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Abstract: In order to stop and reverse land degradation and curb the loss of biodiversity, the United
Nations 2030 Agenda for Sustainable Development proposes to combat desertification. In this paper,
a fractional vegetation–water model in an arid flat environment is studied. The pattern behavior
of the fractional model is much more complex than that of the integer order. We study the stability
and Turing instability of the system, as well as the Hopf bifurcation of fractional order α, and obtain
the Turing region in the parameter space. According to the amplitude equation, different types of
stationary mode discoveries can be obtained, including point patterns and strip patterns. Finally, the
results of the numerical simulation and theoretical analysis are consistent. We find some novel fractal
patterns of the fractional vegetation–water model in an arid flat environment. When the diffusion
coefficient, d, changes and other parameters remain unchanged, the pattern structure changes from
stripes to spots. When the fractional order parameter, β, changes, and other parameters remain
unchanged, the pattern structure becomes more stable and is not easy to destroy. The research results
can provide new ideas for the prevention and control of desertification vegetation patterns.

Keywords: vegetation pattern; fractional vegetation–water model; weakly nonlinear analysis;
Hopf bifurcation

1. Introduction

In recent decades, desertification in arid and semi-arid regions has become more and
more serious, and the United Nations has made combating desertification one of its global
goals of sustainable development [1]. Semi-arid ecosystems are usually located at the
edge of deserts. One side is the desert, and the other side is the vegetation, such as grass
and shrubs [2]. It is estimated that semi-arid ecosystems cover about 30% of the Earth’s
surface [3], so it is critical to protect the sustainable development of vegetation systems.

Different vegetation growth conditions will lead to different spatial distributions of
vegetation. The uneven distribution of vegetation across a space is known as a vegetation
pattern [4]. It is a prominent feature of many semi-arid regions [5], and its appearance is
often an early warning indicator of the transformation of ecosystems to desertification [6,7].
In 1999, Klausmeier [8] first proposed a vegetation water model to study desertification
as follows: 

ut =

uptake by plants︷ ︸︸ ︷
−Ruv2 +

rain f all︷︸︸︷
A −

evaporation︷︸︸︷
Lu +

f low downhill︷ ︸︸ ︷
Mux,

vt = RJuv2︸ ︷︷ ︸
plant growth

− Nv︸︷︷︸
plant loss

+ D∆x,yv︸ ︷︷ ︸
dispersal

,
(1)

with two variables, surface water u(x, t) and vegetation v(x, t). Here, A denotes precipita-
tion under natural conditions, Lu denotes water evaporation, Ruv2 denotes the amount
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of water absorbed by plants, Mux denotes the downhill flow of water, RJuv2 denotes
the growth of plants themselves, Nv denotes the loss of plants, D denotes the rate of
vegetation diffusion, ∆x,y denotes the Laplace operator. In ecology, all parameters are
nonnegative constants.

Klausmeier’s model focuses on the flow pattern of water down the slope and cannot
predict the flow pattern on the flat ground (M = 0). However, vegetation patterns were
also observed in semi-arid ecosystems without slopes. In order to simulate the diffusion of
water on a flat surface, researchers [9,10] used d∆x,yu instead of the advection term of Mux
to extend model (1) and considered the following model:{

ut = −Ruv2 + A − Lu + d1∆x,yu,
vt = RJuv2 − Nv + d2∆x,yv.

(2)

For model (2), Wang et al. [9] proved that there is a non-uniform vegetation state
when the rainfall is low. Sun et al. [11] discussed the wavelength variation with biological
parameters and found different types of stationary modes. Guo et al. [12] described
the evolution of vegetation patterns under different parameters. It is worth noting that
model (2) is the same as the autocatalytic chemical reaction model proposed by Gray and
Scott [13,14], so model (2) is also called the diffusion Klausmeier–Gray–Scott model [7].
In [15,16], Han et al. solved several types of reaction–diffusion equations using spatially
discretized Fourier transform. In [17], Liu et al.introduced a time two-grid finite element
method and derived the stability and error estimates of the fully discretized equation.
In [18], Zhai et al. proposed a method to simulate the fractional Gray–Scott model by
combining the semi-implicit spectral deferred correction method with the operator splitting
scheme, and so on [19–21].

The succession of arid ecosystems can span a long duration, sometimes extending over
hundreds of years. Influenced by climate, soil, and other regional factors, the succession
process of each region may also vary. Due to the locality of integer order derivatives, there
are some limitations in describing succession. Fractional derivatives are more suitable for
description than integer derivatives due to their memorability and nonlocality. In order to
understand the relationship between vegetation and water in arid ecosystems, we consider
the following fractional-order models:{

Dα
t u = −Ruv2 + A − Lu + D1∆

β
x,yu,

Dα
t v = RJuv2 − Nv + D2∆

β
x,yv.

(3)

Here, Dα
t represents Caputo fractional differentiation, and is defined as follows:

Dα
t u(t) = 1

Γ(1−α)

∫ t
0 (t − τ)u

′
(τ)dτ , t > 0,

with 0 < α < 1.
The rest of this article is organized as follows. In Section 2, we establish a model and

explore the positivity and uniqueness of solutions for models without diffusion terms. In
Section 3, we discuss the stability of the model and Hopf bifurcation. In Section 4, the
Turing instability of the model is discussed. In Section 5, weak nonlinear analysis is used to
derive the amplitude equation. In Section 6, we conduct numerical simulations. We present
our conclusion in Section 7.

2. Model and Preliminaries
Positive and Uniqueness

In this section, we prove the positive uniqueness and nonnegativity of solutions for
fractional order models without diffusion terms.
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The non-diffusion version of model (3) is as follows:{
Dα

t u = −Ruv2 + A − Lu,
Dα

t v = RJuv2 − Nv.
(4)

Lemma 1 ([22]). Suppose 0 < α ≤ 1, f (t) ∈ C[a, b] and Dα
t f (t) is continuous in [a, b]. For

t ∈ (a, b),
1. If Dα

t f (t) ≥ 0, f (t) is a non-decreasing function in [a, b].
2. If Dα

t f (t) ≤ 0, f (t) is a non-increasing function in [a, b].

Let R+ represent the set of all nonnegative real numbers and
C+ = {(u, v) ∈ C : u, v ∈ R+}.

Theorem 1. All solutions of model (4), starting from C+, are nonnegative.

Proof. Assume that there is a constant, t1, satisfying 0 ≤ t ≤ t1 and
v(t) > 0, 0 ≤ t < t1,
v(t1) = 0,
v
(
t+1
)
< 0.

(5)

From model (4), we can see the following:

Dα
t v(t) |v(t1)=0= 0. (6)

Thus, from Lemma (1), v
(
t+1
)
= 0 is not consistent with the assumption v

(
t+1
)
< 0. Hence,

v(t) ≥ 0 for all t ≥ 0. The same method can be applied to demonstrate that all solutions of
model (4) are nonnegative.

Theorem 2. Fractional model (4) has a unique solution under any nonnegative
initial conditions.

Proof. According to the method proposed in [23–25], we define the following operator:{
f1(t, u) = −Ruv2 + A − Lu,
f2(t, u) = RJuv2 − Nvv.

(7)

Let

N1 = sup
C[a,b1 ]

|| f1(t, u)||, N2 = sup
C[a,b2 ]

|| f2(t, v)||, (8)

with

C[a,b1]
= [t − a, t + a]× [u − b1, u + b1] = A1 × B1,

C[a,b2]
= [t − a, t + a]× [v − b2, v + b2] = A2 × B2.

Using the Banach fixed point theorem, we can obtain the following uniform norm:

|| f (t)||∞ = sup| f (t)|, t ∈ [t − a, t + a]. (9)

Picard’s operator is as follows:

O : C(A1, B1, B2) → C(A1, B1, B2). (10)
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It is defined as follows:

OX(t) = X0(t) +
1

Γ(α)

∫ t

0
(t − τ)α−1F(τ, X(τ))dτ, (11)

where X(t) = [u(t), v(t)]T , X0(t) = [u0(t), v0(t)]
T , F(t, X(t)) = [ f1(t, u), f2(t, v)]T .

We assume that the solution of the model is bounded in a time period:

||X(t)||∞ ≤ max{b1, b2}. (12)

We can obtain the following:

||OX(t)− X0(t)|| = || 1
Γ(α)

∫ t
0 (t − τ)α−1F(τ, X(τ))dτ||

≤ 1
Γ(α)

∫ t
0 (t − τ)α−1||F(τ, X(τ))||dτ ≤ Naα

Γ(α)
≤ aN ≤ b,

(13)

with N = max{N1, N2}, b = max{b1, b2}, a < b
N .

||OX1(t)− OX2(t)|| = || 1
Γ(α)

∫ t
0 (t − τ)α−1{F(τ, X1(τ))− F(τ, X2(τ))}dτ||

≤ 1
Γ(α)

∫ t
0 (t − τ)α−1||F(τ, X1(τ))− F(τ, X2(τ))||dτ

≤ β
Γ(α)

∫ t
0 (t − τ)α−1||X1(τ)− X2(τ)||dτ

≤ βaα

Γ(α)
||X1(τ)− X2(τ)|| ≤ aβ||X1(τ)− X2(τ)||.

(14)

Since F is a contraction and β < 1, we obtain aβ < 1; that is, the defined operator O is
also a contraction. Therefore, the uniqueness proof of the system solution is completed.

3. Stability and Hopf Bifurcation Analysis

In this part, we first discuss the number of equilibrium points of the model. Then, by
analyzing the stability of the equilibrium point and the Hopf bifurcation, the conditions
under which different states of the system appear are given. At the same time, numerical
simulations are also used to prove the rationality of the theory.

3.1. Equilibrium Point

We obtain the equilibrium point by solving the following system of equations:{
f (u, v) = −Ruv2 + A − Lu,
g(u, v) = RJuv2 − Nv.

(15)

Denote by f (u, v) = 0 and g(u, v) = 0. The system (15) has a catalyst-free equilibrium
point, E1 =

(
A
L , 0
)

, and a coexistence equilibrium point, E∗ = (u∗, v∗). Then, we have
the following:

u∗ =
AJ −

√
RA2 J2−4LN2

R

2JL
, v∗ =

AJ +
√

RA2 J2−4LN2

R

2N
. (16)

3.2. Stability Analysis

Before determining the stability of the equilibrium point, we first give the stability
criterion of the fractional differential system.

Theorem 3 ([26,27]). Consider a fractional differential system, as follows:

Dα
t x(t) = f (t, x(t)). (17)
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Let x∗ be an equilibrium point, and let λi, (i = 1, 2, · · · , n) be the eigenvalues of the Jacobian
matrix, J = ∂ f

∂x∗
.

(1) The equilibrium point x∗ is asymptotically stable if and only if

|arg(λi)| > α
π

2
, i = 1, 2, · · · , n. (18)

(2) The equilibrium point x∗ is stable if and only if

|arg(λi)| ≥ α
π

2
, i = 1, 2, · · · , n. (19)

(3) The equilibrium point x∗ is unstable if and only if

∃ : |arg(λi)| < α
π

2
, i = 1, 2, · · · , n. (20)

Definition 1 ([28]). The roots of the equation f (t, x(t)) = 0 are called the equilibria of the
fractional differential system:

Dα
t x(t) = f (t, x(t)),

where x(t) = (x1(t), x2(t), · · · , xn(t))
T ∈ Rn, f (t, x(t)) ∈ Rn, and

Dα
t x(t) =

(
Dα1

t x1(t), Dα2
t x2(t), · · · , Dαn

t xn(t)
)T , αi ∈ R+, i = 1, 2, · · · , n.

We can obtain the Jacobi matrix for system (15) at the equilibrium point, E1, as follows:

J =
(

a11 a12
a21 a22

)
=

(
−L 0
0 −N

)
, (21)

Two eigenvalues are λ1 < 0, λ2 < 0; therefore, |arg(λ1,2)| = π > α π
2 implies E1 is

asymptotically stable;
The Jacobian matrix of system (15) at the equilibrium point, E∗, is as follows:

J =
(

a11 a12
a21 a22

)
=

−
AJR

(
AJ−

√
RA2 J2−4LN2

R

)
2N2 − 2N

J

JR
(

AJ−
√

RA2 J2−4LN2
R

)2

4N2 N

. (22)

As such, the characteristic equation at equilibrium point E∗ is as follows:

λ2 − tr0λ + det0 = 0, (23)

where

tr0 =
−RA2 J2 + 2N3 + AJR(AJ − B)2

2N2 , det0 =
−R(AJ − B)B

2N
, (24)

with B =
√

RA2 J2−4LN2

R .
The roots of the characteristic equations are as follows:

λ1,2 =
tr0 ±

√
∆

2
, ∆ = tr2

0 − 4det0. (25)

The eigenvalues are real when ∆ ≥ 0. For tr0 = 0, λ1,2 = ±i
√

det0 is obtained;
therefore |arg(λ1,2)| = π

2 > α π
2 implies E∗ is asymptotically stable. The eigenvalues

are negative real when tr0 < 0 and det0 > 0, so |arg(λ1,2)| = π > α π
2 implies E∗ is

asymptotically stable. For tr0 > 0 and det0 > 0, both the eigenvalues are positive real;
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hence, |arg(λ1,2)| = 0 < α π
2 implies E∗ is unstable. When det0 < 0, the two eigenvalues

are real numbers with opposite signs, so |arg(λ1)| = 0 < α π
2 implies that E∗ is unstable.

The two eigenvalues are complex conjugates when ∆ < 0. In this case, the definition is
as follows:

απ

2
=

∣∣∣∣∣∣tan−1


√

4 det0 −tr2
0

tr0

∣∣∣∣∣∣. (26)

Therefore, E∗ is stable if α π
2 <

∣∣∣ tan−1
(√

4 det0 −tr2
0

tr0

)∣∣∣ and is unstable for

α π
2 >

∣∣∣ tan−1
(√

4 det0 −tr2
0

tr0

)∣∣∣.
Through Theorem 3, we draw the following conclusions:

Theorem 4. The system is asymptotically stable at the equilibrium point E1 =
(

A
L , 0
)

.

Theorem 5 ([29]). The stability of equilibrium point E∗ is determined by tr0, det0 and α.
If ∆ ≥ 0, then we have the following:
(1) the equilibrium point, E∗, is asymptotically stable if and only if tr0 ≤ 0 and det0 > 0.
(2) the equilibrium point, E∗, is unstable if and only if tr0 > 0 or det0 < 0.
If ∆ < 0, then:

(3) the equilibrium point, E∗, is stable if and only if α π
2 <

∣∣∣∣tan−1
(√

4 det0 −tr2
0

tr0

)∣∣∣∣.
(4) the equilibrium point, E∗, is unstable if and only if α π

2 >

∣∣∣∣tan−1
(√

4 det0 −tr2
0

tr0

)∣∣∣∣.
3.3. Hopf Bifurcation Analysis

When tr0 = 0 and det0 > 0, model (4) with α = 1 loses stability through Hopf
bifurcation. Since the stability of model (4) is affected by the fractional derivative, the
fractional derivative can be regarded as a parameter of the Hopf bifurcation. In the
following, we establish the conditions for the Hopf bifurcation of model (4) around E∗ at
parameter α = αh [30,31]:

(1) The Jacobian matrix at the equilibrium point, E∗, has a pair of complex conjugate
eigenvalues λ1,2 = ai + ibi, which become purely imaginary when α = αh.

(2) m(αh) = 0 where m(α) = α π
2 − min

1≤i≤2

∣∣∣arg(λi)
∣∣∣.

(3) ∂m(α)
∂α

∣∣∣
α=αh

̸= 0.

Now, we prove that E∗ has a Hopf bifurcation when α goes through αh.

Theorem 6. Suppose that the equilibrium point, E∗, is unstable when ∆ < 0 and tr0 > 0. The
fractional parameter, α, passes through the critical value, αh, and model (4) undergoes the Hopf
bifurcation near E∗, where

αh =
2
π

tan−1


√

4 det0 −tr2
0

tr0

. (27)

Proof. For ∆ < 0 and tr0 > 0, the eigenvalues are complex conjugates with positive real
parts. Hence, we have the following:

0 < arg(λ12) = tan−1


√

4 det0 −tr2
0

tr0

 <
π

2
, (28)
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and α π
2 >

∣∣∣ tan−1
(√

4 det0 −tr2
0

tr0

)∣∣∣ for some α. Let αh
π
2 =

∣∣∣ tan−1
(√

4 det0 −tr2
0

tr0

)∣∣∣, obtain αh =

2
π tan−1

(√
4 det0 −tr2

0
tr0

)
. Moreover, ∂m(α)

∂α

∣∣∣
α=αh

= π
2 ̸= 0. Therefore, all Hopf conditions are

satisfied.

Remark. Now, we use fractional Adams–Bashforth-Moulton methods [32] for the numerical
simulation to provide evidence that supports these viewpoints. We use the parameter
values given in Table 1, and the selection of parameter values refers to the relevant published
paper [12].

Table 1. The parameter values for the numerical study of model (4).

R J A L N

1 1 13.9 1 5.5

At the equilibrium point E∗ = (11.199, 0.49109), the conditions tr0 = 4.2588,
det0 = −4.1736 and ∆ = 34.832 are satisfied, which conforms to Theorem 5. There-
fore, the equilibrium point is unstable, and there is a stable limit cycle around it. See
Figure 1. The decrease in the fractional order parameter α value corresponds to the increase
in the memory effect in the model. As it decreases, the equilibrium point, E∗, maintains
an unstable spiral, and the circumference of the limit cycle also decreases. This situation
continues until reaching the critical Hopf bifurcation value αh = 0.994. For α < αh, the
equilibrium point, E∗, of the system becomes a stable spiral. Therefore, the memory effect
drives the model to exhibit stable behavior. From an ecological point of view, it can be
inferred that both surface water and vegetation use some of their past behavior in the
ecosystem to establish sustainable development. For example, vegetation adapts to the
environment by thickening roots.

α = 1 α = 0.995 α = 0.97

α = 1 α = 0.995 α = 0.97

Figure 1. Time series and phase diagrams of surface water and vegetation in model (4) under different
fractional order parameters α .

4. Turing Instability

In this section, we present the Turing instability condition for model (3).
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We perturb the equilibrium point with u = u∗ + ũ, v = v∗ + ṽ, substitute it into model
(3), expand it through the Taylor series, remove higher-order terms, and obtain the linear
perturbation equation, as follows:

U̇ = JU + D∆U, (29)

where

U =

(
ũ
ṽ

)
, D =

(
d1

d2

)
. (30)

J is a Jacobian matrix at E∗. For convenience, we still denote ũ and ṽ as u and v.
Expanding the perturbation variables in Fourier space and substituting

U =

(
c1

k
c2

k

)
eλt+ikr into the perturbation Equation (29) yields the characteristic equation,

as follows:

λ

(
c1

k
c2

k

)
=

(
a11 − k2d1 a12

a21 a22 − k2d2

)(
c1

k
c2

k

)
, (31)

where λ is the growth rate, k is the wave number, r is the spatial vector, and c1
k , c2

k
are constants.

We solve characteristic Equation (31) and obtain the following dispersion relationship:

λ2 − trkλ + detk = 0, (32)

where{
trk = a11 + a22 − k2(d1 + d2) = tr0 − k2(d1 + d2),
detk = a11a22 − a21a12 − k2(a11d2 + a22d1) + k4d1d2 = det0 −k2(a11d2 + a22d1) + k4d1d2.

The solution of characteristic Equation (32) is in the following form:

λk =
trk ±

√
tr2

k − 4 detk

2
. (33)

In order to explore the existence conditions for Turing instability at k ̸= 0, we should
ensure that trk < 0 and detk < 0. In order to ensure the occurrence of detk < 0, the condition
of marginal stability min

(
det
(
k2

c
))

= 0 should be satisfied. Here, k2
c = a11d2+a22d1

2d1d2
is the

minimum value of detk with respect to k2
c .

From min
(
det
(
k2

c
))

= 0, we can obtain

a2
22d2

1 + 2d2(a11a22 − 2det0)d1 + a2
11d2

2 = 0.

Since E∗ is a positive equilibrium point, det0 > 0, a11a22 can be obtained, so we have
the following:

d+1 =
d2(2 det0 −a11a22) + 2d2

√
det0(det0 −a11a22)

a2
22

> 0,

d−1 =
d2(2 det0 −a11a22)− 2d2

√
det0(det0 −a11a22)

a2
22

> 0.

Theorem 7. Suppose that 0 ≤ r ≤ 1 and d1 > 0, d2 > 0 are valid.
(1) The equilibrium point, E∗, is asymptotically stable if and only if d−+ < d1 < d+1 .
(2) The equilibrium point, E∗, is unstable if and only if d1 > d−+ or d1 < d−+.
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(3) Turing bifurcation occurs at d1 = d−+ or d1 = d−+, and the critical wave number is

k2
c =

√
det0
d+1 d2

or k2
c =

√
det0
d−1 d2

.

Proof. The eigenvalues are negative real when d−+ < d1 < d+1 , so |arg(λk)| = π > α π
2

implies E∗ is asymptotically stable;
When d1 > d−+ or d1 < d−+, the two eigenvalues are real numbers with opposite signs, so
|arg(λk)| = 0 < α π

2 implies E∗ is unstable;

From min
(
det
(
k2

c
))

= 0, we have k2
c =

√
det0
d+1 d2

or k2
c =

√
det0
d−1 d2

.

Remark: Take R = 1, J = 1, A = 0.014, L = 0.014, N = 0.062, d2 = 0.00001. We draw
the stable region of equilibrium point E on the plane when d1 > 0, d2 > 0. According to
Theorem 7, the stable region and the unstable region are distinguished in Figure 2.

(a) (b)
Figure 2. Stability domains of equilibrium (a) E1 and (b) E∗ .

5. Weakly Nonlinear Analysis

In this section, we use weak nonlinear analysis to calculate the amplitude equation
near the Turing instability threshold, d1 = dc

1. We write model (3) in the following form:

∂U
∂t

= LU + N(U, U), (34)

where L is a linear operator and N is a nonlinear operator.

L =

(
a11 + d1∆ a12

a21 a22 + d2∆

)
, (35)

and

N =

(
−2Rv∗uv − Ru∗v2 − Ruv2

2JRv∗uv + JRu∗v2 + JRuv2

)
+O(4). (36)

We only consider the behavior of the control parameter near the bifurcation point, so
the control parameter, d1, can be expanded as follows:

d1 − dc
1 = εd11 + ε2d12 + ε3d13 +O(4), (37)

where ε is a small parameter. At the same time, the variable, U, and the nonlinear term, N,
are expanded according to this small parameter:

U =

(
u
v

)
= ε

(
u1
v1

)
+ ε2

(
u2
v2

)
+ ε3

(
u3
v3

)
+O(4), (38)
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N = ε2N2 + ε3N3 +O
(

ε4
)

, (39)

with

N2 =

(
−2Rv∗u1v1 − Ru∗v2

1
2JRv∗u1v1 + JRu∗v2

1

)
, (40)

and

N3 =

(
−2Rv∗(u1v2 + u2v1)− 2Ru∗v1v2 − Ru1v2

1
2JRv∗(u1v2 + u2v1) + 2JRu∗v1v2 + JRu1v2

1

)
. (41)

The linear operator, L, can be decomposed into the following:

L = Lc + (d1 − dc
1)M,

where

Lc =

(
a11 + dc

1∆ a12
a21 a22 + d2∆

)
, M =

(
∆ 0
0 0

)
. (42)

We set T0 = t, T1 = εt, T2 = ε2t, T3 = ε3t; then, the partial derivative of time can be
written as follows:

∂

∂t
= ε

∂

∂T1
+ ε2 ∂

∂T2
+ ε3 ∂

∂T3
+O(4). (43)

We substitute Formulas (37)–(43) into Equation (34).
The left side of the equation is as follows:

ε
∂

∂t

(
u1
v1

)
+ ε2 ∂

∂t

(
u2
v2

)
+ ε3 ∂

∂t

(
u3
v3

)
=

ε

[
ε

∂

∂T1

(
u1
v1

)
+ ε2 ∂

∂T2

(
u1
v1

)
+ ε3 ∂

∂T3

(
u1
v1

)]
+ ε2

[
ε

∂

∂T1

(
u2
v2

)
+ ε2 ∂

∂T2

(
u2
v2

)
+ ε3 ∂

∂T3

(
u2
v2

)]
+ ...,

The right side of the equation is as follows:[
Lc +

(
εd11 + ε2d12 + ε3d13

)
M
][

ε

(
u1
v1

)
+ ε2

(
u2
v2

)
+ ε3

(
u3
v3

)]
+ ε2N2 + ε3N3. (44)

Comparing the order of ε on both sides of the equation, the following three cases
are obtained:

ε : Lc

(
u1
v1

)
= 0, (45)

ε2 : Lc

(
u2
v2

)
=

∂

∂T1

(
u1
v1

)
− d11M

(
u1
v1

)
− N2, (46)

ε3 : Lc

(
u3
v3

)
=

∂

∂T1

(
u2
v2

)
+

∂

∂T2

(
u1
v1

)
− d11M

(
u2
v2

)
− d12M

(
u1
v1

)
− N3. (47)

They are discussed separately, as follows:
O(ε):

Lc

(
u1
v1

)
= 0. (48)
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That is,
(

u1
v1

)
is a linear combination of eigenvectors corresponding to eigenvalues of 0.

Therefore, (
a11 + dc

1k2
c a12

a21 a22 + d2k2
c

)(
u1
v1

)
= 0, (49)

The general solution of Equation (45) can be written as follows:(
u1
v1

)
=

(
ϕ
1

)( 3

∑
j=1

Aje
ikjr +

3

∑
j=1

Āje
−ikjr

)
, (50)

where ϕ = − a22+d2k2
c

a21
, |k j| = kc, k2

c =
√

det0
d1d2

, k j denotes the amplitude of the mode e−ikjr.

O
(
ε2)

(
Pu
Pv

)
=

∂

∂T1

(
u1
v1

)
− d11M

(
u1
v1

)
− N2. (51)

According to the Fredholm solvability condition, the vector function on the right side
of Equation (51) must be orthogonal to the zero eigenvalue of L+

c for this equation to have
a nontrivial solution.

L+
c =

(
a11 + dc

1∆ a21
a12 a22 + d2∆

)
.

The zero eigenvector of (
1
φ

)
e−ikjr + c.c., j = 1, 2, 3,

with φ = − a12
a22+d2k2

c
. According to the orthogonal condition of Equation (46), we have

(1, φ)

(
Pj

u

Pj
v

)
= 0, j = 1, 2, 3, (52)

where Pj
u and Pj

v are the coefficients corresponding to eikjr in Pu and Pv. The system of
equations related to amplitude Aj, obtained from Equation (52), is as follows:

(ϕ + φ) ∂A1
∂T1

= −d11k2
c ϕA1 + 2(h1 + φh2)Ā2 Ā3,

(ϕ + φ) ∂A2
∂T1

= −d11k2
c ϕA2 + 2(h1 + φh2)Ā1 Ā3,

(ϕ + φ) ∂A3
∂T1

= −d11k2
c ϕA3 + 2(h1 + φh2)Ā1 Ā2,

(53)

where h1 = −2v∗ϕ − u∗, h2 = 2v∗ϕ + u∗. We introduce a second-order disturbance term
as follows:(

u2
v2

)
=

(
U0
V0

)
+

3

∑
j=1

(
Uj
Vj

)
eikjr +

3

∑
j=1

(
Ujj
Vjj

)
e2ikjr +

(
U12
V12

)
ei(k1−k2)r + (54)

(
U23
V23

)
ei(k2−k3)r +

(
U31
V31

)
ei(k3−k1)r + c.c,
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We substitute Formulas (50) and (54) into Equation (46). We have the following:

Uj = ϕVj, j = 1, 2, 3,
(

U0
V0

)
=

(
u0

0
v0

0

)(
|A1|2 + |A2|2 + |A3|2

)
,(

Ujj
Vjj

)
=

(
u1

1
v1

1

)
A2

j , j = 1, 2, 3,
(

Uij
Vij

)
=

(
u2

2
v2

2

)
Ai Āj, i ̸= j, i = j = 1, 2, 3.

with

(
u0

0
v0

0

)
=

( 2(a12h2−a22h1)
a11a22−a12a21

2(a21h1−a11h2)
a11a22−a12a21

)
,
(

u1
1

v1
1

)
=

 a12h2−(a22−4d2k2
c)h1

(a11−4dc
1k2

c)(a22−4d2k2
c)−a12a21

a21h1−(a11−4d1k2
c)h2

(a11−4dc
1k2

c)(a22−4d2k2
c)−a12a21

,

(
u2

2
v2

2

)
=

 2[a12h2−(a22−3d2k2
c)h1]

(a11−3dc
1k2

c)(a22−3d2k2
c)−a12a21

2[a21h1−(a11−3d1k2
c)h2]

(a11−3dc
1k2

c)(a22−3d2k2
c)−a12a21

.

O
(
ε3)

(
Pu
Pv

)
=

∂

∂T1

(
u2
v2

)
+

∂

∂T2

(
u1
v1

)
− d11M

(
u2
v2

)
− d12M

(
u1
v1

)
− N3.

According to the orthogonal condition of Equation (47), we have the following:

(1, φ)

(
Pj

u

Pj
v

)
= 0, j = 1, 2, 3, (55)

The direct calculation produces the following amplitude equation:

(ϕ + φ)
(

∂V1
∂T1

+ ∂A1
∂T2

)
= −k2

c ϕ(d11V1 + d12 A1) + 2(h1 + φh2)(Ā2V̄3 + Ā3V̄2)

+
[
(H1 + φH3)|A1|2 + (H2 + φH4)

(
|A2|2 + |A3|2

)]
A1,

(ϕ + φ)
(

∂V2
∂T1

+ ∂A2
∂T2

)
= −k2

c ϕ(d11V2 + d12 A2) + 2(h1 + φh2)(Ā1V̄3 + Ā3V̄1)

+
[
(H1 + φH3)|A2|2 + (H2 + φH4)

(
|A1|2 + |A3|2

)]
A2,

(ϕ + φ)
(

∂V3
∂T1

+ ∂A2
∂T2

)
= −k2

c ϕ(d11V3 + d12 A3) + 2(h1 + φh2)(Ā2V̄1 + Ā1V̄2)

+
[
(H1 + φH3)|A3|2 + (H2 + φH4)

(
|A2|2 + |A1|2

)]
A3,

(56)

where

H1 = −2Rv∗
(
u0

0 + u1
1
)
− 2R(v∗ϕ + u∗)

(
v0

0 + v1
1
)
− 3Rϕ,

H2 = −2Rv∗
(
u0

0 + u2
2
)
− 2R(v∗ϕ + u∗)

(
v0

0 + v2
2
)
− 6Rϕ,

H3 = 2JRv∗
(
u0

0 + u1
1
)
+ 2JR(v∗ϕ + u∗)

(
v0

0 + v1
1
)
+ 3JRϕ,

H4 = 2JRv∗
(
u0

0 + u2
2
)
+ 2JR(v∗ϕ + u∗)

(
v0

0 + v2
2
)
+ 6JRϕ.

(57)

Suppose that the perturbation of amplitude G under ε is as follows:

G = εAj + ε2Vj +O(3). (58)

Then, from Formulas (43), (53), (56) and (58), we can derive
τ0

∂G1
∂t = µG1 + hḠ2Ḡ3 −

[
g1|G1|2 + g2

(
|G2|2 + |G3|2

)]
G1,

τ0
∂G2
∂t = µG2 + hḠ1Ḡ3 −

[
g1|G2|2 + g2

(
|G1|2 + |G3|2

)]
G2,

τ0
∂G3
∂t = µG3 + hḠ1Ḡ2 −

[
g1|G3|2 + g2

(
|G1|2 + |G2|2

)]
G3,

(59)
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with

µ =
d1−dc

1
dc

1
, τ0 =

ϕ + φ

dc
1k2

c
, h =

2(h1 + φh2)

dc
1k2

c
, g1 = −H1 + φH3

dc
1k2

c
, g2 = −H2 + φH4

dc
1k2

c
.

Since each amplitude, Aj = ρje
iψj(j = 1, 2, 3), in Equation (59) can be decomposed

into mode ρj = |Aj| and phase angle ψj, substituting Aj into Equation (59) to separate the
real and imaginary parts yields the following equation:

∂ψ
∂t = −h ρ2

1ρ2
2+ρ2

1ρ2
3+ρ2

2ρ2
3

ρ1ρ2ρ3
sin ψ,

∂ρ1
∂t = µρ1 + hρ2ρ3 cos ψ − g1ρ3

1 − g2
(
ρ2

2 + ρ2
3
)
ρ1,

∂ρ1
∂t = µρ1 + hρ2ρ3 cos ψ − g1ρ3

1 − g2
(
ρ2

2 + ρ2
3
)
ρ1,

∂ρ1
∂t = µρ1 + hρ2ρ3 cos ψ − g1ρ3

1 − g2
(
ρ2

2 + ρ2
3
)
ρ1,

(60)

where ψ = ψ1 + ψ2 + ψ3. We can infer from Equation (60) that the solution to the equation
is stable when h > 0, ψ = 0 and h < 0, ψ = π.

Equation (60) has the following solutions:
(1) Stationary state:

ρ1 = ρ2 = ρ3 = 0, (61)

Stable when µ < µ2 = 0, unstable when µ > µ2 = 0.
(2) Strip pattern:

ρ1 =

√
µ

g1
̸= 0, ρ2 = ρ3 = 0, (62)

Stable when µ > µ3 = h2g1

(g2−g1)
2 , unstable when µ < µ3 = h2g1

(g2−g1)
2 .

(3) Hexagon pattern:
When µ > µ1 = −h2

4(g1+2g2)
is satisfied, there exists

ρ1 = ρ2 = ρ3 =
|h| ±

√
h2 + 4(g1 + 2g2)µ

2(g1 + 2g2)
. (63)

When µ < µ4 = (2g1+g2)h2

(g2−g1)
2 , ρ+ =

|h|+
√

h2+4(g1+2g2)µ
2(g1+2g2)

is stable and ρ− =
|h|−

√
h2+4(g1+2g2)µ

2(g1+2g2)

is always unstable.
(4) Mixed state:
When µ > µ3 = h2g1

(g2−g1)
2 is satisfied, there exists

ρ1 =
|h|

g2 − g1
, ρ2 = ρ3 =

√
µ − g1ρ2

1
g1 + g2

,

It is always unstable with g1 < g2.

6. Numerical Simulation

In this section, we use the Fourier spectral method to perform numerical simulations
in space [a, b]. Model (3) is transformed in the space domain by fast Fourier transform
as follows:{

Dα
t û = −RF [F−1(ûv̂2)] + A − LF [F−1(û)] + D1[(ikx)β + (iky)β]û,

Dα
t v̂ = RJF [F−1(ûv̂2)]− NF [F−1(v̂)] + D2[(ikx)β + (iky)β]v̂.

(64)
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where i is an imaginary number, F represents the discrete Fourier transform, and F−1 rep-
resents the inverse discrete Fourier transform. For any integer K, consider xj =

2πMj
K , yj =

2πMj
K , M = b − a, j = 0, 1, 2, · · · , K − 1. The discrete Fourier transform of u(x, y, t) is

as follows:

û
(
kx, ky, t

)
= F (u) =

1
K2

K−1

∑
j=0

K−1

∑
j=0

u
(
xj, yj, t

)
e−ikx xj−ikyyj , −K

2
≤ kx, ky ≤ K

2
− 1, (65)

and the inverse formula is as follows:

u
(
kx, ky, t

)
= F−1(û) =

K
2 −1

∑
kx=− K

2

K
2 −1

∑
ky=− K

2

û
(
kx, ky, t

)
eikx xj+ikyyj , 0 ≤ j ≤ K − 1. (66)

Model (64) can be rewritten as the following differential equation:
Dα

t u = f (t, u, v), 0 ≤ t ≤ T,
Dα

t v = g(t, u, v), 0 ≤ t ≤ T,
uk(0) = u(k)

0 , vk(0) = v(k)0 , k = 0, 1, 2, · · · , [q]− 1.
(67)

Model (67) can be equivalent to the Volterra integral equation, as follows:
u(t) =

n−1
∑

k=0
u(k)

0
tk

k! + 1
Γ(q)

∫ t
0 (t − τ)q−1 f (τ, u(t), v(t))dτ,

v(t) =
n−1
∑

k=0
v(k)0

tk

k! + 1
Γ(q)

∫ t
0 (t − τ)q−1g(τ, u(t), v(t))dτ.

(68)

Let h = T
K , tj = jh, j = 0, 1, 2, · · ·K, use the Adams–Moulton algorithm to correct

Formula (68) to the following:

uh(tn+1) =
[q]−1

∑
k=0

u(k)
0

tk
n+1
k! + hq

Γ(q+2) f
(

tn+1, up
h(tn+1), vp

h(tn+1)
)

+ hq

Γ(q+2)

n
∑

j=0
aj,n+1 f

(
tj, uh

(
tj
)
, vh
(
tj
))

,

vh(tn+1) =
[q]−1

∑
k=0

v(k)0
tk
n+1
k! + hq

Γ(q+2) f
(

tn+1, up
h(tn+1), vp

h(tn+1)
)

+ hq

Γ(q+2)

n
∑

j=0
aj,n+1g

(
tj, uh

(
tj
)
, vh
(
tj
))

.

(69)

Here,

aj,n+1 =

{
nq+1 − (n − q)(n + 1)q, j = 0,
(n − j − 2)q+1 + (n − j)q+1 − 2(n − j + 1)q+1, 1 ≤ j ≤ n.

(70)

Using the Adams–Bashforth instead of the Adams–Moulton, the predictor (68) is
is computed as follows:

up
h(tn+1) =

n−1
∑

k=0
u(k)

0
tk
n+1
k! + 1

Γ(q)

n
∑

j=0
bj,n+1 f

(
tj, uh

(
tj
)
, vh
(
tj
))

,

vp
h(tn+1) =

n−1
∑

k=0
v(k)0

tk
n+1
k! + 1

Γ(q)

n
∑

j=0
bj,n+1g

(
tj, uh

(
tj
)
, vh
(
tj
))

,
(71)

where,

bj,n+1 =
hq

q
(
(n − j + 1)q − (n − j)q), 0 ≤ j ≤ n. (72)
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For the parameter values given in Table 2, we obtain the following results through the
following calculation:

E∗ = (0.15675i + 0.50000, 0.11290 − 0.035395i),
µ = 1.37112, µ1 = 0.13536 − 0.06237i, µ2 = 0,
µ3 = 2.94918 + 24.42821i, µ4 = 5.04467 + 79.32036i.

(73)

Table 2. The parameter values for the numerical study of model (3).

R J A L N M K t d1 d2 dc
1

1 1 0.014 0.014 0.062 4 64 1000 2 × 10−5 1 × 10−5 8.4348 × 10−6

The following initial conditions are selected, and the Fourier spectrum method is used
for numerical simulation. The results are shown in Figure 3.

u(x, y, 0) = u∗(1 + 0.1(rand − 0.5)), v(x, y, 0) = v∗(1 + 0.1(rand − 0.5)). (74)

According to [33], if the diffusion index is different, the hexagonal pattern will turn
into a square pattern under certain conditions. Therefore, the numerical simulation results
indicate that under this set of parameters, the solution of the system conforms to both the
condition µ < µ3 for stripe patterns and the condition µ < µ4 for hexagonal patterns. In
Matlab, color interpolation is applied to enhance coloring and smooth out color transitions,
and the hexagonal pattern becomes a stripe pattern, as shown in Figure 3. This also proves
the correctness of our theory.

(a) (b)

Figure 3. Stripe pattern and hexagon pattern of model (3). (a) Stripe pattern of v. (b) Hexagon pattern
of v.

We select the following initial conditions at equilibrium point E1 =
(

A
L , 0
)

:

u(x, y, 0) =
{

0.5,
1, other,

v(x, y, 0) =
{

0.25,
0, other.

(75)

where

x, y ∈ [
K
2
− 80 :

K
2
− 48,

K
2
− 16 :

K
2
+ 16] ∪ [

K
2
+ 48 :

K
2
+ 80,

K
2
− 16 :

K
2
+ 16] (76)

∪[K
2
− 16 :

K
2
+ 16,

K
2
− 80 :

K
2
− 48] ∪ [

K
2
− 16 :

K
2
+ 16,

K
2
+ 48 :

K
2
+ 80] (77)



Fractal Fract. 2024, 8, 264 16 of 18

Figure 4 shows the vegetation pattern succession at d1 = 2 × 10−5 and d1 = 5 × 10−5.
The blue area in the picture represents exposed soil, while the red area represents a highly
concentrated area of vegetation. In Figure 4a, as t gradually increases, we ultimately find
that spot patterns and bars coexist throughout the entire region. Increasing the diffusion
rate of surface water, in Figure 4b, we find that as t gradually increases, the stripes decrease
prematurely to non-existence, and only the spots remain.

(a) t = 1000 (a) t = 3000 (a) t = 6000 (a) t = 1000

(b) t = 1000 (b) t = 2000 (b) t = 3000 (b) t = 10, 000

Figure 4. Vegetation distribution pattern in model (3) with different parameters, d1, (a) d1 = 2× 10−5,
(b) d1 = 5 × 10−5.

Figure 5 shows the vegetation pattern succession with a fractional order β of change.
As β decreases, the vegetation pattern gradually becomes less easily broken and the vegeta-
tion density significantly increases. When β = 2, as t gradually increases, the region mainly
exists as a bar pattern. Continuously reducing β, we find that speckle patterns and stripes
coexist throughout the entire region.

(a) t = 1000 (a) t = 3000 (a) t = 6000 (a) t = 10, 000

(b) t = 1000 (b) t = 2000 (b) t = 4000 (b) t = 10, 000

(c) t = 2000 (c) t = 3000 (c) t = 6000 (c) t = 10, 000

Figure 5. Vegetation distribution pattern in model (3) with different parameters, β, (a) β = 2,
(b) β = 1.8, (c) β = 1.6
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7. Conclusions

In this paper, the vegetation pattern under a semi-arid system of a fractional vegetation–
water model in an arid flat environment is studied. We discuss the stability of the positive
equilibrium point and study the Hopf bifurcation around the equilibrium point of the
fractional parameter, α. Through the weak nonlinear analysis method, the mode selection
of the vegetation model is given. Through this paper, it can be found that the vegetation in
the arid flat environment has a rich pattern structure, including spots, mixing, and stripes.
When the diffusion coefficient, d, changes, and other parameters remain unchanged, the
pattern structure changes from stripes to spots. When the fractional order parameter, β,
changes and other parameters remain unchanged, the pattern structure becomes more
stable and is not easy to destroy. Some novel fractal patterns of fractional vegetation–water
models in arid flat environments are shown.
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