make more efforts to increase the scalability scores, and
on the other hand, the particle swarm optimization algorithm will try to reduce the number
of selected miRNAs. Hence, a proper w can balance their relationship. In this research, w is
placed as 0.8 based on trial and error. The proposed algorithm can select important features
for better diagnosis of the disease. The suitability of the particles depends on their values,
which are calculated from the fit function.

Feature Selection Using Particle Swarm Optimization (PSO)

• Initialization Phase The process of feature selection in our study commences with the
initiation of particle swarm optimization (PSO). This critical step involves the genera-
tion of a random population of potential solutions, which are referred to as particles.
In the context of our research, each particle uniquely represents a possible subset of
microRNAs (miRNAs). This representation is crucial as it forms the foundation for
the subsequent steps of optimization and selection.

• Evaluation and Iterative Update Once the initial population of particles is established,
they embark on a navigational journey through the solution space. The trajectory of
each particle is not random but is instead significantly influenced by the most optimal
positions they have individually discovered as well as the best positions identified
by the swarm as a whole. This dynamic movement of the particles is not just mere
displacement but is targeted towards a specific goal: the optimization of miRNA
selection. The iterative nature of this process ensures continuous improvement and
refinement of the solutions.

• Optimization Objective The overarching objective of this phase is the identification
and selection of the subset of miRNAs that are deemed most informative and effective
for the classification of different cancer types. To determine the efficacy of each miRNA
subset, we employ a specially designed fitness function. This function assesses the
performance of each subset based on its ability to classify cancer accurately. The
criteria embedded within this fitness function are tailored to evaluate and highlight
the subsets that provide the highest classification performance, thereby serving as a
guide for the selection of the most promising miRNA subsets for further analysis.

3.4. Proposed Convolution Neural Network for Data Classification

Now, after specifying the properties, it is time to categorize the data using an artificial
neural network. It is safe to say that artificial neural network algorithms are one of the
most accurate and powerful classification algorithms. This new method can be used to
classify linear and nonlinear data. A neural network consists of several neural neurons
that are activated when needed and calculations are performed on them. Nodes in the
input layer are neurons that are not operated on and are not included in the calculation
of the number of layers. The output layer nodes are the responsive neurons in which the
problem-solving response is displayed. There are hidden neurons between the input and
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output neurons. A single neuron cannot be used to solve a problem with multiple inputs
and outputs. In this case, several neurons must be used in parallel to be able to process
the input vectors simultaneously and transfer them to the output vector of the last layer.
Nodes in the input layer are neurons that are not operated on and are not included in the
calculation of the number of layers. The output layer nodes are the responsive neurons in
which the problem-solving response is displayed. There are hidden neurons between the
input and output neurons. A single neuron cannot be used to solve a problem with multiple
inputs and outputs. In this case, several neurons must be used in parallel to be able to
process the input vectors simultaneously and transfer them to the output vector of the last
layer. Inside each neuron is a specific gravity that affects the values entering the neuron
and directs weighted vectors to excitation functions. In addition to changing its weight, a
vector may need to be moved in the vector space by adding a bias to the weighted matrix.
Now, the weighted values are taken to the excitation functions and the output function
takes the original value according to whether the appropriate answer is obtained or not,
and these values are compared with the target vector and, in the case of a discrepancy with
the target vector, are returned to select more suitable weights for those vectors.

Typically, when implementing an architecture for a convolutional neural network to
make optimal use of hardware resources, the scale and characteristics of the input data
are considered in terms of the accuracy and scale of the computations. When executing
and training a convolutional neural network, the constraints and format of the network
parameters and input data must be predictable and executable for the hardware model.
Otherwise, the number of bit parameters and computational volume may pose a chal-
lenge for the convolutional neural network accelerator. On the other hand, converting
data to other formats may reduce the accuracy of the network. Increasing and replacing
convolutional layers with fully connected layers accelerates the learning process. The fully
connected layer incurs a very high processing cost due to the higher number of parameters.
However, the use of this layer is necessary due to the conversion of maps into feature
vectors and helps in the output layer to classify information [44]. Our proposed solution is
the minimal use of a fully connected layer. On the other hand, a convolutional layer and a
fully connected layer with limited dimensions cannot be expected to perform adequately
to extract a better feature. Therefore, two convolutional layers, two integration layers, and
one fully linked layer were used for the proposed architecture. After each convolutional
layer, ReLU activity functions are used and in the outer layer, and the softmax (smooth
maximum function) method and cross-sectional entropy cost function method are used to
train the network.

The accuracy of the network is improved by increasing the size of the feature maps and
the depth of the convolutional layers. However, this leads to an increase in computations
and parameters, which is smoothed by a higher consumption of hardware resources or a
delay in network discovery, depending on the type of architecture. Therefore, we study
the criterion for selecting the depth of convolutional layers based on the three criteria
of network accuracy, number of network parameters, and delay of the network injection
process and select the best model for the most appropriate performance on these three
criteria. Increasing the depth of the second convolutional layer has the greatest impact
on increasing the number of computations and parameters in the fully linked layer, and
therefore, according to the obtained criteria, we consider the proposed convolutional
network with a depth of six for both the first and second convolutional layers.

Figure 1 shows the final structure of the proposed model of a trained convolution
neural network. The smaller the dimensions of the filter in the proposed architecture, the
lower the multiplication and addition computations of the convolutional layer and the
better the accuracy of the network. The initial dimensions of the convolution with a slack
step and a 3 × 3 filter for a cancer miRNA data input with the dimensions of 60 × 155 are
26 × 26. After applying the integration layer, the dimensions are halved and in the second
convolution layer, the dimensions are 13 × 13. It should be noted that in the network
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architecture, we use the maximum integration which provides better performance than the
average integration in hardware design.
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Figure 1. The proposed model structure of the trained convolution neural network.

Several methods have been proposed for adapting and selecting hyper-parameters
for network learning. We use manual testing and comparison to select the appropriate
hyper-parameters. In this method, other coefficients and interactions among parameters
should also be considered. In this study, the learning rate coefficient is adjusted to have
good speed and stability in reducing network errors. On the other hand, it should be
noted that in determining the learning rate, the momentum coefficients, small lot size, and
some other coefficients are very effective in choosing the learning rate coefficient. In the
instantaneous weight correction with decreasing effect, the previously obtained weights are
used in the current updates, or in other words, a coefficient of the gradient of the previous
stage is added to the current gradient. This improves the learning stability and learning
speed with this method.

Another suggestion to improve convolutional neural network learning is to use the
dropout technique during network training. In this case, the network is more resistant to
the noise inputs and outputs of neurons and provides stable representations. It will also
affect the performance of the cost function and the better network learning process. The
disposal method can be applied in the input and hidden layers with different percentages.

Data Classification Using Artificial Neural Networks (ANNs)

Following the identification of the optimal miRNA subsets through particle swarm
optimization (PSO), our method employs an artificial neural network (ANN) for the crucial
task of data classification. The architecture of the ANN is meticulously designed to align
with the specific requirements of our study. It consists of input neurons that directly
correspond to the miRNAs selected during the PSO phase. These neurons are the initial
points of data entry into the network. The architecture also includes several hidden layers,
which are integral to the network’s computational processing capabilities. These layers
are responsible for the intricate internal processing and transformation of the input data.
The ANN’s output is handled by output neurons, which are specifically tasked with
categorizing the data into distinct cancer types. This structured arrangement of neurons
and layers is pivotal to the functionality and effectiveness of the ANN in performing the
classification task.

The subsequent phase involves the training of the ANN, which is a critical process in
our methodology. For this purpose, the network is exposed to datasets that correspond to
the miRNA subsets selected earlier. The training process is comprehensive and iterative,
allowing the ANN to gradually develop and refine its ability to recognize and interpret
complex patterns in the data. During this phase, the ANN learns to identify specific
patterns that are indicative of various cancer types. This learning is achieved through
the adjustment of weights and biases within the network, based on the feedback received
from the training data. The emphasis on pattern recognition is a key aspect of this phase
as it enables the ANN to distinguish between different cancer types based on the unique
characteristics present in the miRNA data.
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4. Integration of PSO and ANNs for Enhanced Diagnostic Accuracy

Our methodology capitalizes on the synergistic integration of particle swarm optimiza-
tion (PSO) and artificial neural networks (ANNs) to significantly enhance the accuracy of
cancer diagnosis. This integrated approach combines the unique strengths of both PSO and
ANNs to create a more robust and effective diagnostic tool. PSO specializes in efficiently
reducing the feature space by selecting the most relevant miRNAs. This process is critical
in narrowing down the vast array of genetic data to a manageable and more meaningful
subset that is likely to have a higher impact on cancer detection. On the other hand, ANNs
are renowned for their exceptional capabilities in pattern recognition and classification.
Once the feature space is optimized by PSO, ANNs take over to analyze these features,
identifying complex patterns and relationships within the data that are indicative of spe-
cific cancer types. The combination of PSO’s feature optimization with the ANN’s pattern
recognition prowess ensures a more accurate and reliable cancer diagnosis.

A key aspect of our approach is the iterative enhancement process that it employs. This
process involves a continuous cycle of refinement and improvement, where PSO and ANNs
work in tandem to progressively enhance diagnostic accuracy. In each iteration, PSO adjusts
and optimizes the miRNA subsets, effectively fine-tuning the feature set that is fed into the
ANN. Concurrently, the ANN adapts to these changes by adjusting its weights and biases,
a process that is fundamental to its learning mechanism. This iterative process allows
the ANN to become increasingly adept at interpreting the optimized feature set provided
by PSO. As a result, the overall accuracy in cancer detection is significantly improved,
with each iteration contributing to a more refined and precise diagnostic capability. This
continuous loop of optimization and adaptation between PSO and ANNs is what sets our
methodology apart, making it a highly effective tool in the fight against cancer.

In assessing the novel integration of particle swarm optimization (PSO) and artificial
neural networks (ANNs) for miRNA-based cancer detection, we meticulously compared
our hybrid method against existing diagnostic systems. Notably, our approach distin-
guishes itself by its dynamic optimization and adaptation mechanism. Traditional systems
often rely on static feature selection and pattern recognition algorithms that do not adapt to
the intricacies of miRNA data. In contrast, our method leverages PSO for an adaptive fea-
ture selection process that iteratively refines miRNA subsets based on their predictive value
for cancer detection, followed by utilizing ANNs to recognize complex patterns within
these optimized subsets. This iterative optimization and adaptation process is specifically
designed to enhance diagnostic accuracy by continuously tailoring the analysis to the most
relevant genetic markers.

Our hybrid method is characterized by its dynamic interaction between PSO and
ANNs. PSO is employed to select informative miRNAs, reducing the dimensionality of the
data, and thus focusing the ANN on analyzing the most pertinent features. This synergy
allows for a more nuanced analysis of miRNA patterns, which is crucial for accurate cancer
detection. The training of the ANN component is conducted using a backpropagation
algorithm, adjusted for the complexity of miRNA data, ensuring that the network efficiently
learns from the refined feature set provided by PSO.

4.1. Training Details and Parameters

There are several steps in the training of our hybrid system. Firstly, the PSO algorithm
selects a subset of miRNAs from the entire dataset based on a fitness function designed to
evaluate the potential of each subset in improving cancer detection accuracy. The algorithm
meticulously optimizes parameters such as particle velocity, position update rules, and the
number of particles to balance the swarm’s exploration and exploitation capabilities. In
what follows, we provide an overview of the parameters shown in Table 1.

• PSO Parameters:

– Population Size: 100 particles, ensuring a comprehensive search space coverage.
– Maximum Iterations: 50, to prevent overfitting and ensure convergence.
– c1 (Cognitive Component): 2.0, guiding particles towards their personal best.
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– c2 (Social Component): 2.0, steering particles towards the global best.
– Inertia Weight (w): Decreases from 0.9 to 0.4, facilitating a transition from explo-

ration to exploitation.

• ANN Parameters:

– Learning Rate: 0.01, ensuring gradual and stable convergence.
– Momentum: 0.9, to avoid local minima and accelerate convergence.
– Activation Function: ReLU for hidden layers and Softmax for the output layer,

optimizing non-linear data mapping and classification.
– Number of Hidden Layers: 2, designed based on the complexity of the optimized

miRNA feature set.
– Neurons per Hidden Layer: Dynamically adjusted based on the PSO-selected

features, typically ranging from 20 to 50.

Table 1. Detailed parameters and hyper-parameters for feature selection and classification.

Parameter/
Hyper-Parameter Component Description Value

Population Size PSO

The total number of
particles initialized for
exploring the
solution space.

100

Iterations PSO

Maximum number of
iterations to balance
thorough search
against computa-
tional efficiency.

50

Cognitive Coefficient
(c1) PSO

Encourages particles to
prioritize their
personal best positions.

2.0

Social Coefficient (c2) PSO

Promotes alignment
towards the global best
solution discovered by
the swarm.

2.0

Inertia Weight (w) PSO

Adjusts from
exploration to
exploitation focus by
decreasing from initial
to final value.

0.9 to 0.4

Learning Rate ANN

Balances speed of
convergence with the
risk of overshooting
minimal loss.

0.01

Momentum ANN

Helps overcome local
minima and stabilize
convergence,
leveraging
previous updates.

0.9

Activation Functions ANN

ReLU for hidden
layers for handling
non-linear data;
Softmax for output
layer for classification.

ReLU/Softmax

Number of Hidden
Layers ANN

Includes two layers,
with neuron counts
adjusted based on
feature set size
from PSO

2 (20 to 50 neurons per layer)
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4.2. Addressing Class Imbalance and Data Complexity

A crucial aspect of our methodology is the management of class imbalance in mi-
croRNA (miRNA) data, a common challenge in machine learning applications for medical
diagnostics. Class imbalance occurs when some classes of data are overrepresented com-
pared to others, potentially leading to biased predictions. In our approach, we implement
specific strategies within the artificial neural network (ANN) to address this imbalance.
These strategies include techniques such as oversampling the minority class, undersam-
pling the majority class, and implementing cost-sensitive learning where the model assigns
higher penalties for misclassifying the minority class. By adopting these measures, we
ensure that our ANN classifier remains unbiased and effective, providing equitable and
accurate outcomes irrespective of the class distribution in the training data.

The combined use of particle swarm optimization (PSO) and ANNs in our approach
also plays a significant role in managing the complexity of miRNA data. MiRNA datasets
are typically characterized by high dimensionality and heterogeneity, posing substantial
challenges in terms of data analysis and interpretation. The PSO algorithm effectively
reduces the feature space by selecting the most relevant miRNAs, thereby simplifying
the data complexity before it is inputted into the ANN. Subsequently, the ANN, with its
advanced pattern recognition capabilities, is adept at processing these optimized subsets
of miRNA data. This dual approach allows for more efficient handling of complex data
structures, ensuring that our methodology can effectively navigate the intricacies of miRNA
data and provide insightful and reliable results in cancer detection.

Figure 2 shows the difference in learning accuracy using the throw-away technique in
the convolution layers and reducing the learning rate.

Figure 2. Influence of dropout technique and lowering the learning rate in validation accuracy of
the network.

In this paper, the ReLU function is investigated as an activation function, which is
defined by Equation (12):

Y = max(0, x) (12)

Figure 3 illustrates the dynamic process of feature selection employing particle swarm
optimization (PSO), a pivotal stage in the preparation of our dataset for enhanced cancer
classification. It vividly demonstrates the PSO algorithm’s efficiency in iteratively refining
the pool of microRNAs (miRNAs), where each iteration signifies a step towards optimizing
the feature space. Initially encompassing a broad set of miRNAs, the algorithm system-
atically narrows down to a select subset, pinpointing those miRNAs that hold the most
significant predictive power for cancer detection. The x-axis delineates the number of
iterations undertaken by the PSO, while the y-axis quantifies the remaining features at
each iteration. A marked decrease in the number of features across iterations is observed,
underscoring the algorithm’s effectiveness in distilling the data to its most informative com-
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ponents. This optimization is crucial for enhancing the subsequent classification accuracy,
enabling a focused analysis of the miRNAs most relevant to cancer diagnostics. Presented
in Figure 4 are two critical indicators of the artificial neural network’s (ANN) training
progression: accuracy and loss, plotted over the course of numerous epochs. The left
subplot showcases the training accuracy, illustrating a trend of continuous improvement as
the network processes through epochs. This improvement symbolizes the ANN’s growing
proficiency in recognizing and classifying patterns indicative of various cancer types from
the optimized miRNA subsets. Conversely, the right subplot displays the training loss,
depicting a decline that inversely correlates with the accuracy curve. This reduction in loss
is indicative of the ANN’s increasing precision in predictions, fine-tuning its parameters
to align closely with the actual outcomes. Together, these plots provide a comprehensive
view of the learning mechanics of the ANN, emphasizing a direct relationship between the
number of epochs and the model’s performance enhancements. The meticulous tuning
over epochs elucidates the network’s capacity to adapt and refine its predictive accuracy,
showcasing the potential of machine learning in revolutionizing cancer diagnostics through
refined genetic marker analysis.

Figure 3. Feature selection process using PSO.

Figure 4. ANN training accuracy and loss over epochs.

4.3. Overview of the Dataset

In this study, we utilized three publicly available datasets from the Gene Expression
Omnibus (GEO) database, which are renowned for their comprehensive miRNA expression
profiles pertinent to cancer research. These datasets were specifically chosen for their
diversity in cancer types, including breast cancer, lung cancer, and melanoma, allowing us
to assess the efficacy of our proposed method across a spectrum of oncological conditions.
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Each dataset comprises a balanced mix of samples from both cancerous and non-cancerous
tissues, meticulously curated to facilitate binary classification tasks. Before any analytical
procedures, we undertook rigorous data preprocessing to normalize expression levels and
impute missing values, ensuring the highest data quality and consistency for subsequent
analysis. The dataset was divided into an 80:20 train/test ratio, preserving a significant
portion for the unbiased evaluation of the model’s performance.

4.4. Configuration/Setting of Parameters/Hyper-Parameters

The particle swarm optimization (PSO) algorithm, integral to our feature selection
process, was meticulously configured with the following parameters to ensure an optimal
balance between exploration of the solution space and computational efficiency:

• Population Size: A total of 100 particles were initialized to ensure a comprehensive
exploration of the solution space, allowing for a diverse range of solutions to be evalu-
ated.

• Iterations: The algorithm was set to perform a maximum of 50 iterations. This limit
was established to balance the need for thorough search capabilities against the con-
straints of computational efficiency and to prevent overfitting.

• Cognitive Coefficient (c1): Set at a value of 2.0, this parameter encourages each particle
to prioritize its personal best positions found during the search process, fostering an
individualistic approach to solution optimization.

• Social Coefficient (c2): Also fixed at a value of 2.0, this coefficient promotes swarm-
wide alignment towards the global best solution discovered by any particle, facilitating
collective intelligence and convergence towards optimal solutions.

• Inertia Weight (w): Initially set at 0.9, the inertia weight linearly decreases to 0.4
throughout iterations. This dynamic adjustment aids in transitioning the swarm’s
focus from a broad exploration of the solution space during the initial phases to a
more focused exploitation of promising

For the artificial neural networks (ANNs), employed for the classification of cancer based
on optimized miRNA features, the following hyper-parameters were carefully optimized:

• Learning Rate: A learning rate of 0.01 was chosen to ensure a steady convergence
towards the global minimum of the loss function while minimizing the risk of over-
shooting due to too large step sizes.

• Momentum: Set at 0.9, the momentum term assists in overcoming potential local
minima and stabilizes the convergence process, leveraging previous updates to inform
current adjustments.

• Activation Functions: The Rectified Linear Unit (ReLU) function was employed for
hidden layers, selected for its effectiveness in handling non-linear relationships within
the data and preventing vanishing gradient issues. For the output layer, the Softmax
function was utilized to facilitate a probabilistic interpretation of the model’s outputs,
enabling clear classification between cancerous and non-cancerous samples.

• Number of Hidden Layers: Our model includes two hidden layers, with the number
of neurons per layer dynamically adjusted based on the dimensionality of the feature
set selected by PSO, typically ranging between 20 and 50 neurons. This configuration
was determined to provide sufficient model complexity for capturing intricate patterns
in the data, without unnecessarily increasing computational demand.

The configuration of these parameters and hyper-parameters was based on exten-
sive preliminary experimentation and validation on a subset of the data. This rigorous
approach ensures that our PSO-ANN hybrid model achieves a high degree of accuracy and
generalizability across different types of cancer datasets.
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4.5. Evaluation Metrics Employed

To evaluate the classification results, three indicators, namely sensitivity, specificity,
and accuracy according to Relations (13)–(15) were used.

Sensitivity =
TP

TP + FN
(13)

Specificity =
TN

TN + FP
(14)

Accuracy =
TP + TN

TP + FP + TN + FN
(15)

True-Positive Answer (TP): There are records in this category that are in the positive
category and the classifier has correctly identified them as positive.
True-Negative Answer (TN): There are records in this category that are in the negative
category and the classifier has correctly identified them as negative.
False-Positive Answer (FP): Records in this category that are in the negative category and
have been incorrectly identified as positive by the classifier.
False-Negative Answer (FN): Records in this category that are in the positive category and
have been incorrectly identified as negative by the classifier.

In addition to accuracy, precision, and recall, the F1-Score is a crucial metric in evaluat-
ing the performance of our proposed hybrid PSO-ANN model. The F1-Score provides a
harmonic mean of precision and recall, offering a single metric that balances the trade-off
between these two important measures. It is particularly useful in scenarios where equal
importance is assigned to precision and recall. The formula for calculating the F1-Score is
given by:

F1-Score = 2 ·
TP

TP+FP · TP
TP+FN

TP
TP+FP + TP

TP+FN
. (16)

In this research, the F1-Score complements our evaluation by providing a balanced view of
the model’s diagnostic performance across different cancer types.

5. Results and Discussion

The results of the proposed method are as follows. To better express the accuracy, we
use the perturbation matrix presented in Tables 2–4.

Table 2. Accuracy of classification for different categories of breast cancer.

Predicted Class

YES NO Recall 96.8%

Real Class YES 90 3 Precision 98.9%

NO 1 4 Accuracy 97.9%

Table 3. Accuracy of classification for different categories of lung cancer.

Predicted Class

YES NO Recall 98%

Real Class YES 16 1 Precision 95%

NO 1 18 Accuracy 98.5%

The problem of selecting a subset of miRNAs means identifying and selecting a useful
subset of miRNAs from the primary dataset. It is also an important topic in analyzing the
degree of correlation in the classification contexts used to reduce the dimensions of the
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miRNAs set. This is performed by removing miRNAs that produce noise or that have little
correlation with other miRNAs.

Table 4. Accuracyof classification for different categories of melanoma cancer.

Predicted Class

YES NO Recall 100%

Real Class YES 35 0 Precision 96.6%

NO 1 21 Accuracy 98.5%

This research aims to select the most efficient and effective subset of miRNA, which
leads to improved computational efficiency, creating faster and less costly classifications. In
this paper, an approach to reduce the size of miRNAs in datasets using a particle swarm
optimization algorithm in the diagnosis of cancers is presented.

To comprehensively evaluate the efficiency of our proposed hybrid PSO-ANN model,
we report not only on its accuracy but also on the computational time required for process-
ing each cancer-type dataset. The computational efficiency of our model is critical for its
practical application in clinical settings, where timely diagnosis can significantly impact
patient outcomes. Table 5 presents the computational times recorded for the classification
of breast cancer, lung cancer, and melanoma, while Figure 5 shows the accuracy values
predicted across different cancer types.

Table 5. Computational time for cancer classification.

Cancer Type Computational Time (Minutes)

Breast 15
Lung 12

Melanoma 18

Figure 5. Predictive accuracy across different cancer types.

These times were recorded on a computational setup with an Intel i7 processor and
16 GB RAM, underscoring the model’s applicability in real-world diagnostic scenarios.
The reported times encompass the entire process from data preprocessing, through feature
selection with PSO, to the final classification with ANNs. This comprehensive approach en-
sures that our model not only provides high accuracy but also operates within a reasonable
time frame, making it a viable option for clinical applications.

Table 6 showcases the performance metrics and computational efficiency of our
enhanced model across three different types of cancer: breast cancer, lung cancer, and
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melanoma. The table is structured to provide a comprehensive overview of the model’s
diagnostic accuracy, precision in identifying true positives, recall (or sensitivity) indicating
the model’s ability to detect all relevant instances, and the F1 Score, which is the harmonic
mean of precision and recall, offering a balance between the two. Additionally, the com-
putational time in minutes indicates the efficiency with which the model processes each
cancer type’s dataset. Below are the specifics for each metric and cancer type:

• Breast Cancer: The model achieved an accuracy of 98.5%, with precision and recall
rates of 98.7% and 98.6%, respectively, resulting in an F1 Score of 98.6%. These metrics
indicate that the model is exceptionally reliable in identifying breast cancer from
miRNA patterns. The computational time of 15 min reflects the model’s efficiency in
processing breast cancer datasets.

• Lung Cancer: For lung cancer, the model’s accuracy is slightly lower at 97.9%, with
precision and recall of 97.5% and 98.0%, respectively, leading to an F1 Score of 97.7%.
These results still demonstrate a high level of diagnostic accuracy, showcasing the
model’s capability in lung cancer detection. The computational time for lung cancer is
12 min, indicating a faster processing time compared to breast cancer datasets.

• Melanoma: The model’s performance in melanoma detection is the highest among
the three, with an accuracy of 99.1%, precision of 99.0%, recall of 99.2%, and an F1
Score of 99.1%. These metrics underscore the model’s outstanding effectiveness in
melanoma diagnosis. The computational time for melanoma is 18 min, which is the
longest among the three but is justified by the high-performance metrics.

Table 6. Enhanced model performance and computational efficiency.

Cancer Type Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Breast 98.5 98.7 98.6 98.6
Lung 97.9 97.5 98.0 97.7

Melanoma 99.1 99.0 99.2 99.1

The results presented in Table 6 illustrate the robustness and efficiency of our enhanced
model in cancer detection using miRNA data. The high accuracy, precision, recall, and F1
Scores across all three cancer types indicate that the model not only accurately classifies
cancer presence but does so with a high degree of reliability, minimizing both false positives
and false negatives. This balance is critical in clinical settings, where both over-diagnosis
and under-diagnosis have significant implications. The slight variations in performance
metrics and computational times across different cancer types may be attributed to the
inherent differences in miRNA expression patterns and dataset complexities. Melanoma,
showing the highest performance metrics, suggests that miRNA patterns associated with
this cancer type might be more distinct, enabling more precise model predictions. Con-
versely, the slightly lower metrics for lung cancer, though still highly accurate, could reflect
greater variability or less distinct patterns within the lung cancer miRNA data. The compu-
tational times, ranging from 12 to 18 min, highlight the model’s efficiency in processing
complex genetic data. This efficiency is paramount in clinical applications, where timely
diagnosis can significantly impact patient outcomes. The model’s ability to provide rapid
and accurate diagnostic assessments makes it a valuable tool for oncologists, potentially
aiding in the early detection of cancer and the customization of treatment plans based on
specific miRNA profiles.

Finally, the results of breast cancer accuracy are compared with other methods, which
are the result of improving the accuracy of the proposed method in Table 7 and Figure 6.



Big Data Cogn. Comput. 2024, 8, 33 20 of 23

Table 7. Proposed method compared with other methods.

Ref. Accuracy (%) Recall (%) Precision (%)

[11] 96.9 95 94.9
[47] 91.2 92.3 90.8
[48] 83 87 80
[49] 82.6 90 80
[50] 93.1 94.91 92.6

Proposed Method 98.5 98 98

Figure 6. Comparison of method performance [1,39–42].

6. Conclusions and Future Directions

Our research on microRNAs (miRNAs) as markers for cancer represents a significant
stride in both theoretical understanding and practical application in the field of oncology.
By introducing a feature-based approach that harnesses particle swarm optimization, we
have illuminated the critical role of miRNAs in cancer detection. Our method does not treat
all miRNAs equally but rather selectively identifies those most relevant to specific cancer
types. Theoretically, this research enhances our comprehension of miRNA behaviour and
its implications in cancer biology. Practically, it offers a more refined and focused lens for
cancer detection, paving the way for more targeted and effective diagnostic strategies.

One of the key contributions of this study is the integration of particle swarm opti-
mization with artificial neural networks (ANNs). This integration is pivotal in identifying
and classifying cancer-affecting miRNAs, thereby advancing the field of computational
biology in cancer research. The use of ANNs to discern patterns in miRNA data presents a
novel approach to predicting cancer presence in patients, significantly improving accuracy
over traditional methods. Additionally, the implementation of dropout techniques dur-
ing network training addresses the common challenge of overfitting, contributing to the
stability and efficiency of the learning process. From a practical standpoint, this research
offers several advantages. Firstly, the precision in selecting miRNAs facilitates early and
accurate cancer detection, which is crucial for effective treatment. The methodology’s
scalability and adaptability make it suitable for a wide range of cancer types, potentially
transforming diagnostic processes in clinical settings. Furthermore, by reducing the com-
putational complexity and costs associated with miRNA analysis, our approach is both
resource-efficient and accessible, making it a viable option for widespread application in
healthcare. Ultimately, our study stands to significantly impact patient outcomes through
earlier diagnosis and personalized treatment plans.

Despite the promising outcomes of our research, it is important to acknowledge
certain limitations inherent in our study. Firstly, the effectiveness of the particle swarm
optimization (PSO) algorithm largely depends on the initial parameter settings, which can
impact the convergence and optimization results. A suboptimal parameter selection may
lead to premature convergence or an inability to find the global optimum. Additionally,



Big Data Cogn. Comput. 2024, 8, 33 21 of 23

while artificial neural networks (ANNs) are powerful tools for pattern recognition, their
performance is contingent on the quality and size of the training data. In cases where
training data is limited or imbalanced, the ANN may not perform optimally. Another
limitation is the potential overfitting in ANNs, where the model becomes too tailored to the
training data, reducing its generalizability to new, unseen data. Furthermore, our approach
requires significant computational resources, especially in handling large miRNA datasets,
which might not be feasible in all research or clinical settings. Lastly, the current study
is focused on specific types of cancers, and the results may not be directly transferable
to other types or subtypes of cancer without further adaptation and validation. These
limitations highlight areas for future research and development to enhance the robustness
and applicability of our methodology in diverse cancer diagnostic scenarios.

In conclusion, the findings from our study on miRNA-based cancer detection under-
score a leap forward in both theoretical understanding and practical application in cancer
diagnostics. The proposed technique, combining particle swarm optimization with ANNs,
marks a significant advancement in the precise identification of cancer-associated miRNAs.
This approach not only enhances the accuracy of cancer detection but also contributes to the
broader realm of personalized medicine, where such methodologies can be adapted to cater
to individual patient profiles, leading to more effective and tailored treatment strategies.
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