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Abstract: Advancements in smart manufacturing have embraced the adoption of soft robots for
improved productivity, flexibility, and automation as well as safety in smart factories. Hence,
soft robotics is seeing a significant surge in popularity by garnering considerable attention from
researchers and practitioners. Bionic soft robots, which are composed of compliant materials like
silicones, offer compelling solutions to manipulating delicate objects, operating in unstructured
environments, and facilitating safe human–robot interactions. However, despite their numerous
advantages, there are some fundamental challenges to overcome, which particularly concern motion
precision and stiffness compliance in performing physical tasks that involve external forces. In this
regard, enhancing the operation performance of soft robots necessitates intricate, complex structural
designs, compliant multifunctional materials, and proper manufacturing methods. The objective of
this literature review is to chronicle a comprehensive overview of soft robot design, manufacturing,
and operation challenges in conjunction with recent advancements and future research directions for
addressing these technical challenges.

Keywords: soft robotics; bionics; digital engineering; compliant multifunctional materials; smart
manufacturing; biomimetics; soft sensors; soft actuators; biomotion

1. Introduction

Conventional robots typically employ rigid materials, such as steel, aluminum, and
hard plastics, and commonly rely on electric actuators for power. The majority of their
components are manufactured using traditional machining techniques. However, these
robots have limited flexibility due to their rigid structural elements and limited freedom of
motion, which are hard to adapt to complex work environments and safe human–robot
interactions. Collaborative robots (cobots) [1] are designed to facilitate safe human–robot
interactions, but they still experience limitations due to their rigid structural elements
and lack of motion freedom. Safe human–robot interactions can be facilitated by active
compliance control with feedback sensors, such as force/torque sensors [2], proximity
sensors [3], cameras [4], and other sensors [5]. Nonetheless, rigid robots have limited
mobility due to physical constraints imposed by their rigid links and joints with the finite
freedom of motion. Moreover, such rigid manipulators can potentially cause damage to
delicate objects during handling. These challenges can be addressed by the use of soft
robots that are made from flexible, compliant multifunctional materials like shape-memory
alloys, silicones, or rubber materials. They possess an unparalleled ability to alter their
shapes and sizes by providing theoretically unlimited freedom of motion [6], which allows
them to operate in unstructured environments and handle delicate objects.

The stiffness levels of engineering materials broadly vary from hard rigid materials to
soft compliant materials [7]. Soft robots are composed of less stiff, compliant materials as
well as stiff rigid materials [8]. In contrast, conventional industrial articulated robots [9,10]
are made from stiff rigid materials like metals or hard plastics to be able to perform
manufacturing processes [11–13] that involve high process loads.
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There has been a surge in the popularity of soft robots in medical applications [14–17],
smart packaging [18], agricultural harvesting [19,20], architectural applications [21], and
search-and-rescue operations [22,23]. Moreover, Feng et al. [24] developed a soft robot
specifically designed for surface exploration. Even and Ozkan-Aydin [25] developed a
soft robot that is capable of navigating through unstructured environments by integrating
contact and photo-transistor sensors for obstacle avoidance. Dinakaran et al. [26] demon-
strated that soft gripper end-effectors enhance material handling efficiency. A notable
breakthrough in the field has been demonstrated by Gu et al. [27] through the development
of a self-folding soft robot. This innovative robot possesses a remarkable capability to
autonomously reconfigure itself to fulfill various functionalities.

Unlike conventional rigid robots that utilize electric motor actuators, soft robots employ
soft actuators that can be activated through various means, such as pressure [28–30], magnetic
fields [31,32], electric stimulation [33–36], light or photonic stimuli [37–39], moisture-responsive
mechanisms [40–42], and explosive triggers [43–45]. Furthermore, Son et al. [46] have conducted
an extensive review on the four-dimensional (4D) shape changes that can provide versatile
functional advantages to soft robots in response to external environmental stimuli including
heat, acidity (pH), light, electricity, or pneumatic triggers.

Three-dimensional (3D) printing, or additive manufacturing, has had a profound impact
on advancing and enhancing the efficacy of soft robots by enabling the creation of intricate
multifunctional designs. However, a key challenge in this domain is the limited range of
printable soft materials. To overcome these limitations, it is imperative to develop a broader
repertoire of soft materials that are compatible with 3D printing [47]. The majority of research
on soft robotics involved experiments that provided in-depth explorations of the challenges
associated with soft robot sensing and control. Additionally, the use of the finite element (FE)
method has made significant contributions to soft robotics. For example, the FE method is used
to optimize the structural designs of soft pneumatic bending actuators [48,49] and improve
their overall performance [50]. Moreover, a promising solution was proposed by Xu et al. [51],
which introduces an innovative approach that integrates a controlled buckling structure with a
triboelectric nano-generator to accommodate motion tracking with haptic feedback.

Although soft robots offer numerous advantages, there are some fundamental chal-
lenges to overcome, which particularly concern motion precision and stiffness compliance
in performing physical tasks that involve external forces. In this regard, enhancing the
operation performance of soft robots necessitates intricate, complex structural designs, com-
pliant multifunctional materials, and proper manufacturing solutions to unleash better soft
robots that complement humans in future manufacturing. The goal of this literature review
is to chronicle a comprehensive overview of recent advancements and future directions in
the areas of soft robot design, manufacturing, and operation.

It is possible that the application readiness level of soft robots is in infancy. Nonetheless,
soft robots exhibit potential impacts on various industries including manufacturing [52,53],
medicine [15,54–56], food [19,20], etc. Although this literature survey focuses on soft robot
design, manufacturing, and operation challenges, it is important to note that the precursors
of these challenges are often defined by the applications of soft robots. An important aspect
of soft robot applications is the integration of soft robots with existing platforms. Based on
its application, a soft robot may need a certain mechanism or method for integration with
existing platforms that may consist of either rigid or soft bodies. Such integration efforts
require the joining or assembling of dissimilar soft or rigid materials. Soft–rigid material
integration is still an open topic for future research. In general, a soft robot can be mounted
on an existing soft or rigid platform through different bio-inspired attachment mechanisms,
such as grasping or clinging [2,56–60], magnetism [61], and/or adhesion [52,62,63].

2. Methodology

The methodology of this literature review on soft robot design, manufacturing, and
operation challenges comprised comprehensive searches on the Google Scholar website
for relevant journal articles, conference proceedings, and book chapters that were sourced
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from various reputable publishers, such as IEEE, MDPI, Springer, Elsevier, Mary Ann
Liebert, and others. The search was conducted using a set of targeted keywords including
soft robots, deformable sensors, 3D-printed robots, bio-inspired robots, soft actuators, and
tunable stiffness robots. Following the search process, articles published primarily between
2015 and 2023 were carefully selected for inclusion in this review.

This study surveyed the selected articles to chronicle a comprehensive overview of
recent advancements and future research directions in the areas of soft robot design, mate-
rials, manufacturing, and operation. Although soft robots offer numerous benefits, there
are various fundamental challenges to overcome. Figure 1 provides a visual representation
of key technical challenges documented in recent literature.
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Soft robot design challenges concern bionics, which is complemented by digital engi-
neering. Soft robots often draw inspiration from biological organisms that have evolved
through natural selection to achieve their optimal forms. Hence, bionic robots are designed
to mimic the natural optimality of their biological counterparts. Furthermore, digital
engineering tools offer more ways of optimizing bionic designs for better structural and
operational performance levels and efficiencies of soft robots.

The manufacturing of soft robots with soft components poses significant challenges.
The prevailing methods for manufacturing soft robot components include casting as a
traditional manufacturing technique and 3D printing. Since casting methods are limited by
their inability to produce intricate designs, 3D printing emerges as the preferred solution
due to its ability to fabricate complex designs with multifunctional materials that offer
compliance, stiffness, and versatility as well as regenerative aptitudes like bionic healing.
Polymers are widely used for making soft robot components as they are lightweight,
flexible, and multifunctional. Besides polymers, other materials with native functional
properties like shape-memory alloys are instrumental in developing soft robot components.

Another major challenge in soft robotics concerns soft robot operation that involves sensing
and control of soft actuators to achieve desired motion precision and stiffness compliance.
Soft robot sensing is diverse in terms of perceiving various signal modalities, such as thermal,
electromagnetic, tactile, and photoelectric forms. Controlling soft robots with the same level of
precision as rigid robots still remains an open problem. The integration of rigid sensing and
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control components with soft robot structural components presents various difficulties and
often makes the soft structural components more stiff and bulky to move around [64]. Hence, it
is crucial to have in situ flexible sensors that can undergo significant deformation to facilitate
seamless motion and stiffness control of soft structural components.

A soft actuator can be constructed from different types of stimuli-responsive polymers
including liquid crystal polymers, liquid crystal elastomers, hydrogels, shape memory
polymers, magnetic elastomers, electroactive polymers, and thermal expansion actua-
tors [65]. Researchers have primarily focused on achieving controlled actuation, adhesion,
and stiffness in soft robots [63].

In general, soft robotics concerns numerous challenges as it rapidly emerges as an
interdisciplinary field that integrates mechatronics, bionics, biomimetics, material science
and engineering, manufacturing, control systems, and artificial intelligence. The upcoming
sections provide insights into the current state of soft robotics and future research directions
in the areas of soft robot design, compliant multifunctional materials, manufacturing
methods, and soft robot operation.

3. Soft Robot Design Challenges
3.1. Advancements

This section provides a survey on two design approaches implemented in soft robotics,
which comprise a bionic design approach and a computer-aided design approach based on
digital engineering.

3.1.1. Bionics

Bio-inspired manipulator designs have gained significant acceptance due to their ability to
accommodate various biomotion modes [66]. Such naturally driven principles are commonly
employed in various disciplines, including soft robotics [67–70], composite materials [71,72], path
planning [73,74], energy optimization [75], etc. Soft robots inspired by earthworms [8,76,77],
snakes [78,79], snails [80,81], insects [82,83], and caterpillars [84,85] have experienced a notable
surge in research activities in recent years. Enhancing the elongation and compression capabilities
of these robots is essential for achieving a remarkable motion performance. In 2016, a significant
milestone was reached by Calderón et al. [86] with a soft actuator that can elongate extensively
at 17.9 KPa (2.6 psi). Although achieving high elongation was a notable success, the compression
ability of soft robots has been relatively poor. However, more recently, Das et al. [87] made
significant progress in this area, achieving elongation and compression percentages of 21.9% and
22.3%, respectively, by demonstrating improved capabilities in both aspects. These are important
achievements that allow soft robots to operate effectively.

Taking inspiration from desert iguanas, researchers have explored the implementation
of compliant mechanisms in soft robot designs to enhance stiffness [88]. Furthermore,
locomotion design principles, based on copepods and small crustaceans found in diverse
aquatic habitats, have exhibited exceptionally rapid responses [89]. Also, Zhang et al. [90]
have successfully designed and developed bio-inspired soft robotic fingers with motion
sequences based on tendon-driven mechanisms as artificial muscles.

Biphasic materials like hydrogel offer enormous possibilities for researchers to design
and develop bionic soft robots like hydrogel robots. Hydrogel robots have emerged
as a promising advancement [91], offering a range of unique advantages that set them
apart. These robots exhibit exceptional deformability, allowing them to undergo significant
changes in shape and size. Their adaptability enables them to interact with and navigate
through complex environments. One of the key strengths of hydrogel robots is their
biocompatibility that makes them suitable for various applications in biomedical and
healthcare domains. Hydrogel robots possess naturally embodied intelligence, meaning
that their functionalities and responses are inherent in their material properties. These
characteristics enable them to autonomously sense and respond to environmental stimuli,
leading to enhanced interaction capabilities and improved motion performance. Given
these remarkable advantages, it is evident that hydrogel robots hold great potential for
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shaping the future of soft robotics. Their impact is expected to be significant in the areas of
manufacturing, medicine, and agriculture.

In recent years, there has been a growing research interest in leveraging the design and
development of plant-inspired multifunctional materials, which can sense and move [92].
An intriguing example of such inspiration can be found in tendrils [58], which possess the
unique capability to coil around a support pole while in their soft state and subsequently
undergo lignification or hardening to reinforce the cling. This natural behavior is replicated
in a soft robot using an artificial tendril with an electric control mechanism that enables or
disables autonomous coiling and clinging.

Furthermore, drawing inspiration from the twisting and hanging behaviors observed
in vines, Shan et al. [93] proposed and designed a passive variable-stiffness soft robotic
gripper. This innovative gripper harnesses the principle of jamming to achieve a simple
yet robust grasping mechanism for object handling. By embracing these plant-inspired
concepts, researchers are advancing the development of soft robots and aiming to enhance
their functionalities and capabilities in various applications.

3.1.2. Digital Engineering

In addition to the bionic design approach, researchers have also explored the use of
digital engineering tools that accommodate finite element analysis (FEA) in soft robotics.
This computer-aided design approach is extremely useful for design optimization based
on engineering design principles. Figure 2 presents a soft actuator design inspired by an
elephant trunk. The bending of the soft actuator is regulated by two asymmetric pressure
chambers as demonstrated by FEA simulation models in Figure 2. FEA has been widely
employed in numerous studies that focus on soft robot design performance [94,95]. For
instance, Nguyen et al. [96] investigated the design of fabric soft pneumatic actuators
for wearable assistive devices using FEA for performance analysis. Ferrentino et al. [97]
developed an FEA simulator called Simulation Open Framework Architecture (SOFA)
specifically for soft actuators. Naughton et al. [98] used the Elastica software to simulate and
analyze the performance of a soft robot model that resembles an elephant trunk. Another
advanced soft robot modeling and simulator, ChainQueen, has also gained acceptance
among researchers that study robot dynamics and control [99–101].
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The versatility of the FEA method extends beyond the use of a single material, as it
allows the incorporation of layers of different soft robot materials. Ferrentino et al. [102]
developed a quasi-static FEA model for a multi-material soft pneumatic actuator in SOFA.
SOFA, an FEA simulator, has been widely utilized in various soft robot studies, such as
solid meal digestion in a soft gastric robot [103] and soft robot optimal control [104]. By
employing digital engineering tools, such as SOFA and Elastica, researchers [105] analyzed
and optimized certain soft robot structural designs and structural materials to achieve
enhanced functional performance and application potential.

3.2. Opportunities

Although the bionic design approach offers naturally proven design principles in soft
robotics, such design principles still need further improvements and adaptation with the use of
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digital engineering tools. The lack of proper computer-aided modeling and simulation may lead
to the heavy reliance on numerous trial-and-error attempts during the soft robot development
process [106]. Hence, there is a surge in the research emphasis on combining the bionic design
approach with the computer-aided design approach in soft robotics. By using bionics and
digital engineering tools, researchers are able to explore unchartered design principles and new
innovative engineering solutions to making better soft robot designs that have the potential to
revolutionize the design process, facilitate soft robot manufacturing, and unleash better soft
robots that complement humans in future manufacturing.

4. Soft Robot Materials and Manufacturing Challenges
4.1. Advancements

A material shape can change in many ways. Some changes are reversible, but some
changes are irreversible. Since compliance is a desirable property of soft robot materials,
highly compliant materials, such as silicone, elastomers, hydrogels, fibers, shape memory
materials, etc., serve as the main building blocks of soft robots. Such compliant materials
can undergo large deformations without losing their properties and functionalities.

Table 1 presents a list of common soft materials documented in the selected literature.
Soft materials demonstrate multiple functions, such as actuation, stiffening, structural
support, healing, control, sensing, etc., in reaction to various stimuli. Therefore, Table 1
also presents common functions and common stimuli for each soft material as reported in
the selected literature.

Table 1. This table presents common soft materials and their properties documented in the selected
literature.

Soft Materials Common Functions Common Stimuli References

Magnetic Soft Materials
Actuation; Stiffening;

Healing; Control; Sensing;
Structural Support

Magnetism (M);
Electricity (E);

Temperature (T)
[31,32,61,78,107–113]

Liquid Metals Stiffening; Control; Sensing M; E; T [108,113–117]
Shape Memory

Materials Actuation; Healing; Sensing Tactility, M; E; T [33,118,119]

Artificial Tendon Fibers Actuation; Stiffening;
Control; Structural Support Tactility; M; E; T [67,71,90,118,120–130]

Liquid Crystal Polymers Actuation; Stiffening;
Control; Sensing Light; M; E; T [37–39,80,112,131]

Elastomers or Silicones
(i.e., Ninjaflex™, Dragon Skin™,

Ecoflex™)

Actuation; Stiffening;
Healing; Structural Support

Pneumatics (P);
Hydraulics (H);

E; T
[80,112,118,131–135]

Hydrogels
Actuation; Stiffening;

Healing; Sensing;
Structural Support

H; M; E; T;
Chemical Reaction [29,91,117,136,137]

Sensing, actuation, and control are the primary operation challenges in soft robotics.
Consequently, integrating sensing and actuation functionalities with compliant materials
to achieve the feedback control of motion and stiffness is cumbersome. Multifunctional
materials are essential for this purpose. There is a possibility that materials with differ-
ent properties and functionalities can be integrated to provide different actuation and
sensing modalities [124]. Incorporating functional materials [138] into soft robots can
greatly enhance their capabilities. Proper manufacturing methods must be implemented
in implanting multifunctional elements in soft robot bodies for efficiency and effective-
ness [126]. In this case, the casting of silicone material can be employed for simple designs,
while additive manufacturing can be a pathway to creating multifunctional materials with
customizable designs.

Synthesizing various functional materials to achieve new actuation, control, and
sensing capabilities is possible. For instance, enhancing the elastomer with various fibers
offers better stiffness, particularly when such stiffness is necessary to deal with external
loads. Li and Diller [110] conducted a study on multi-material fabrication for magnetically
driven miniature soft robots using stereolithography.
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Silicone casting is a widely employed method for manufacturing soft robot actuators.
This technique is particularly suited for producing actuators that perform certain motion
tasks, i.e., bending [139], gripping [60], and crawling [140]. When faced with more intricate
engineering challenges, the fabrication of soft robots necessitates the utilization of multi-
material 3D printing techniques [141]. This advanced manufacturing approach empowers
the creation of soft robots with complex structures and the integration of multiple materials
to achieve more functionalities and versatility. For instance, Figure 3 shows an illustration of
multi-material 3D printing based on fused filament fabrication (FFF), which uses restricting
and actuating materials along with certain design parameter settings to fabricate bio-
inspired flexible parts with self-shaping properties. The design parameters are used as
shape-tuning factors to enable materials programming and 4D printing [92,142].
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Additive manufacturing (AM), such as 3D printing, involves adding material layers,
one after another, to build objects, which is distinguished from traditional machining
methods that rely on subtractive manufacturing. The main advantage of 3D printing lies in
its capability to produce intricate and elaborate geometries without requiring extensive
post-processing [143]. Moreover, it enables the development of customized materials and
composites by minimizing material wastage. This versatile technology can be applied to a
broad range of materials, including shape-memory polymers and other stimuli-responsive
soft materials. Due to these inherent advantages, 3D printing plays a pivotal role in the
fabrication of soft robots. It enables the production of various structural and operational
components, simultaneously, with the use of multiple source materials, which makes it
highly suitable for diverse manufacturing needs in soft robotics [144].

Another significant advantage of 3D printing in the realm of soft robots is the ability
to integrate and manufacture different sensors alongside soft actuator components. Unlike
traditional approaches to integrating tactile sensing, which requires separate manufac-
turing processes for sensor integration, multi-material 3D printing, i.e., fiber-reinforced
printing [128], enables the direct printing of tactile sensors onto a soft robotic hand with
distributed tactile sensing and 3D-printed air chambers [145]. This advancement facilitates
the development of a soft robotic hand equipped with distributed pneumatic touch sensing
in the fingers and an active palm. For prosthetic applications, a 3D-printed soft robotic
hand with embedded soft sensors has been designed and developed to seamlessly interface
with next-generation myoelectric control systems [56]. In the areas of embedding flexible
electronic devices into soft robots, Mathai et al. [125] proposed a novel additive manufac-
turing method of tailored flexible inductive coils via patterning steel electroconductive
fibers for soft robots and wearable devices.

Furthermore, the integration of non-assembly 3D-printed joints with soft robotic
muscles has been pursued to create tendon-driven robotic fingers. This approach incorpo-
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rates a finger-type structure actuated by an electro-thermal soft actuator mechanism for
bio-inspired 3D-printed compliant joints and 3D-printed finger elements [146].

During additive manufacturing, the curing process of soft robot materials is time-
consuming, leading to delays in the manufacturing flow. To address this issue, various
methods have been employed with the use of stereolithography (SLA) and digital light
processing (DLP) that emerge as the most recent solutions. SLA and DLP utilize the poly-
merization of photopolymer resin under ultraviolet (UV) irradiation, offering significantly
higher printing resolution compared to other techniques [147].

Among these methods, DLP 3D printing stands out for its rapid printing speed. By
utilizing a DLP system that uses UV light projection, an entire layer can be cured with a
single exposure. In fact, a standard SLA 3D printing facility can achieve a very high printing
speed by employing a green and cost-effective hydrogel as a separation interface against
the cured part [136]. Notable works utilizing DLP methods include the development of 3D-
printed untethered soft robots [148] and the creation of super stretchable and processable
silicone elastomers [135]. These studies have demonstrated excellent performance and
advancements in employing the DLP technology for soft robot fabrication.

4.2. Opportunities

Synthesizing compliant multifunctional materials with distinct sensing and actuation
modalities remains a challenge. Combining various materials that can leverage the bionic
functionalities of soft robots requires a multifaceted understanding of materials, mechanics,
and manufacturability in conjunction with soft robot design principles. Functional materi-
als that are easy to manufacture and assemble are essential for advancing the maturity of
soft robotics. The development of new functional materials for soft robots highly depends
on the ability to produce or synthesize such materials. Therefore, challenges in this growing
research field inarguably focus on the fabrication of functional elements synthesized from
various source materials. Although some prototypes [149,150] have shown great promise
with the use of multi-material 3D printing, they lead to new unexplored manufacturing chal-
lenges to address. Moreover, in the areas of additively manufactured functional elements,
the process of embedding long fibers is time consuming, laborious, and prone to errors. To
facilitate the fiber embedding process, an automated fiber embedding mechanism [126] as
well as a textile-based method [118] have been proposed. Additionally, Eroglu et al. [52]
have presented a simple manufacturing process for miniaturized underwater soft robotic
grippers inspired by octopuses. These innovations in 3D printing demonstrate impor-
tant manufacturing advancements toward seamlessly integrating sensors into complex
soft robot components via opening up new possibilities for various soft robot design and
operation principles.

5. Soft Robot Operation Challenges
5.1. Sensing and Control of Motion
5.1.1. Advancements

In the field of soft robotics, the use of deformable sensors is crucial to achieve the
desired accuracy and repeatability [132]. These sensors possess important characteristics,
i.e., compliance, flexibility, and seamless integration with the robot’s surface, while meeting
requirements for stretchability. Multifunctional sensors capable of sensing operational
and environmental parameters like shape, temperature, force, and surface finish are ex-
tremely useful for soft robot operation [151]. Commonly employed deformable sensors
for mounting on soft actuators include resistive strain sensors, such as liquid metal-based
sensors, fabric and textile-based sensors, flex sensors, and elastic compressive foam sensors.
There is research [57,114,117,129,152–163] documenting the use of capacitive sensors, such
as pressure sensors, tactile sensors, strain sensors, and pneumatic pressure sensors, in
soft robotics. In terms of positioning, soft robots can be guided by embedded ultrasonic
range sensors for navigation [164]. The use of resistive flex and magnetic curvature sensors
enabled the precise, fast achievement of certain soft actuation curvatures [165].
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Recently, Xing et al. [166] proposed fibrous inductance-based soft sensors with very
high repeatability and ultra-low hysteresis, which can be embedded in soft robots or
can even be implanted as replacements of the air channel restriction fibers of pneumatic
actuators. In addition, Yang et al. [130] designed and developed a twining plant-inspired
single-channel pneumatic soft spiral gripper with an embedded high birefringent (HiBi)
fiber optic sensor for monitoring the twining motion, characterizing a target object as small
as 1 mm in diameter, and detecting undesired external perturbation. Fiber optic sensors
possess a compact size and shape and offer several advantages compared to their electronic
counterparts. These advantages include easy multiplexing, immunity to electromagnetic
interference, and an ability to function reliably in chemically aggressive, explosive, and
humid environments [127].

As discussed in Section IV, noticeable advancements have been made in addressing
soft robot manufacturing challenges using various materials and manufacturing methods
to facilitate certain soft robot design and operation principles. Soft robots that are made
of multifunctional soft materials may be able to demonstrate various biomotions shown in
Figure 4, such as shortening or elongation [167,168], twisting or untwisting [130,169], wrap-
ping or unwrapping [112,170], bending or unbending [48,163,165,171], and contraction or
expansion [112,168]. These soft matter biomotions can be triggered by common stimuli, such
as magnetism [2,31,32,61,67,78,107–113,116,172], electricity [33–36,51,131,134,173], tempera-
ture [18,85,111,112,116,122,173], tactility [51,121,145,158–161], chemical reactions [137,174],
pneumatics [6,30,76,102,140,168,174–176], hydraulics [69,132,153,177], and light [18,37–39,80,
111,135,136,147]. Some polymers even exhibit healing or recovering abilities [112,117] as
shown in Figure 4 with the use of magnetism and electricity.
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Soft actuators can be triggered by their associated stimuli to perform these common functions.

However, the kinematics, dynamics, and control of soft actuators [53] still experience
the challenge of mimicking natural biomotion. In this essence, the nonlinear nature of
soft body dynamics makes it extremely difficult to model and control soft robots with
necessary motion precision and stiffness compliance. To overcome this challenge, simplified
kinematic and dynamic models are mostly used to control soft robots, which may not
provide necessary motion precision and stiffness compliance. Gong et al. [178] developed
untethered cable-driven soft actuators and discovered a promising performance that may
lead to a repeatable motion pattern that mimics a tendon-driven biomotion pattern.

Pneumatics is widely used in soft robotics. Drotman et al. [179] evaluated 3D-printed
pneumatic soft actuators with angled leg bellows and regular horizontal bellows to compare
their manipulation performance. They concluded that the angled leg bellows perform
significantly better than the regular horizontal bellows. Walker et al. [180] conducted a
literature review study on pneumatic soft actuators. Owing to the inherent limitations of
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complex and bulky air compressors and tubes, pneumatic actuators are being progressively
replaced by alternative actuation methods.

In the case of soft pneumatic robots, pneumatic pressure sensing is not woven into the
fabric of soft robots all the time. Therefore, sensor-less control is common for regulating
the pneumatic pump motors of pneumatic soft robots. In general, the sensor-less control
of a brushed direct current (DC) motor uses a method that the estimation of the motor
performance without using sensor feedback. Such sensor-less control methods are classified
into model-based control and non-model-based control.

Soft pneumatic actuators (SPAs) are compliant and customizable [176]. Their motion
performance relies on factors, such as pneumatic chamber shapes and cross-sectional
geometries under variable loading conditions. Manfredi et al. [181] designed and developed
a wireless compact control unit for untethered pneumatic soft robots. Davarzani et al. [55]
studied the finger kinematics of a human hand and developed a 26-degree-of-freedom
pneumatic soft robotic hand with good dexterity [182]. Although SPAs offer simplicity,
their weight and bulkiness may limit the mobility of untethered soft robots.

The model-based control utilizes a dynamic model of a DC motor and incorporates various
types of model-based observers, such as a sliding or pseudo-sliding mode observer or an
observer that is combined with proportional-integral (PI) control [183]. These model-based
methods use a mathematical model of the motor to estimate the motor speed to control. On the
other hand, the non-model-based control does not rely on an explicit mathematical model of the
motor. Instead, it exploits the ripple components of the DC motor current for speed estimation.
In this case, the measured motor current is processed through a discrete bandpass filter with a
variable bandwidth to determine the motor speed. Both model-based and non-model-based
control approaches offer their own unique advantages and disadvantages in the context of
sensor less control for soft robots. Ongoing research aims to further explore and enhance the
sensing and control capabilities of soft robots.

Accurately modeling the dynamics of soft robots for model-based control is extremely
difficult and time-consuming. This is partly due to the infinite motion freedom of soft robot
manipulation. Gillespie et al. [184] investigated a nonlinear dynamic model and predictive
control using a neural network and achieved motion accuracy within 2◦ of the commanded
joint angle. In another study, a dynamic motion control strategy for a multi-segment soft
robot [185] has been developed using a piecewise constant curvature and an augmented
rigid body model.

Open-loop control is generally unsuitable for soft robot manipulation due to the
nonlinear dynamics, which is unpredictable. For instance, pneumatic “muscle” actuators
regulated by open-loop control often face challenges in achieving motion precision [168].
Furthermore, controlling the deformation levels of a flat, thin, soft material can be chal-
lenging due to uncertainties associated with the nonrigid body dynamics. To address these
challenges, closed-loop control [186] is necessary for better motion precision, robustness,
stiffness compliance, and adaptability to dynamic, uncertain environments [187]. Closed-
loop control can be constructed by system identification techniques, which involve creating
a transfer function that emulates the actual soft actuator to study the actuator response char-
acteristics [188]. Soft robots are well-suited for data-driven system identification techniques
since they can collect data during the operation [189].

In a study by Azizkhani et al. [190], an experiment was conducted to compare standard
proportional derivative (PD) feedback linearization control with adaptive passivity control.
The results showed that the adaptive passivity control of soft robots offers a promising level
of performance. Moreover, using equilibrium-based modeling, Dou et al. [191] developed
a hybrid soft robot with the adjustable elongation that is controlled by a multi-chamber
soft body with a rod-driven compliant mechanism that provides a push-pull drive.

Hydrogel actuators driven by chemical reaction networks have been explored by
Fusi et al. [137] for soft robot actuation. In the pursuit of environmental protection, re-
searchers have also developed bio-degradable electrohydraulic actuators [177]. Addition-
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ally, noticeable advancements have been made in the field of chemically driven oscillating
soft actuators [174].

Temperature has emerged as another handle on soft actuator control. Tang et al. [170]
utilized a twisted and coiled actuator, which could be precisely controlled through tem-
perature manipulation. Furthermore, Yoon et al. [173] developed a thermo-pneumatic
untethered actuation module based on a gas-liquid phase transition that is controlled by a
soft thermoelectric device. A possible drawback of thermal control can be the time delay
needed for temperature manipulation that may slow down the soft robot reaction.

Nowadays, magnets are also frequently used as actuators [61]. The shape and motion
of a soft actuator with strategically embedded magnets may be controlled by electromag-
netic fields [111]. This gives the robot the ability to perform various actions, such as grasping
things or bending in a certain manner. By instantaneously changing and synthesizing cer-
tain internal electromagnetic vectors (EVs) in each magnetic flux subdomain, self-vectoring
electromagnetic soft robots (SESRs) offer additional operational dimensions [109].

A magnetically controlled microswitch (MCSM) may be well-integrated into soft
actuators by using highly stretchable, electroconductive liquid metal (LM) [115]. Such an
LM-based soft actuator can sense and act with the internal MCSM system that provides
robust, practical feedback control [108].

Magneto-rheology (MR) and shape memory alloys (SMAs) [21] are instrumental in
developing artificial muscles. Pure SMA artificial muscles demonstrate sluggish recovery
speed and limited holding capacity. The incorporation of MR into SMA resulted in an
artificial muscle with a remarkable 440% increase in the recovery speed by outperforming
conventional SMA artificial muscles by 333% [119].

Xing et al. [33] studied a shape-memory soft actuator with reversible electric/moisture
actuating and strain sensing in a compact sandwich structure, where silver nanoparticles
are used to form a middle composite layer by connecting a hygroscopically deformable
polyvinyl alcohol (PVA) layer with a high-performance flexible shape memory polymer
(FSMP) layer. This actuator can bend and grip an object as well as perceive its presence.

The complexity of manufacturing and the integration of dissimilar materials are the
major drawbacks of the aforementioned actuation methods. They can be complemented
by a liquid crystal elastomer, an artificial muscle with the reconfigurable design and
reprogrammable strain, which was proposed by He et al. [131] for making soft tubular
actuators. These soft tubular actuators demonstrated homogeneous contractions of up to
40% as well as multidirectional bending.

Yan et al. [192] introduced a laser-patterning approach to embedding 2D functional
structures directly into electroactive polypyrrole (PPy) films. This technique transforms the
typical bending of PPy films into various actuation modes including squeezing, gripping,
flapping, and lifting, when the PPy films are immersed in an electrolyte solution analogous
to a biological body fluid. Qing and Qingchao [122] developed a temperature sensing
artificial finger using an optical fiber grating. The finger prototype was then tested under
various temperatures and bending conditions, which proved that it yields highly accurate
and repeatable actuation performance values.

All aforementioned advancements in soft robot sensing and actuation showcase di-
verse methods and strategies for various needs that naturally arise in soft robotics and
open doors to new fundamental research opportunities and applications in the areas of soft
robot design, manufacturing, and operation.

5.1.2. Opportunities

The development of soft sensors remains a major challenge in the field of soft robotics.
Additive manufacturing enables the integration of soft sensors into soft robots [121]. How-
ever, existing soft sensors often suffer from slow response times, short lifetimes, and hys-
teresis, which negatively impact the overall performance and reliability of soft robots [193].
Addressing these issues is crucial for advancing the field.
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Recently, an innovative breakthrough has been achieved in the field of soft robotics, so
that a soft robot can be actuated using strain energy stored in a structural member. This
significant advancement relies on the behavior exhibited by elastomers when they are
pre-stretched to the point of buckling [133]. In fact, the final length attained by an elastomer
is remarkably greater than its pre-stretched length. This remarkable characteristic of
elastomers opens up new avenues for creating untethered autonomous soft robots. Once the
initial pre-strain is applied, these robots operate independently without requiring additional
chemical or electrical energy sources and without relying on external stimuli for activation.
Even after the applied force is removed, the growth process of the elastomer continues,
leading to further elongation. This autonomous adaptability and shape-changing ability
of soft robots offer significant advantages in various applications. They can dynamically
respond to their environments and perform tasks without the need for continuous external
control. This breakthrough enables new, highly versatile, self-sustaining soft robots with
the potential to revolutionize industries, such as manufacturing, healthcare, etc.

Overall, the kinematics, dynamics, and control of soft robots still experience the chal-
lenge of mimicking natural biomotion. The nonlinear nature of soft body dynamics makes
it extremely difficult to model and control soft robots with necessary motion precision and
stiffness compliance. Although machine learning offers some promise [194–199], soft robot
kinematics, dynamics, and control still remain subject to future research opportunities. For
instance, Figure 5 presents a soft actuator with two asymmetric pneumatic chambers. Its
input pressures and actuator responses exhibit nonlinear kinematics and dynamics, which
cannot be easily characterized by methods used for standard rigid bodies.
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5.2. Sensing and Control of Stiffness
5.2.1. Advancements

Despite facilitating safe human–robot interaction, compliant soft robots exhibit inher-
ent low stiffness that makes them too weak to handle certain tasks that involve external
forces. Therefore, soft robots often need variable stiffening mechanisms [200]. The direct
modulation of stiffness proves to be an effective approach to adjusting the soft robot stiff-
ness for different operation conditions. Numerous researchers explored stiffness sensing
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and control for soft robots [134,201–204]. Accordingly, the following subsections will dis-
cuss stiffness sensing and control in terms of fluidic stiffness control, pneumatic stiffness
control, magnetic stiffness control, and thermal stiffness control.

Fluidic stiffness control: He et al. [205] developed a tunable stiffness sensor that can
be directly 3D-printed into a hydraulic soft robot with the intent to control its stiffness.
Sozer et al. [206] proposed a novel fluid-driven variable-stiffness revolute joint (VSRJ)
based on a hybrid soft-rigid approach to achieving adjustable compliance. The VSRJ is
composed of a silicone rubber cylinder as a pressure chamber and two identical rigid links.
By applying fluidic pressure, the stiffness of the VSRJ joint can be adjusted with up to 8-fold
rotational stiffness enhancement from 0 to 500 KPa input pressure within a rotation angle
range between −30◦ and +30◦. Although fluid-driven actuators resemble biofluid-driven
muscles, they may eventually leak by polluting the environment and degrading the overall
performance of actuation.

Pneumatic stiffness control: Best et al. [207] used a linear quadratic regulator (LQR)
and model predictive control (MPC) for an inflatable humanoid robot to perform object
handling tasks that require stiffness. Crowley et al. [208] have successfully developed a
3D-printed soft robotic gripper with variable stiffness using an innovative positive pressure
layer jamming technology.

For increased safety in interventional surgery, stiffness adaptation with concurrent
tendon-driven and pneumatic actuation is suggested [54]. In order to temporarily increase
the stiffness of a soft robot, Liu et al. [209] presented a tubular stiffening segment based
on layer jamming. Wei et al. [59] also looked at a flexible robot that can grip objects
and has variable stiffness based on a folding plate mechanism and particle jamming.
Micklem et al. [210] proposed and demonstrated a method for tunable stiffness using
inflatable rubber tubes to effectively stiffen a soft robot via adjusting the internal pressure
of the inflatable tubes from 0 to 80 KPa.

Soft pneumatic actuators (SPAs), which are engineered with 3D-printed conductive poly-
lactic acid (CPLA) materials or bio-inspired lattice chambers and fused deposition modeling
(FDM) 3D printing, were able to modulate the soft robot stiffness and shape [175,211]. A
stiffness-tunable modular bionic soft robot that can crawl and overcome obstacles consists of a
series of inflatable soft modules, whereas each module consists of two parallel inflatable, tunable
soft actuators [212].

For high-performance gripping tasks in industrial applications, Aydin et al. [213]
demonstrated a novel variable-stiffness soft gripper with an ability to change its stiffness
through the use of a proportional air-pressure regulator. Soft robots with stiffness regulated
by pneumatic artificial muscles (PAMs) were demonstrated by Pardomuan et al. [214].
Yang et al. [215] also implemented PAMs in a particle robotic arm with stiffness and
damping regulation.

When an internal vacuum is produced, fiber jamming modules (FJMs), which are
made of axially packed fibers in an airtight container, go from being flexible to rigid. This
FJM can offer flexural stiffness that is up to eight times more than that of a particle jamming
module [123].

Overall, pneumatics provides enormous possibilities in soft robotics, but leakage and
the compressibility of air may degrade the overall performance of pneumatic actuation.

Magnetic stiffness control: Gaeta et al. [107] demonstrated magnetically induced stiffen-
ing for soft robotics. Zhao and Dai [113] have successfully implemented the liquid-metal
thermotropic phase transition as a method for regulating the stiffness of soft robots. They
have developed a liquid metal variable-stiffness material (LMVSM) that can actively and
rapidly adjust its stiffness by applying an external magnetic field or temperature mod-
ulation. The LMVSM is composed of a nickel-chromium wire layer for Joule heating, a
soft heat dissipation layer for rapid cooling, and gallium-iron magnetorheological fluid
(Ga-Fe MRF) layers for altering the stiffness. By utilizing a magnetic field, stiffness can
be increased by a factor of 4, while the solidification of the Ga-Fe MRF can enhance the
stiffness by a factor of 10 [116].
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The principles of jamming combined with the use of magnetorheological fluid offer
faster stiffness control and portability [107]. To generate strong magnetic fields with lower
power consumption for the manipulation of magnetorheological fluid, electro-permanent
magnets (EPMs) have been proposed as a potential solution [172]. EPMs can not only
generate magnetic fields comparable to permanent magnets in strength but also involve
electric pulse control that does not need continuous power input.

In recent developments, Wu et al. [216] demonstrated the effectiveness of magnetic-
responsive composites as soft, active metamaterials for fast transforming actuation under
external stimuli for tunable mechanical properties. Bartkowski et al. [217] created a com-
pliant soft actuator with variable stiffness using an electromagnetically controlled shape
morphing composite (e-morph). Electromagnetism offers various ways of sensing and
controlling soft robot motion and stiffness, but such magnetic sensing and control may
suffer electromagnetic interference (EMI) generated by external sources.

Thermal stiffness control: Ma et al. [218] designed and produced thermally controlled
variable-stiffness joints using thermo-rheological fluids (TRF). They employed two phase-
changing substances: low-melting point solder (alloy) and hot-melt glue. Both substances
are incorporated into a joint fabricated by silicone casting and 3D printing. The findings
indicate that the proposed variable-stiffness joint with TRF yields a wide range of load-
deflection ratios under temperature manipulation.

The tuning of soft gripper stiffness and adhesion is enabled by thermally induced phase
transition of a thermoplastic composite material implanted in a silicone pad [62]. The soft
gripper works by putting the pre-heated silicone pad into contact with an object and then
allowing it to cool and stiffen to produce a solid adhesive attachment for object handling.

A stiffness-tunable soft-rigid gripper [219] was made of a polylactic acid-based variable-
stiffness module (VSM) and a rigid retractable mechanism to achieve hybrid soft-rigid
actuation. A heating circuit was designed to divide VSM into three segments, where each
segment can be activated separately for varying stiffness to enhance the dexterity of the
gripper. Recently, Zhong et al. [220] proposed a discrete variable-stiffness approach to a
bio-inspired bistable articulated joint that consists of a rigid joint and bistable structures.
The bistable structures are triggered by thermal shape memory alloy springs.

In general, temperature manipulation provides a handle on soft robot stiffness con-
trol. However, a possible drawback of thermal control can be the time delay needed for
temperature manipulation that may slow down the soft robot reaction.

5.2.2. Opportunities

A soft robot inarguably needs stiffness sensing and control to be able to adjust its
stiffness for various mechanical tasks that require compliance as well as stiffness. Scholars
have explored different ways of harnessing soft robot stiffness with the use of fluidics,
pneumatics, electromagnetism, and thermal control as reviewed in Section 5.2.1. In addition,
Xiao et al. [221] developed a tendon-driven concentric tube as a concentric backbone for
a stiffening soft robot. Another tendon-based stiffening has been created for soft robotic
gripper with a noticeable grasping force using twisted string actuators (TSAs) inspired
by the anatomy of the human hand [120]. Even though the recent literature indicates
noticeable achievements in the field, soft robots still need to go a long way to reach the
level of their biological counterparts in terms of harnessing stiffness.

6. Summary

Advancements in smart manufacturing embrace the adoption of soft robots for im-
proved productivity, flexibility, and automation as well as safety in smart factories. Hence,
soft robotics is gaining a significant surge in popularity by garnering considerable attention
from researchers and practitioners. Bionic soft robots, which are composed of compliant
materials like silicones, offer compelling solutions to manipulating delicate objects, op-
erating in unstructured environments, and facilitating safe human–robot interactions. In
this regard, enhancing the operation performance of soft robots necessitates intricate, com-
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plex structural designs, compliant multifunctional materials, and proper manufacturing
solutions to unleash better soft robots that complement humans in future manufacturing.

By using bionics and digital engineering tools, researchers are able to explore unchar-
tered design principles and new innovative engineering solutions to making better soft
robot designs that have the potential to revolutionize the design process, facilitate soft
robot manufacturing, and unleash better soft robots that complement humans in future
manufacturing. Synthesizing compliant multifunctional materials with distinct sensing and
actuation modalities remains a challenge. Combining various materials that can leverage
the bionic functionalities of soft robots requires a multifaceted understanding of materi-
als, mechanics, and manufacturability in conjunction with soft robot design principles.
Additive manufacturing has emerged as a solution to complementing the limitations of tra-
ditional casting and subtractive methods by enabling the fabrication of complex geometries,
the integration of in situ sensors, and the use of multiple functional materials to enhance
the capabilities of soft robots.

Motion precision and stiffness compliance pose challenges in the areas of soft robot
sensing and control. Soft actuators are used for bending, twisting, stretching, shrinking,
and other biomotion variants driven by chemical reaction networks, thermal stimuli,
pneumatics, electromagnetism, and tendon-based artificial muscles. Adjusting the stiffness
of soft robots is also crucial for generating the needed force using certain materials and
mechanisms that can be stiffened via fluidics, pneumatics, electromagnetism, thermal
stimuli, and artificial muscles. Flexible sensors capable of enduring large deformations
play a vital role in achieving these operation objectives. Recent advancements also suggest
the development of soft actuators with in situ sensing mechanisms that eliminate the need
for external sensors.

Although this literature survey focuses on soft robot design, manufacturing, and
operation challenges, it is important to note that the precursors of these challenges are often
defined by the applications of soft robots. An important aspect of soft robot applications is
the integration of soft robots with existing platforms. Based on applications, a soft robot
may need a certain mechanism or method for integration with existing platforms that may
consist of either rigid or soft bodies. Such integration efforts need the joining or assembling
of dissimilar soft or rigid materials. Soft–rigid material integration is still an open topic for
future research.
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50. Ćurković, P.; Jambrečić, A. Improving structural design of soft actuators using finite element method analysis. Interdiscip. Descr.

Complex Syst. INDECS 2020, 18, 490–500.
51. Xu, J.; Xie, Z.; Yue, H.; Lu, Y.; Yang, F. A triboelectric multifunctional sensor based on the controlled buckling structure for motion

monitoring and bionic tactile of soft robots. Nano Energy 2022, 104, 107845.
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