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Abstract: The object recognition technology of unmanned aerial vehicles (UAVs) equipped with
“You Only Look Once” (YOLO) has been validated in actual flights. However, here, the challenge
lies in efficiently utilizing camera gimbal control technology to swiftly capture images of YOLO-
identified target objects in aerial search missions. Enhancing the UAV’s energy efficiency and search
effectiveness is imperative. This study aims to establish a simulation environment by employing the
Unity simulation software for target tracking by controlling the gimbal. This approach involves the
development of deep deterministic policy-gradient (DDPG) reinforcement-learning techniques to
train the gimbal in executing effective tracking actions. The outcomes of the simulations indicate
that when actions are appropriately rewarded or penalized in the form of scores, the reward value
can be consistently converged within the range of 19–35. This convergence implies that a successful
strategy leads to consistently high rewards. Consequently, a refined set of training procedures
is devised, enabling the gimbal to accurately track the target. Moreover, this strategy minimizes
unnecessary tracking actions, thus enhancing tracking efficiency. Numerous benefits arise from
training in a simulated environment. For instance, the training in this simulated environment is
facilitated through a dataset composed of actual flight photographs. Furthermore, offline operations
can be conducted at any given time without any constraint of time and space. Thus, this approach
effectively enables the training and enhancement of the gimbal’s action strategies. The findings of this
study demonstrate that a coherent set of action strategies can be proficiently cultivated by employing
DDPG reinforcement learning. Furthermore, these strategies empower the UAV’s gimbal to rapidly
and precisely track designated targets. Therefore, this approach provides both convenience and
opportunities to gather more flight-scenario training data in the future. This gathering of data will
lead to immediate training opportunities and help improve the system’s energy consumption.

Keywords: drone; reinforcement learning; camera gimbal control; object detection

1. Introduction

During the early stages of the development of artificial intelligence, its progress was
limited by computer processing speeds and hardware capabilities. Consequently, it did not
gain widespread attention or find extensive applications. However, as computer software
and hardware improved and people’s theoretical understanding of artificial intelligence
evolved, research and discussions on machine learning were reignited, leading to remark-
able breakthroughs. One noteworthy accomplishment is the AlphaGo project initiated
by Google DeepMind in 2014. Through continuous refinement and experimentation, Al-
phaGo triumphed over the world champion, Go, in 2016. This achievement rekindled the
interest of numerous scholars and underscored the potency of artificial intelligence and
reinforcement-learning methodologies.
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For advancing reinforcement-learning algorithms, Volodymyr Mnih et al. [1] intro-
duced the Deep Q Network (DQN) in 2013. DQN melds deep neural networks with Q-
learning, constituting a pivotal reinforcement-learning algorithm. The core of this method
is the use of a deep neural network referred to as the Q network, which approximates
the action-value function, also known as the Q-function. This portrays the anticipated
cumulative reward associated with executing a particular action in a given state. In 2014,
David Silver et al. [2] proposed a deterministic policy gradient (DPG), which defines policy
as a mapping from state to action and achieves optimal policy acquisition by maximizing
the projected return. After 2013, DeepMind continued to improve DQN. In 2015, they intro-
duced the Nature version of DQN, published in Nature [3], and proposed three variants:
Double DQN, Prioritized Replay, and Dueling Network. In 2016, Mnih et al. introduced the
Asynchronous Advantage Actor-Critic (A3C) approach [4], which employs multiple inde-
pendently operating agents that simultaneously engage with the environment, facilitating
parameter updates. This innovative technique enhances both training efficiency and overall
performance. In 2017, Bellemare, Dabney, and Munos [5] established the Distributional
DQN strategy. Contrary to estimating averages, this technique learns the distribution of dis-
counted returns, thereby offering a unique perspective. That same year, Fortunato et al. [6]
presented the Noisy DQN concept. This approach involves incorporating random network
layers to facilitate exploration in the learning process. In 2018, DeepMind introduced Rain-
bow DQN [7], a profound advancement in deep reinforcement learning. Rainbow DQN
integrates six considerable enhancements into the DQN framework, namely (1) Double
Q-Learning, (2) Prioritized Replay, (3) Dueling Networks, (4) Multistep Learning, (5) Distri-
butional Reinforcement Learning (DRL), and (6) Noisy Nets. Within the Arcade Learning
Environment, which is a testing and comparison platform for reinforcement-learning (RL)
algorithms, DeepMind employed 57 Atari 2600 games to evaluate Rainbow DQN, the
original DQN, and six enhanced DQN agents. Notably, the results outperformed other
methods in terms of both data efficiency and outcomes. The effectiveness of combining
diverse algorithm strengths has been underscored by these endeavors. This study adopts
the deep deterministic policy gradient (DDPG) algorithm, a fusion of DPG and DQN.
This combination harnesses the benefits of both techniques, rendering it well-suited for
addressing motion challenges in continuous space.

As reinforcement-learning technology experiences breakthroughs, its applications
span an extensive array of fields, including control applications. Fernandez-Gauna et al. [8]
exemplified this by applying reinforcement learning to enhance the feedback controller
for a lead ball-screw feed drive. Their research effectively demonstrated the methodol-
ogy’s efficacy using two value-iteration methods and three different policy-iteration meth-
ods and compared it with the benchmark double-loop proportional-integrated-derivative
controllers. In this study, controller parameters were optimized through algorithmic ex-
ploration and learning. This iterative process leads to system refinement, improving
performance indicators such as positioning accuracy and responsiveness. Huang et al. [9]
introduced a novel approach that leverages the reinforcement learning of the DQN al-
gorithm’s reward accumulation and time-difference learning characteristics. After these
aspects are iteratively valued to drive optimal decisions, a deep prediction mode is created
to estimate the deviation of the XXY platform’s movement and assist in issuing compen-
sation command predictions for error trends. This technique not only offers a fresh shift
compensation method but also extends to controller parameter modulation applications.
Currently, recent studies are paving RL’s way into the realm of robot control [10,11]. Eric
J. Tzeng et al. [12] employed DQN to solve the inverse kinematics conditional-design
challenge. Through reinforcement learning, they guided a single-legged machine model to
move its endpoint to a target point in a simulation environment while automatically man-
aging intermediate positioning differences. This showcases the model’s capacity to adapt
its movements under diverse postures and environmental conditions, effectively achieving
accurate target point movement. As for the ground autonomous vehicle, self-driving car
system applications using DQN were studied in [13,14]. Yu-Chen Lin et al. [15] introduced
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a reinforcement learning-driven anti-progressive control approach to enhance the design
of full-vehicle active suspension systems, aimed at improving both ride comfort and sta-
bility. They also employed the DDPG reinforcement learning scheme for controlling the
policy. This replaced the need to calculate the virtual control force using the conventional
anti-asymptotic method. This substitution not only simplifies the complexity associated
with analytically computing the derivative of the virtual control signal but also upholds
system robustness in the face of unexpected disturbances arising from road irregularities.
DDQN and RL were used for the control of unmanned aerial vehicles in [16,17]. Hyunsoo
Lee et al. [18] used Unity to create a simulation environment for UAVs engaged in targeted
attacks. They harnessed the DDPG algorithm, tailored it for continuous spaces, and at-
tained successful task completion through dedicated experiments. Recent studies have
fused mobile vehicles with imaging and “You Only Look Once” (YOLO) technology [19,20],
engaging in reinforcement learning for target search and tracking.

To emulate more realistic real-world scenarios, in this paper, we integrate UAVs and
YOLO technology [21] to capture flight images and observe gimbal movement during
actual flights. Additionally, they utilized the Unity ML-Agents open-source plugin within
the versatile two-dimensional (2D)/three-dimensional (3D) game engine from Unity Tech-
nologies to construct a training environment for simulating the gimbal’s visual input (State).
By positioning as the central element within this environment, the agent executes actions
and garners rewards (positive or negative). Hence, this endeavor determines optimal
actions yielding maximum rewards through ongoing interactions. Finally, this approach
establishes a set of action strategies enabling effective gimbal control for target tracking.

The remainder of this paper is organized as follows: Section 2 describes the fundamen-
tal principles of reinforcement-learning theory and outlines the techniques and architecture
principles of DDPG. Section 3 presents the experimental method. Section 4 presents the
experimental results. Finally, Section 5 concludes this paper.

2. Theoretical Discussion
2.1. Reinforcement Learning

RL constitutes a significant branch of machine learning. It is unlike “supervised
learning”, which relies on predefined labels for training and is distinct from “unsupervised
learning”, which extracts patterns, structure, and associations from unlabeled data. RL
focuses on discovering patterns, structures, and associations through interactions within
a dynamic environment. It is a goal-oriented learning approach that involves an agent
interacting with its environment to learn. For example, while training a pet to perform a
handshake, when the pet successfully responds to the handshake command, it receives a
positive reward. Conversely, if it fails to execute the command, no reward is granted. Over
time, the pet learns that actions aligned with commands yield rewards, leading to gradual
behavioral adjustments upon command.

Reinforcement learning consists of these key elements: agent, environment, action,
state, reward, and policy. Each function is described as follows.

Agent:
The central learner in reinforcement learning is responsible for engaging with the

environment by executing actions and receiving rewards.
Environment:
The external setting is where the agent operates and interacts during the learning

process. This could be a real-world scenario or a simulated environment.
Action:
These are the actions to be executed by the agent within the environment. The agent

selects actions based on its current state to interact with the environment.
State:
This represents the agent’s condition at a specific point in the environment and reflects

the outcome of the agent’s actions and interactions with the environment.
Reward:
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The feedback received by the agent following its actions in the current state. Rewards
can be positive rewards or negative penalties.

Policy:
The strategy or set of rules that guides the agent’s actions in different environmen-

tal states. It is a method of achieving goals by formulating action strategies based on
interactions involving the environment, state, and action.

The basic architecture of reinforcement learning is shown in Figure 1. To start, the
agent will observe the state of t in the environment at a certain time point (St) and then
choose the corresponding action according to the current state (at), and the environment
will be updated to the next state (st+1). While updating the state, the agent will also receive
a reward (Rt+1), and the agent will evaluate the strategy based on the reward and constantly
adjust its strategy to maximize the long-term reward, which is the optimal strategy.
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2.2. Markov Decision Process

The Markov decision process model is shown in Figure 2. It is composed of the
following five elements:

S is the state set; P is the transition probability of the state; R is the reward function;
γ is the discount factor; and A is the action set. Therefore, the state transition function, P,
used to describe the state transition probability at a certain time point, t, when a specific
action is taken can be expressed as Formula (1). R is the reward function, which is used
to describe how much reward will be obtained after taking an action and changing the
state at a certain moment, which can be expressed as Formula (2). The policy function, π,
describes the probability that the action, a, will be executed when the agent observes the
state, s, which can be expressed as Formula (3).

P
(
s′
∣∣s, a

)
= P

(
St+1 = s′

∣∣St = s, At = a
)

(1)

P
(
s′
∣∣s, a

)
= R

(
St+1 = s′

∣∣St = s, At = a
)

(2)

π(a|s) = P( At = a|S t = s) (3)

From the above summary, it is apparent that the state-value function of the Markov
decision-making process is the acquired feedback value after the action is performed based
on the policy function π, as shown in Formula (4). The action-value function corresponds
to the feedback value obtained through the policy function, π, after executing an action,
represented by Formula (5). Deriving the optimal strategy using the Markov decision
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process necessitates selecting the optimal state-value function, as in Formula (6), and the
optimal action-value function, as in Formula (7).

Vπ(s) = E[G|s, π] (4)

Qπ(s, a) = E[G|s, a, π] (5)

V∗(s) = maxπVπ(s) = maxπE[G|s, π] (6)

Q*(s, a) = maxπQπ(s, a) = maxπE[G|s, π] (7)

Drones 2024, 8, x FOR PEER REVIEW 5 of 30 
 

From the above summary, it is apparent that the state-value function of the Markov 
decision-making process is the acquired feedback value after the action is performed 
based on the policy function 𝜋, as shown in Formula (4). The action-value function corre-
sponds to the feedback value obtained through the policy function, 𝜋, after executing an 
action, represented by Formula (5). Deriving the optimal strategy using the Markov deci-
sion process necessitates selecting the optimal state-value function, as in Formula (6), and 
the optimal action-value function, as in Formula (7). 𝑉 𝑠 𝐸 𝐺|𝑠,𝜋    (4) 𝑄 𝑠,𝑎  𝐸 𝐺|𝑠,𝑎,𝜋  (5) 𝑉∗ 𝑠 𝑚𝑎𝑥 𝑉 𝑠 𝑚𝑎𝑥 𝐸 𝐺|𝑠,𝜋  (6) 𝑄∗ 𝑠,𝑎 𝑚𝑎𝑥 𝑄 𝑠,𝑎 𝑚𝑎𝑥 𝐸 𝐺|𝑠,𝜋  (7) 

 
Figure 2. Markov decision process model [21]. 

2.3. Deep Deterministic Policy Gradient (DDPG) 
The DDPG algorithm, introduced in 2016 by Timothy P. Lillicrap et al. [22] from 

DeepMind, addresses reinforcement-learning challenges within continuous action spaces. 
This approach advances the Actor-Critic concept found in DPG while integrating the ex-
perience replay and target network aspects of DQN. Its architecture is illustrated in Figure 
3. 

Figure 2. Markov decision process model [21].

2.3. Deep Deterministic Policy Gradient (DDPG)

The DDPG algorithm, introduced in 2016 by Timothy P. Lillicrap et al. [22] from
DeepMind, addresses reinforcement-learning challenges within continuous action spaces.
This approach advances the Actor-Critic concept found in DPG while integrating the
experience replay and target network aspects of DQN. Its architecture is illustrated in
Figure 3.

Drones 2024, 8, x FOR PEER REVIEW 6 of 30 
 

 
Figure 3. Deep Deterministic Policy Gradient architecture diagram. 

The complete algorithm flow is shown in Figure 4. DDPG uses four neural networks, 
of which the Actor and Critic each have two networks, namely the Policy network, Target 
policy network, Q network, and Target q network. The update mechanism of the target 
network in DDPG differs slightly from that of DQN. In DQN, the target network is directly 
copied from the main network at fixed intervals. However, in DDPG, the target network 
is updated by employing a soft max approach; that is, the target network is updated grad-
ually and converges slowly toward the respective main network. Its flow is as follows: 
1. Actor selects a 𝐴  according to the behavior strategy as in Formula (8) and sends it 

to the agent to execute the 𝐴  𝐴 𝜇  𝑆  | 𝜃 𝑁  (8) 

In Formula (8), 𝜃  is a parameter in the Policy network, and the behavior policy is 
to obtain the value of 𝐴  from this random process according to the current policy 𝜇 and exploration noise 𝑁 . 

2. Agent executes 𝐴 , returns  𝑅  and new state 𝑆 . 
3. Actor stores this state transition process: (𝐴 , 𝑆 , 𝑅 , 𝑆 ) into the replay memory 

buffer as a data set for training the network. 
4. Randomly sample N conversion process data from the replay memory buffer as a 

mini-batch training data for the Policy network and Q network. 
5. Calculate the gradient of the Q network. 𝐿𝑜𝑠𝑠 1𝑁 𝑦 𝑄 𝑠 ,𝑎 |𝜃  (9) 

𝑦 r γ𝑄 𝑆 ,𝜇 S |θ |θ  (10) 

In Formula (9), the loss function is used to update the critic network, where 𝜃  is a 
parameter in the Q network. 
In Formula (10), 𝑦   is calculated by using 𝜇   of Target policy network and 𝑄   of 
Target Q network so that the learning process of Q network parameters is more stable. 
Furthermore, γ is the reward discount factor; θ  is the parameter of the Target pol-
icy network; and θ  is the parameter of the Target Q network. 

6. Update Q network. 
7. Calculate the policy gradient of the Policy network. 

Figure 3. Deep Deterministic Policy Gradient architecture diagram.

The complete algorithm flow is shown in Figure 4. DDPG uses four neural networks,
of which the Actor and Critic each have two networks, namely the Policy network, Target
policy network, Q network, and Target q network. The update mechanism of the target
network in DDPG differs slightly from that of DQN. In DQN, the target network is directly
copied from the main network at fixed intervals. However, in DDPG, the target network is
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updated by employing a soft max approach; that is, the target network is updated gradually
and converges slowly toward the respective main network. Its flow is as follows:

1. Actor selects a At according to the behavior strategy as in Formula (8) and sends it to
the agent to execute the At

At = µ(St|θµ) + Nt (8)

In Formula (8), θµ is a parameter in the Policy network, and the behavior policy is to
obtain the value of At from this random process according to the current policy µ and
exploration noise Nt.

2. Agent executes At, returns Rt and new state St+1.
3. Actor stores this state transition process: (At, St, Rt, St+1) into the replay memory

buffer as a data set for training the network.
4. Randomly sample N conversion process data from the replay memory buffer as a

mini-batch training data for the Policy network and Q network.
5. Calculate the gradient of the Q network.

Losscritic =
1
N ∑

i
(yi −Q(si, ai|θQ))

2
(9)

yi = ri + γQ′
(

Si+1, µ′
(

Si+1

∣∣∣θµ′
)∣∣∣θQ′

)
(10)

In Formula (9), the loss function is used to update the critic network, where θQ

is a parameter in the Q network. In Formula (10), yi is calculated by using µ′ of
Target policy network and Q′ of Target Q network so that the learning process of Q
network parameters is more stable. Furthermore, γ is the reward discount factor; θµ′

is the parameter of the Target policy network; and θQ′ is the parameter of the Target
Q network.

6. Update Q network.
7. Calculate the policy gradient of the Policy network.

∇θµ J ≈ 1
N ∑

i
∇aQ(s, a|θQ)|

s=si,a=µ(si)

∇θµ µ(s|θµ)|si (11)

Formulas (2)–(15) employs policy gradient to update the Actor network. As a result,
the parameter update of the Actors is enhanced to maximize the Q value.

8. Update Policy network.
9. Soft update target network.

θQ′ ← τθQ + (1 + τ)θQ′ (12)

θµ′ ← τθµ + (1 + τ)θµ′ (13)

Furthermore, due to DDPG’s reliance on a deterministic strategy, its inherent ex-
ploration remains quite limited. Yet, exploration stands as a pivotal factor in training
a proficient agent. To enhance its exploratory nature, noise Nt is introduced for action
exploration. When the agent selects an action, a certain level of noise is incorporated into
the action produced by the Policy network (Actor). This noise could be random or derived
from a specific distribution. The intention behind this addition is to elevate the potential
for exploration capability, enabling the agent to traverse different action possibilities. This,
in turn, facilitates a more comprehensive grasp of the environment’s dynamics and the
optimal strategy.
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3. Experimental Method
3.1. Experimental Purpose

To establish a comprehensive set of action strategies for guiding the gimbal’s target
tracking, the initial step involves crafting a simulated environment through a game engine.
This environment will subsequently undergo training via reinforcement learning. To align
the simulation more closely with real-world conditions, the approach incorporates both
UAV technology and YOLO technology for actual flight scenarios to capture flight images
and observe the gimbal’s performance.

Initially, this setup involves deploying a UAV fitted with a camera gimbal, linked
to the console via the drone’s flight control system. The camera records real-time UAV
flight footage, which is transmitted to the console’s monitor. The subsequent step involves
applying YOLO technology for target detection and localization. YOLO, a backbone
comprising convolutional layers, pooling layers, and fully connected layers, facilitates
real-time object detection [23]. In our context, YOLO scrutinizes the camera feed, discerns
the target object, and acquires its location and category details. Upon detecting the target
object, the UAV’s flight control system orchestrates gimbal actions in accordance with the
target’s positional data. The gimbal’s role involves governing the camera’s pitch and yaw,
ensuring the target object remains continuously within the camera gimbal’s field of view.
Consequently, as the target shifts, the camera automatically adjusts its angle.

During live flight, the monitor provides insight into the camera gimbal’s perspective
while the UAV is airborne. Meanwhile, it is possible to observe the gimbal’s movements
and its alignment adjustments in response to the target’s position. This holistic approach
contributes to refining the simulation’s resemblance to real-world scenarios.

3.2. Simulated Environment

Unity stands as a cross-platform 2D/3D game engine crafted by Unity Technologies, a
game software development company in San Francisco, CA, USA.

The simulation environment is developed using Unity 2022.3.19f1 version. Within
Unity, an open-source toolkit named Unity Machine Learning Agent (ML-Agent) is avail-
able for embedding machine learning in Unity development. This toolkit furnishes develop-
ers with a user-friendly yet potent framework for training intelligent agents, empowering
them to learn and autonomously make decisions. Moreover, the Unity Python API is
supplied, serving as an interface to communicate with and control Unity via Python. This
setup permits the program creations in Python to manipulate the Unity environment.
Consequently, a simulation environment is created through Unity, as shown in Figure 5.
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Python and reinforcement learning converge via the Python API. The simulation envi-
ronment’s state is adopted as input, and PyTorch-crafted neural networks facilitate the
training process.
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3.3. State Design

As detailed in Section 3.1, the initial step involves deploying a UAV equipped with a
camera gimbal for real flight to capture the gimbal’s screens during actual flight. On the
screen, there is an H-shaped icon with a diameter of 110 cm, and a black dot, generated
using OpenCV, marks the center (Figure 6).
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Hence, this study employs the genuine flight screen as a reference and establishes the
screen size at 960 × 480, defining the agent’s feasible movement range. Both the target and
the agent are positioned within this defined range. The initial state initializes the target
object (referred to as H) at the screen center. Simultaneously, the agent (represented as a
black point within the simulated environment) is generated at the predetermined initial
position, as depicted in Figure 7. To enhance the environment’s alignment with actual
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conditions, the simulated UAV experiences disturbances from environmental wind during
flight. Consequently, when the agent tracks the target, the target’s position introduces
random deviations around its initial location. This emulation mirrors the target’s response
after the UAV encounters imagery affected by crosswinds.
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3.4. Action Design

In reinforcement learning, to interact with the environment and obtain feedback,
an agent must choose an action from an action space to perform. Therefore, this study
expects to train an agent through reinforcement learning, which can track and locate the
target. According to the movement of the gimbal observed during the actual flight and the
operating instructions of the program, four actions can be conducted by the agent, namely
up, down, left, and right, as shown in Figure 8. Among them, forward is defined as the
action when the pitch angle of the gimbal is adjusted from −110◦ to +70◦; backward is
defined as the action when the pitch angle of the gimbal is adjusted from +70◦ to −110◦;
and left and right are defined as the gimbal yaw angle completing a ±360◦ rotation, as
shown in Figure 9. Table 1 shows the agent’s actions and the corresponding Pan–Tilt–Zoom
(PTZ) actions represented by it.
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Table 1. Agent action set.

Type Simulation Real World

Action 1 Up pitch (−110◦ to +70◦)
Action 2 Down pitch (+70◦ to −110◦)
Action 3 Left yaw (−360◦)
Action 4 Right yaw (+360◦)

3.5. Reward Design

In reinforcement learning, the design of rewards holds immense significance, as
rewards constitute a pivotal element in agent learning. Thoughtfully crafted rewards can
guide the agent to learn behaviors aligned with expectations, whereas improper designs
may lead the agent to acquire policies that deviate from the intended objective. During
agent–environment interaction, rewards can be bestowed based on the fulfillment of reward
conditions. These rewards might manifest as positive or negative feedback.

The objective behind the four actions outlined in Section 3.4 is to enable the agent
(depicted as a black dot) to track and locate the target (marked as point H). Thus, when the
agent executes an action that successfully brings it over the target, a positive reward of +10
is granted, while the agent’s actions that lead it away from the goal or beyond the defined
range invoke negative penalty scores. Furthermore, in real-flight tracking and control,
traditional point-to-point methods necessitate recalculations at each step, preventing the
selection of the most efficient path. To mitigate this, a slight penalty is introduced into
the reward mechanism. This entails attaching a penalty to every agent’s action. This
mechanism prompts the agent to meticulously consider each action, subsequently learning
to minimize its actions and devise an action strategy that yields the highest reward. Hence,
the devised reward and penalty mechanism is summarized in Table 2.

Table 2. Reward and mechanism table.

Perform Actions Reward Points

Successfully tracked target +10
Out of range −5

Each execution step −1
Reduced distance to target +5
Increased distance to target −5

4. Experimental Results

This section will commence with an in-depth analysis of the experimental simulation
results. Reinforcement learning unfolds through the interplay of action execution, reward
acquisition, and state transition. Ultimately, the training objective is to cultivate a repertoire
of action strategies that offer maximal rewards. Consequently, the training progress can
be grasped most intuitively by observing the accumulation of acquired rewards. First, the
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cumulative rewards obtained from post-training are recorded within the dataset, as illus-
trated in Table 3. Then, Python’s data processing and visualization tools are employed to
transform the stored reward accumulation data into graphical representations, as depicted
in Figure 10. Finally, this visual presentation serves to enhance the clarity in discerning
the trend and alterations in reward accumulation, further highlighting the impact of the
training process.

Table 3. Reward accumulation.

Perform Actions Reward

Epoch 1 −10
Epoch 2 −22
Epoch 3 4
Epoch 4 −6
Epoch 5 11

...
...

Epoch 80 30
Epoch 81 28
Epoch 82 31

...
...

Epoch 199 32
Epoch 200 30
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Figure 10. Cumulative reward graph.

Upon examining Figure 11, insights can be obtained from the reward curve describing
the agent’s learning process in three distinct phases, as illustrated in Figure 10. These stages
encompass the exploration phase (framed in red), the gradual stabilization phase (framed
in orange), and the eventual state of stable convergence (framed in green).



Drones 2024, 8, 174 12 of 29

Drones 2024, 8, x FOR PEER REVIEW 12 of 30 
 

 
Figure 10. Cumulative reward graph. 

Upon examining Figure 11, insights can be obtained from the reward curve describ-
ing the agent’s learning process in three distinct phases, as illustrated in Figure 10. These 
stages encompass the exploration phase (framed in red), the gradual stabilization phase 
(framed in orange), and the eventual state of stable convergence (framed in green). 

 
Figure 11. Three learning stages. 

4.1. Exploration Phase 
From Figure 12, it becomes evident that within the initial 50 rounds of training, the 

agent’s reward accumulation experiences notable instability, with the reward value fluc-
tuating within the range of 33–15. This signifies that during this phase, the agent has yet 
to ascertain an effective strategy for accomplishing the task objective; instead, it engages 
in diverse actions within the exploration space. The training screen further underscores 
this exploration phase, as depicted in Figure 13. Here, the agent may explore various di-
rections, represented by 𝑎 , 𝑏 , and 𝑐  arrows indicating movement, to assess their im-
pact on attaining bettering rewards. This transiently erratic reward accumulation aligns 

Figure 11. Three learning stages.

4.1. Exploration Phase

From Figure 12, it becomes evident that within the initial 50 rounds of training,
the agent’s reward accumulation experiences notable instability, with the reward value
fluctuating within the range of −33–15. This signifies that during this phase, the agent has
yet to ascertain an effective strategy for accomplishing the task objective; instead, it engages
in diverse actions within the exploration space. The training screen further underscores
this exploration phase, as depicted in Figure 13. Here, the agent may explore various
directions, represented by a1, b1, and c1 arrows indicating movement, to assess their impact
on attaining bettering rewards. This transiently erratic reward accumulation aligns with
expectations, considering that the agent needs to understand how to optimize rewards
through its interactions with the environment.
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4.2. Gradual Stabilization Phase

Turning to Figure 14, the interval from 50 to 80 rounds in training reveals a grad-
ual rise in reward accumulation, with reward values spanning 1–30. This indicates that
following the exploratory phase early in training, the agent begins to link actions with
elevated rewards, thereby mastering the task of tracking the target. Progress in this training
span underscores the enhancement in the agent’s capacity to learn and comprehend the
task of object tracking. Continued training is anticipated to yield ongoing increases in
reward accumulation, with the agent’s strategy and action choices becoming more refined
and efficient.
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Additionally, scrutiny of the training screen (Figure 15) showcases that the agent, at
this juncture, has acquired a vital strategy: approaching the target to heighten reward
acquisition. This underscores the agent’s ability to learn, adapt, and extract advantageous
insights from the environment to facilitate appropriate actions. However, within the
strategy assimilated by the agent at this phase, an essential aspect remains absent: how to
track the target through the most efficient trajectory.
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Figure 15. Mid-training (closer to target to increase reward acquisition).

Simultaneously, by linking the positions of moving points, this process can be quan-
tified as a displacement graph, as depicted in Figure 16. This graphical representation
provides a clearer perspective of the distance the agent must traverse from the initial
bottom left position (−25, −15) to the centering target position during the learning process.
Moreover, it offers insight into the total number of steps required to accomplish the task of
tracking the target.
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4.3. Stable Convergence Phase

As training progresses to the 80 rounds (Figure 17), reward accumulation has gradually
stabilized and converged. Within the range of 19–39, reward values exhibit consistency, and
the magnitude of fluctuations has diminished from 33 to 20. This indicates that the agent
has incrementally uncovered a more optimal strategy throughout the learning process,
enabling it to secure consistent rewards in its interactions with the environment. The
stability and convergence of these rewards signify that as the agent amasses experience
and advances in learning, it progressively discerns improved action choices, relentlessly
striving to attain higher rewards.

Through analysis of the displacement curve (refer to Figure 18), it is evident that
the agent’s grasp extends beyond merely tracking the target as the primary objective—
specifically, moving from the initial position (−25, −15) to the target position. Through
accumulated experience, the agent covers a total distance of 40 units. Simultaneously, it
learns to track along the most efficient path, completing the task in a mere two steps, as
shown in Figure 19.
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4.4. Introduction of External Interference

In the later stages of the experiment, to better emulate real-flight conditions, random
external disturbances were introduced to simulate crosswinds during flight. To replicate
authentic crosswind scenarios, these external disturbances were generated randomly across
the X, Y, and Z axes. The magnitude of the external disturbance force ranged from −5
to 5 Newtons, as depicted in Figures 4–12. The intended wind direction after setup is
illustrated in Figure 20.
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Figure 21 demonstrates a decrease in the average cumulative reward to some extent,
accompanied by heightened volatility. This outcome arises because the agent conducts
more actions to counterbalance errors due to crosswind influences, indirectly leading
to increased penalties and affecting cumulative rewards. Nevertheless, convergence is
sustained from epoch 100 rounds, indicating the agent’s sustained effectiveness in tracking.
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Notably, despite heightened external disturbances posing challenges, the agent con-
tinues to adapt and optimize its action strategy to achieve improved tracking outcomes.
This underscores reinforcement learning’s adaptability and resilience in response to en-
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vironmental fluctuations. Through continuous learning and optimization, the agent can
effectively overcome external interferences and accomplish its desired tracking objective.

4.5. Performance of Camea Visual Tracking for an Object of Square Motion by PID and
RL Controllers

This experiment investigates the performance of camera gimbal tracking on a square
moving object. The control performance of the camera under different environmental
scenarios (models) is tested. The performance of engaging the target by PID controller
and reinforcement learning controller will be compared. Therefore, in reinforcement
learning, three different environment models will be constructed and trained with no wind
interference and continuous wind interference.

4.5.1. Training Performance of Camea Visual Tracking an Object in Square Positioning

In the training environment, the camera gimbal remains fixed in the same position,
while the initial position of the tracking target position is randomly generated within the
region of 30 m2. This training strategy is for the yaw and pitch control ability for camera
surveillance. The training loop ends when the camera gimbal successfully tracks (engages)
the target or when the target moves out of the frame of the training environment. The next
training loop will continue with a new episode.

Following are the reward settings for the reinforcement training, consisting of four
reward mechanism modes. The first mode, engaging the target during tracking, yields
+10 points, while moving out of the environment frame incurs a penalty of −10 points. In
the second mode, engaging the target during tracking yields +10 points, moving out of
the environment frame incurs a penalty of −10 points, and each additional searching step
results in a penalty of −0.1. In the third mode, engaging the target during tracking yields
+10 points, moving out of the environment frame incurs a penalty of −10 points, each
additional searching step results in a penalty of −0.1, and getting closer to the target adds
a bonus of +0.2. In the fourth mode, engaging the target during tracking yields +10 points,
moving out of the environment frame incurs a penalty of −10 points, each additional
searching step results in a penalty of −0.1, getting closer to the target adds a bonus of +0.2,
and getting farther away the target incurs a penalty of −0.2. These four reward–penalty
modes were constructed as listed in Table 4. This experiment constructs eight reinforcement
learning controller (RLc) models for different environments and four reward mechanisms,
as shown in Table 5.

Table 4. Four modes of reward setting for tracking a target with a square motion.

Type Action Reward

Mode 1
Engaging +10

Moving out −10

Mode 2
Engaging +10

Moving out −10
Each additional searching step −0.1

Mode 3

Engaging +10
Moving out −10

Each additional searching step −0.1
Closer to the target +0.2

Mode 4

Engaging +10
Moving out −10

Each additional searching step −0.1
Closer to the target +0.2

Farther away the target −0.2
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Table 5. Reinforcement learning control models with different environments and reward types.

RL Model Name Environment Reward Type

RLc 1

no wind interference

Mode 1
RLc 2 Mode 2
RLc 3 Mode 3
RLc 4 Mode 4

RLc 5

continuous wind interference

Mode 1
RLc 6 Mode 2
RLc 7 Mode 3
RLc 8 Mode 4

In the reward–penalty plot of training, two training environments comprised of no
wind interference and continuous wind interference are compared with four reward modes,
as presented in Figure 22. As shown in Figure 22, the trend of the curve in the RLc 5 curve
(Red) indicates that around 500 K (0.5 × 106) steps, the training period is comparatively
chaotic. This is attributed to the influence of the continuous wind environment and the
reward setting of the training mechanism. This plot indicates that the learning progress
required a significant amount of exploration time, thereby leading to the inability of
phenomena to converge during the training’s transient behavior. This is due to a poorly
designed reward mechanism, causing the training process to enter an endless loop where
the reward seems to fail to converge to 10 points. Compared with other curves in Figure 23,
it can be observed that the RLc5 curve (Red) exhibits a significantly higher total step in the
interval of 500 K episodes.
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During the testing phase, the dynamic response for tracking a target with the rein-
forcement learning control for the camera gimbal will be evaluated. The target will execute
square motion trajectories with a spacing of 30 m2, as shown in Figure 24. Experiments
were conducted under three interference environments: single interference like an impulse
input to the camera at some specific time, continuous interference (random excitation),
and mixed interference (single plus continuous excitation). The interference to the camera
gimbal may be caused by the wind or structure vibration of the UAV. Each interference
condition will be implemented.
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4.5.2. Testing Performance of Camea Visual Tracking an Object in Square Positioning

First, in the single-interference environment, the target executes a path along the
four sides. The camera gimbal experiences external interference in the middle of each
path segment. In this experiment test, the PID controller and eight models of reinforce-
ment learning controllers are compared. Experimental results show that the PID con-
troller outperforms the eight types of RLc models in dynamic tracking, as shown in
Figures 25 and 26. As depicted in the plot, the tracking trajectory deviated away from the
path due to the injecting interference. The total tracking error of the PID control is 2755.2 m.
It is the lowest among all curves, as shown in Table 6. Nevertheless, the stability of the PID
and RL controllers still holds, though the disturbance was applied to the camera gimbal.
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Table 6. Total error of the PID and RLc controllers disturbed by single-interference environment.

Type X Total Error (m) Y Total Error (m) Total Error (m)

PID controller 1376.527 1378.641 2755.168
RLc 1s 1639.447 1771.039 3410.486
RLc 2s 1515.326 1659.746 3175.072
RLc 3s 1757.004 1947.581 3704.585
RLc 4s 1863.846 1641.37 3505.216
RLc 5s 2436.504 2419.995 4856.499
RLc 6s 1817.888 2150.425 3968.313
RLc 7s 1987.844 2248.281 4236.125
RLc 8s 2473.454 2182.709 4656.163

Secondly, when the continuous-interference environment is applied, the results show
that RLc 7 demonstrates superior dynamic tracking, as shown in Figures 27 and 28. The
total error of 4005.712 is the lowest among all curves, as shown in Table 7. It is also
observed that the PID controller exhibited inferior control performance compared to RLc
when the continuous interference was tested. Since the conventional PID controller is good
in the linear- and model-based dynamic plant, the disturbance rejecting for the continuous
interference is not as good as the nonlinear-based RLc controller. This indicates that using
reinforcement-learning control is better suited for dealing with the outside environment
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when the UAV is operated. The best tracking result made by RLc 7 may be caused by
the total reward design that is positive as 0.1. Then, RLc 7 tries to execute the bettering
disturbance rejection based on the incentive of the positive reward design.
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Table 7. The total error of the PID and RLc controllers disturbed by continuous-interference
environment.

Type X Total Error Y Total Error Total Error

PID controller 2571.234 2689.52 5260.754
RLc 1c 2067.507 2531.231 4598.738
RLc 2c 1920.636 2314.86 4235.496
RLc 3c 2140.647 2583.775 4724.422
RLc 4c 2211.103 2148.11 4359.213
RLc 5c 1837.215 2730.256 4567.471
RLc 6c 1728.02 2375.396 4103.416
RLc 7c 1557.849 2447.863 4005.712
RLc 8c 2040.935 2232.779 4273.714

Thirdly, in the mixed-interference environment test, experimental results show that
RLc 6 in reinforcement learning demonstrates superior dynamic tracking, as shown in
Figures 29 and 30. The total error of 4335.915 is the lowest among all curves, as shown in
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Table 8. Similarly, the performance of the PID controller is still inferior to reinforcement
learning. In reinforcement learning, it is observed that both RLc 2 and RLc 6 effectively
overcome environments with continuous interference. In the single disturbance training
dataset, both RLc 2 and RLc 6 resulted in less error, as shown in Table 6. Thus, the test
result reveals that the impulse of the disturbance at some specific time dominates the
performance of the RL controller. RLc 2 and RLc 6 seem to do the memory for a pre-
determined disturbance rejection.
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Table 8. Total error in the mixed-interference environment.

Type X Total Error Y Total Error Total Error

PID controller 2824.23 3049.346 5873.576
RLc 1m 2182.383 2873.302 5055.685
RLc 2m 2027.009 2491.253 4518.262
RLc 3m 2248.814 2873.627 5122.441
RLc 4m 2419.873 2500.419 4920.292
RLc 5m 2098.563 3113.346 5211.909
RLc 6m 1705.526 2630.389 4335.915
RLc 7m 1636.336 2715.977 4352.313
RLc 8m 2148.323 2646.956 4795.279
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In terms of the X and Y axes error data, the Y-axis error is mostly greater than the X-axis
error. The training data contain more datasets in the X-direction than in the Y-direction,
thus causing an imbalance in the XY axes errors.

4.6. Training and Test of RL Controller by Transfer Learning

The training environments for the above camera tracking object experiments in-
clude no interference and continuous interference. Next, based on the above testing
results, the new type of transfer learning is deployed based on the conclusion of using
the reward modes 2, 3, and 4. By comparing the error from the aforementioned results
(Tables 6–8), the best weights were selected individually from the no interference and
continuous interference training environment. They are specifically conducted via RLc 2,
RLc 4, RLc 6, and RLc 7.

This transfer-learning training reward mechanism will be adjusted here. Engaging
the target during tracking yields +2 points, while touching (engaging) continuously for
500 times yields +10 points, with a condition of continuous touching (engaging) error less
than 0.1 m. This design policy is to fulfill the requirement that the camera should capture
the object continuously by several frames. During the surveillance, ensuring target is the
key issue. We placed a restricted condition for 500 times. This new rule will be incorporated
into the rewards of Mode 2, Mode 3, and Mode 4, and then updating them to Mode 5, Mode
6, and Mode 7, as shown in Table 9. This reward–penalty mechanism was not utilized in
the Section 4.5 environment because it tends to allow the RL algorithm to give up, go back
to the searching area, and then move out of the frame. Such a learning process leads to
premature termination, thus rendering the reinforcement-learning training ineffective.

Table 9. The transfer-learning reward setting for tracking a target with a square motion.

Type Action Reward

Mode 5

Engaging continuously 500
times +10

Engaging +2
Moving out −10

Each additional searching step −0.1

Mode 6

Engaging continuously 500
times +10

Engaging +2
Moving out −10

Each additional searching step −0.1
Closer to the target +0.2

Mode 7

Engaging continuously 500
times +10

Engaging +2
Moving out −10

Each additional searching step −0.1
Closer to the target +0.2

Farther away the target −0.2

In this training phase, through transfer learning, we can update four new models, RLc
9, RLc 10, RLc 11, and RLc 12, as shown in Table 10. At this phase, in order to increase
the aim of applying the stabilized reinforcement-learning tracking capability, the epoch
training parameters are adjusted to 7,500,000 iterations (as shown in Figure 31).
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Table 10. The transfer-learning, reinforcement-learning models with a square motion.

RL Model Name Environment Reward Type

RLc 9
no wind interference

Mode 5
RLc 10 Mode 7

RLc 11
continuous wind interference

Mode 5
RLc 12 Mode 6
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First, in the transfer-learning single-interference environment, experimental results
show that the PID controller outperforms the reinforcement-learning models after transfer
learning in dynamic tracking, as shown in Figures 32 and 33. The PID total error of 2755.168
is the lowest among all curves, as shown in Table 11. It can be inferred that transfer learning
does not effectively improve in the single-interference environment. This may be the reason
that the impulse disturbance injection may cause RLc to search the historical sharp but
arbitrary error compensation. However, the steady-state-like transfer learning at this time
frame tries to return to the initial transient-like transfer learning. Such a state, action, and
reward function will reshuffle again and then degrade the tracking error performance.
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Table 11. Total error in the transfer learning in single-interference environment.

Type X Total Error (m) Y Total Error (m) Total Error (m)

PID controller 1376.527 1378.641 2755.168
RLc 9s 1843.629 1628.196 3471.825

RLc 10s 1616.028 1943.649 3559.677
RLc 11s 1540.768 1919.177 3459.945
RLc 12s 2036.984 2400.906 4437.89

Secondly, in the transfer-learning continuous-interference environment, experimen-
tal results show that RLc 11c demonstrates superior dynamic tracking, as shown in
Figures 34 and 35. The total error of 3335.779 is the lowest among all curves, as shown in
Table 12.
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Type X Total Error (m) Y Total Error (m) Total Error (m)

PID controller 2824.23 3049.346 5873.576
RLc 9m 2342 2494.434 4836.434
RLc 10m 2045.529 2774.131 4819.66
RLc 11m 1581.889 1969.969 3551.858
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5. Conclusions

This study utilizes Unity to establish a simulation environment for controlling a gim-
bal’s target tracking. It trains a set of action strategies through reinforcement learning,
facilitating accurate target tracking while minimizing unnecessary movements and enhanc-
ing tracking efficiency. Training within a simulated environment offers convenience, cost
savings, and diverse environmental conditions for comprehensive training and testing
scenarios. Thus, the contributions of this study and some comments can be summarized
as follows:

1. With reinforcement learning, a set of action strategies is trained to enable precise
target tracking by the gimbal. Through exploration and feedback, the agent gains
insights from its interactions with the environment. Training outcomes reveal a stable
convergence of reward values within the range of 19–35, accompanied by a decrease
in shock amplitude from the initial value of 33 to 16. In essence, adopting a learned
strategy leads to the consistent attainment of high rewards for accomplishing the
tracking task.

2. Reinforcement learning effectively curtails extraneous movements during tracking,
thereby enhancing tracking efficiency. Conventional tracking methods often involve
continuous distance calculations between the target and the gimbal, leading to unnec-
essary movements and energy wastage. However, analyzing the displacement curve
reveals that only essential actions are taken—specifically, a two-step tracking based
on the distance between the agent and the target. This approach reduces unnecessary
movements, increases tracking efficiency, and conserves energy.

3. Training within a simulated environment simplifies learning and reduces training
expenses. This environment offers a range of scenarios, simulating diverse potential
conditions for training and testing agents. This enhances the flexibility and control
of the learning process while lowering risks and real-world expenses. Additionally,
training in this simulated environment enables the more efficient optimization of
action strategies, leading to improved outcomes in real-world applications.
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4. In the experiment of camera gimbal tracking a target, applying a conventional PID
controller can outperform the RLc models when the disturbance injection along the
path tracking is simple. However, with continuous wind interference and mixed
vibrational-interference environments, the reinforcement learning models outper-
formed the PID controllers. This indicates using reinforcement learning control is
better suitable for dealing with the undetermined and complex outside environment
when the UAV’s camera gimbal is operated.

5. The methodology of transfer learning can be utilized to develop RL control. Desig-
nated reward mechanisms can enhance the adaptability of the RL models. Simulation
results consolidate that the performance of the RL models is better than the original
model before transfer learning and the conventional PID controller. This demonstrates
the significance of the reward–penalty mechanisms on the RL.

6. The YOLO’s failure may be due to several reasons and can be rescued by the following
procedures. First, when the shutdown of the YOLO program occurs, the UAV can
hover and restart the YOLO program. Secondly, when visual recognition causes
abnormality in the environment, the YOLO confidence threshold should be remotely
adjusted. An adaptive threshold adjustment technique will be implemented and
enable the engaged recognition of the target. Thirdly, when the UAV cannot resolve
the object detection while hovering, searching for nearby suitable landing points and
controlling the UAVs to land at the landing point [24] should be the next steps.
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