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Abstract: Optimizing process parameters to minimize defects remains an important challenge in
injection molding (IM). Machine learning (ML) techniques offer promise in this regard, but their
application often requires extensive datasets. Transfer learning (TL) emerges as a solution to this
problem, leveraging knowledge from related tasks to enhance model training and performance. This
study explores TL’s viability in predicting weld line visibility in injection-molded components using
artificial neural networks (ANNs). TL techniques are employed to transfer knowledge between
datasets related to different components. Furthermore, both source datasets obtained from simula-
tions and experimental tests are used during the study. In order to use process simulations to obtain
data regarding the presence of surface defects, it was necessary to correlate an output variable of the
simulations with the experimental observations. The results demonstrate TL’s efficacy in reducing
the data required for training predictive models, with simulations proving to be a cost-effective
alternative to experimental data. TL from simulations achieves comparable predictive metric values
to those of the non-pre-trained network, but with an 83% reduction in the required data for the target
dataset. Overall, transfer learning shows promise in streamlining injection molding optimization and
reducing manufacturing costs.

Keywords: injection molding; machine learning; transfer learning; weld lines; surface quality
prediction; digital twin; artificial intelligence; artificial neural networks; CAE; part similarity

1. Introduction

In modern manufacturing, injection molding is a cornerstone process renowned for its
versatility and efficiency in producing intricate components across diverse industries [1–3].
Its significance lies in mass production and in the ability to fabricate parts with high surface
quality, intricate geometry, and minimal defects. However, achieving the desired level
of quality and minimizing defects in injection-molded components remains a perpetual
challenge for manufacturers.

Ensuring the production of components without defects holds paramount importance
across industries for several compelling reasons [4,5]. Moreover, defect-free components
minimize the need for post-production inspection and rework, streamlining the manufac-
turing process and reducing operational costs [6].

However, achieving flawless components, particularly those with stringent aesthetic
standards, presents a formidable challenge when operators need to set process parameters
during process setup or production startup. This is because injection molding is a complex
and non-linear process that involves many process parameters, such as temperature, pres-
sure, injection speed, cooling time, and mold design [7–12]. These parameters impact the
quality of molded parts and exhibit non-linear relationships with quality attributes [13].
The traditional way of setting molding process parameters is by trial and error [14,15]. This
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means that the operators are tasked to repeat the injection molding process during the
machine setup phase. After each shot, molding staff must use their process knowledge to
fine-tune the parameters and gradually improve the product quality [16]. However, the job
market is becoming more competitive [17,18], making it harder to find experienced staff
who can perform such tasks.

In recent years, machine learning has emerged as a powerful tool in the realm of
manufacturing optimization, offering unprecedented capabilities in data analysis, pattern
recognition, and predictive modeling [19]. By harnessing vast datasets, ML algorithms
can discern intricate relationships and trends without prior knowledge of these relations.
In the context of injection molding, ML techniques hold immense promise in guiding the
identification of optimal process parameters to achieve desired aesthetic characteristics.
ML models are especially well-suited for analyzing the complex interplay between input
and output quality parameters in injection molding processes.

Zhang et al. [20] employed optimal Latin hypercube design (Opt LHD), an ensemble-
based fuzzy neural network (EBFNN), and multi-objective particle swarm optimization
(MOPSO) to achieve multi-objective optimization. The objects of the optimization were
the warpage and the clamping force. The optimized parameters were then tested, and
as a result, the reduction on the warpage was 60%, and the peak clamping force showed
a 38% reduction. Tsai and Luo [21] utilized artificial neural networks combined with
genetic algorithms (GAs) to develop an inverse model. This model aimed to determine the
optimal process parameters required to minimize warpage in molded lenses. The process
parameters optimized by the hybrid ANN and GA resulted in better lens form accuracy than
the Taguchi experiment; the form accuracy improved by 13.36%. Ke and Huang [22] utilized
an ANN to analyze pressure signals and predict product width. Through experimental
validation, the authors demonstrated the effectiveness of the ANN in accurately forecasting
quality attributes. The model achieved an accuracy rate exceeding 92% for product width.

Many other researchers have proposed approaches based on applying ANNs to
injection molding. Some of the outputs of the IM process studied were mechanical
properties [23–25], shrinkage and warpage [26–28], gate location [29], and other process
outputs [30–32].

All of the previously cited articles have highlighted an essential advantage of ML: the
possibility of moving from a reactive to a preventive approach in managing the quality
of components made by injection molding [33]. However, the previous studies also had a
significant limitation: a dedicated dataset was generated with each application of ML, and
such datasets can be challenging to obtain. In addition, machine learning models require a
large amount of data to achieve acceptable performance, which makes ML unattractive in
an industrial setting [34,35].

One particularly promising avenue within the domain of machine learning for injection
molding optimization is the application of transfer learning. Transfer learning leverages
knowledge acquired from training on one task to improve training and performance on
a related task [36]. It is intuitive to say that successful transfer learning depends on the
level of similarity of the tasks and their domains [37]; differences may prevent successful
transfer learning [38]. Successful TL (positive transfer) can be manifested in three ways:
higher quality of the model than the non-pre-trained model, higher speed of convergence
of the transferred model, and higher generalization ability of the transferred model. The
presence of any of the previous three cases indicates positive transfer.

In recent years, transfer learning has become increasingly employed in injection
molding. However, few articles have been found regarding the use of TL in press setup.
Tercan et al. [39] explored the application of transfer learning in bridging the gap between
real-world and simulated data for machine learning in injection molding. The authors
investigated how pre-trained models can leverage knowledge from simulation data to
enhance performance when applied to real-world scenarios. Through experimental valida-
tion, the authors demonstrated the potential to reduce the number of experimental data
points required to train the injection molding digital twin via transfer learning applications.
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Lockner et al. [40] explored the application of transfer learning between injection molding
processes characterized by different polymer materials. The authors proposed transfer
learning as a valuable tool for reusing existing data to train multiple models. In this case,
the data were obtained by simulating the injection molding process of a single component
while considering numerous materials. Through experimental validation, the study demon-
strated the efficacy of transfer learning in improving the performance of artificial neural
networks and reducing the amount of data required to train a new model. This publication
uses artificial neural networks to model the relationships between six molding parameters
and part weight. A publication by Lockner and Hopmann [41] applied transfer learning
between the injection molding processes of different parts. In this study, the artificial neural
network learned the relationship between six injection molding parameters and the part
weight. The best results are obtained when transfer learning is applied between similar
parts. Gim et al.’s [42] study focused on transferring knowledge from one production site
to another, characterized by different molding equipment, to enhance efficiency and robust-
ness. In this research, artificial neural networks are trained using only experimental data to
predict the presence of surface defects and surface gloss from molding parameters. The
authors demonstrate the effectiveness of transfer learning in improving the performance of
machine learning models and reducing the dimension of the training dataset.

Previous studies have shown that the transfer learning approach offers several notable
advantages over non-transferred ML models. Firstly, transfer learning reduces the need for
extensive data collection and model training specific to the target application. Moreover,
transfer learning enhances the robustness and generalization capabilities of ML models,
mitigating the risk of overfitting and ensuring reliable performance across diverse pro-
duction scenarios. Economically, this translates into tangible cost savings by minimizing
experimentation iterations, material wastage, and downtime associated with fine-tuning
process parameters. However, it is also clear that these preliminary studies on applying TL
to injection molding have primarily focused on predicting part weight as the only quality
characteristic. While the part weight is handy for assessing the structural performance
of parts and allows for numerous considerations regarding process execution, it does not
indicate the part’s surface quality and aesthetic defects. Therefore, the potential application
of transfer learning for predicting aesthetic and surface defects must be investigated further.

In this study, the aim is to apply transfer learning to streamline the training of an
artificial neural network tasked with predicting the visibility of weld lines in an industrial
component. The input features for this prediction will be the process parameters. Knowl-
edge transfer will occur between injection molding processes related to different parts. Both
source datasets obtained from experimental tests and numerical simulations of the injection
molding process will be considered. The primary challenge in applying transfer learning
from simulations to surface defect prediction lies in the fact that the visibility of defects
is not a direct output of the simulations. To overcome this problem, a phenomenological
study on the formation of the weld lines was deemed necessary to correlate the simulations’
outputs to the weld line visibility.

2. Materials and Methods
2.1. Materials and Parts

The component used to obtain all the source datasets (part 1 or component 1) was
a plate for electrical sockets. These parts were manufactured using black polycarbonate
(Makrolon 2405, Covestro, Leverkusen, Germany). A thermal analysis using differential
scanning calorimetry (Q200, TA Instruments, New Castle, DE, USA), following the ASTM
E1356-98 standard [43], was used to characterize the no-flow temperature of the polymer
under investigation.

The component was selected due to its stringent surface quality requirements, where
even minor surface defects can threaten the acceptability of the plate. In this part, defects
are especially conspicuous owing to its opaque nature. Weld line defects were identified
as the primary cause of non-conformity for this product, thus prompting the focus on
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resolving this issue. Figure 1 depicts a photo of the product with a weld line defect (right)
and without a defect (left).
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Figure 1. Part 1 with (right) and without (left) weld line defect.

Conversely, the part used to obtain the target dataset was a cover of an electrical socket
(part or component 2). These parts were manufactured using the same black polycarbonate
employed for part 1 (Makrolon 2405, Covestro, Leverkusen, Germany). Also, on the cover,
aesthetic defects were apparent due to the black color of the part and its surface opacity. In
this case, weld lines are the most challenging defects to eliminate. Figure 2 shows a photo
of component 2 with a weld line defect (right) and without defect (left).
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Figure 2. Part 2 with (right) and without (left) weld line defect.

It is crucial to highlight some differences between part 1 and part 2 that may pose chal-
lenges for knowledge transfer between the components. Firstly, the significant geometric
variation between the parts presents initial obstacles. Regarding geometry, a critical issue
arises from the difference in thickness between the parts, particularly in the area where
weld lines form. The plate in the defective area has a thickness of 1.8 mm, whereas the
cover has a thickness of 2 mm, representing a thickness increase of 11.11%. These thickness
differences lead to variations in material flow, thereby influencing the formation of defects.
Additionally, it is worth noting that the weld line formed in the plate due to the frontal
encounter of two flow fronts (resulting in a cold weld line). In contrast, in the cover, the
defect arose from the lateral encounter of two flow fronts (resulting in a hot weld line).

2.2. Simulations

For part 1, experimental and artificial (synthetic) datasets were created. The synthetic
dataset was generated from numerical simulations. Throughout this study, all simulations
were conducted using Moldex3D software (Moldex3D 2022 R4). Within the software’s
working environment, the CAD models of the component, the hot runner system, and
the cooling circuit were imported (Figure 3). It was preferred to import the CAD of all
components to improve the accuracy of the numerical analyses.
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Some modifications to the various models were necessary to obtain the simulation
results in acceptable timeframes. First, all low-relief writings and logos were removed from
the part, eliminating features that unnecessarily burden the mesh and extend calculation
times without enhancing result accuracy. Given its particularly complex geometry, a second
significant change was made to the cooling circuit. Mold cooling was achieved through a
series of cooling lines operating in parallel, each placed on a different plate of the mold.
However, within the Moldex3D environment, only the cooling line closest to the part was
modeled, and thus, only the cooling line related to the mold insert was imported. This
decision aimed to reduce computational time, considering that these cooling channels
dissipate most of the heat brought to the mold by the molten material. In contrast, the
remaining channels were situated at a much greater distance from the cavity.

The decision to utilize Moldex3D to simulate the injection molding process stemmed
from its unique mesh structure capabilities. Specifically, a mesh structure with five bound-
ary layers was chosen for the part. This boundary layer meshing (BLM) technique signifi-
cantly enhanced simulation accuracy near the part’s surface, where the defect under study
formed. Additionally, a 3-boundary layer mesh (3 BLM) was employed for the cooling
channels’ mesh, while tetragonal elements discretized the feeding circuit and mold plate.
The sizes of the mesh elements were determined through a balance between calculation
accuracy and computational efficiency, resulting in element sizes of 0.8 mm for the part,
1.2 mm for the feeding circuit, and 2 mm for the cooling circuit.

The artificial dataset for part 1 comprises 90 points, each obtained from individual
simulations. Process parameters were systematically varied within these simulations using
a Latin hypercube sampling (LHS) design of experiments. For this study, five key process
parameters were considered: mold temperature (T_mold), injection speed (Vinj), packing
pressure (Ph), switch-over point (so), and nozzle temperature (T_no). These parameters
were selected based on operators’ frequent variation during the iterative machine setup
process. In Figure 4, the mesh morphology in the region where the weld line formed can
be observed.

The LHS experimental design was chosen because it distributes sampling points almost
randomly within the domain of individual variables. This approach minimizes overlap
between experimental conditions, improves sampling efficiency, and reduces correlations
among multidimensional variables [23,44].
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Table 1 displays the range of socket process parameters explored through simulations
and the experimental campaign.

Table 1. Range of plate’s process parameters investigated through simulations and experimental
campaign.

Part 1 Process Parameters

Minimum Maximum

Mold temperature [◦C] 90 130
Injection speed [mm/s] 5 100
Switch over point [mm] 5 14
Holding pressure [bar] 800 1300
Nozzle temperature [◦C] 250 320

2.3. Weld Lines Visibility

As mentioned before, the visibility of surface defects is not a direct output of the simu-
lations of the injection molding process. To perform the knowledge transfer from synthetic
data (obtained from simulations), it is necessary to establish a correlation between one of
the output variables of the simulations and the experimental observations. After some
attempts, it was decided to use the frozen layer ratio (FLR) to evaluate the visibility of the
defects. The FLR was sampled along the entire weld line using six probe points (Figure 4) at
the end of filling time (when the weld line forms). Therefore, each simulation was assigned
a FLR value equal to the average of the six sampled values. To correlate simulations with
experimental observations, five tests were conducted on the injection molding machine,
with process parameters varied randomly, followed by numerical simulations of these
tests. Utilizing FLR values obtained from these simulations and the five molded parts, it
was possible to establish a threshold FLR value that effectively distinguished points with
defects from those without defects. Achieving 100% accuracy in this classification was not
mandatory, as this dataset was solely intended for initializing the weights of the ANNs.

The threshold value of the FLR was then compared with the FLR value associated
with each simulation. If the sampled FLR exceeded the threshold value, the weld line was
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deemed visible, and the simulation was assigned to class 1. Conversely, if the FLR was
equal to or lower than the threshold value, the defect was considered not visible, and the
simulation was assigned to class 0.

2.4. Molding Trials

For both part 1 and part 2, experimental datasets were compiled by replicating the
molding process. Throughout the experimental campaigns, the five process parameters
were systematically varied using a Latin hypercube sampling (LHS) design of experiment.
In total, 140 experimental points were gathered for part 2, and 200 for part 1. All experi-
mental tests were performed on a hydraulic injection molding machine (SynErgy 800.230,
Netstal, Näfels Glarus, Switzerland). Table 2 shows the range of variation in the input
parameters for part 2; some differences from the values of part 1 can be noted (the process
parameters for component 1 are reported in Table 1).

Table 2. Range of cover’s process parameters investigated through molding trials.

Part 2 Process Parameters

Minimum Maximum

Mold temperature [◦C] 60 120
Injection speed [mm/s] 20 100
Switch over point [mm] 4 18
Holding pressure [bar] 700 1200
Nozzle temperature [◦C] 260 330

For every experimental point, two samples were obtained to ensure consistency in the
molding cycle’s output. Between two consecutive sampling points, the molding process
was repeated three times to validate the actual variation in the process parameters. Each
collected sample underwent visual evaluation by a machine operator and a quality control
officer. The validation process involved a visual check, to be carried out under various
lighting conditions. It was decided to use this classification methodology in accordance
with the parts manufacturer’s acceptability standards. Components exhibiting weld lines
were categorized as class 1, while defect-free components were assigned to class 0.

2.5. Transfer Learning Approach

As mentioned before, the cost and difficulty of obtaining training datasets limit the
application of machine learning in injection molding and, more generally, in industrial
production. Transfer learning proposes a possible solution for this problem. At the core of
transfer learning is initializing neural network weights through pre-training on a source
dataset. Subsequently, a second training phase is conducted on the target dataset to fine-
tune the neural network’s weights. The result of the pre-training brings the model closer to
the optimum, thus making the ANN converge faster to the optimum during the transfer.
Transfer learning demonstrates its utility by reducing the amount of data needed to develop
a model for the target dataset, and enhancing the model’s overall performance.

This paper investigates the feasibility of employing transfer learning to develop a
machine learning model capable of predicting the visibility of weld lines based on five
process parameters, which serve as input features for the artificial neural network.

The aim is to evaluate the potential for transferring knowledge between datasets
derived from molding processes of different components, specifically from part 1 to part 2.
The source dataset comprises data obtained from both simulations and experimental tests,
while the target dataset consists solely of data obtained from experimental tests. Section 2.2,
Section 2.3 and Section 2.4 provide detailed descriptions of the data collection processes. In
Figure 5, a flowchart describing the transfer learning process can be observed.
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In this work, two different approaches to TL will be compared [39]. The first TL
approach is called “soft start” (SS). It involves the initialization of the internal parameters
of the network through training on the source dataset. Then, all the internal parameters
of the network are updated through a second training (also called “fine-tuning”) on the
target dataset. It is essential to specify that during the transfer learning, the structure of the
neural network is not modified in any way.

The second mode of transfer is called “random initialization” (RI), and involves the
pre-training of a neural network consisting of a single hidden layer (HL) on the source
dataset. After the first training, the output layer is removed, and a series of HLs with
randomly initialized weights are added to the network. The weights of the network’s
transferred HL thus obtained (initialized with the first training) are kept non-trainable.
Then, a second training is performed on the target dataset. It is essential to acknowledge
that utilizing RI-type TL, which involves randomly initializing the weights of layers added
after the pre-training, may initially yield poorer performance compared to the SS model.
However, it is hoped that the new weights, combined with the knowledge transfer operated
through the first HL, can lead the model to a different, possibly better, minimum of the loss
function than previously found.

Finally, one last network was trained using only the data related to the target dataset.
This network (called the control network or CN) served as a reference to evaluate the effects
of transfer learning.

The training process was repeated by progressively increasing the number of data
points related to the target dataset considered in the knowledge transfer. At each iteration,
the performance of the network was evaluated using three metrics: accuracy, AUC, and re-
call. The use of the three metrics was necessary because all of the datasets were unbalanced
in favor of class 1, and therefore, the use of accuracy alone could lead to misleading results.
At each iteration, a five-fold cross-validation was conducted to assess the reproducibility
of the results and subsequently compute the standard deviation of the various metrics.
During the multiple iterations of the validation process (as the number of data used for
fine-tuning varied), no changes were made in the structure or hyperparameters of the ANN.
During the five-fold cross-validation operation, the process of dividing the data into train
sets and test sets was repeated five times, varying the data in each set each time (at each
iteration, data not used for training are used for validation). By comparing the results
of the forecasts and the class assigned to each piece of data, it was possible to calculate
the metrics.
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2.6. Hyperparameter Tuning

To optimize the performance of the neural network, before applying the concepts of TL,
it was necessary to determine the hyperparameters of the ANN. The determination of the
hyperparameters was carried out in two successive steps. In the first step, the morphology
of the network was determined, i.e., the number of hidden layers and the number of neurons
per HL. This first objective was achieved by observing the curves representing the evolution
of the loss function and the accuracy during the training (varying the number of training
epochs). For both the loss function and the accuracy, the curves relative to the training
and test datasets were generated; the position and the relative trend between these curves
provided essential information about the training progress. For every morphology assessed,
the curves were observed five times, with the distribution of data between the training set
and test set varied on each occasion. It was decided to proceed this way to determine the
network architecture that minimized the risk of overfitting or underfitting. The appearance
of one of the previous two phenomena could have compromised the effectiveness of the
knowledge transfer. During the second step of the hyperparameter optimization, the
remaining hyperparameters were determined by performing a Gridsearch [45].

All implementations were performed in Python (version 3.10.9), utilizing the Python
modules TensorFlow (version 2.12.0), Keras (version 2.12.0), and Scikit-Learn (version 1.2.1).

3. Results and Discussion
3.1. FLR Threshold

After completing the data collection, the threshold value of FLR was determined using
the procedures described in Section 2.3. Table 3 displays the outcome of this process. The
threshold was found to be 5%. The threshold value was used to split the simulations into
classes “0” and “1”. The data thus obtained were used exclusively in the pre-training phase.
The fine-tuning phase followed this first training, so the threshold value did not necessarily
have to divide the collected data perfectly.

Table 3. Experimental tests used to find the threshold value of the FLR.

FLR Threshold Value

T_mold T_no Vinj so Ph FLR Weld Line
Presence[◦C] [◦C] [mm/s] [mm] [bar] [%]

130 305 30 6.5 700 3.69 0
125 285 20 6.5 700 4.10 1
120 305 45 4.0 900 4.69 0
119 261 87 9.5 500 5.11 1
115 301 22 4.5 849 5.43 1

FLR was chosen for this classification as it is not solely influenced by mold temperature.
Table 3 demonstrates how similar mold temperature values corresponded to sufficiently
different FLR values. This is important because FLR allowed for the simultaneous consider-
ation of the effect of multiple process parameters.

3.2. Hyperparameter Optimization

The optimization of the internal parameters was repeated for the transfer learning
from simulation data and the transfer learning from experimental data. An artificial neural
network with 4HL with four neurons each was chosen in both cases. The remaining
hyperparameters are visible in Tables 4 and 5.

It is worth noting that in RI-type transfer learning, the network undergoes pre-training
with a single hidden layer. Subsequently, the output layer is replaced with three new hidden
layers and a new output layer, all initialized with random weights. Consequently, the
network structure consistently comprised four hidden layers, each housing four neurons.
Finally, before the knowledge transfer, an early-stopping callback was added to the ANN
in all models to mitigate the risk of overfitting even further.
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Table 4. Result of hyperparameter optimization for transfer learning from the synthetic dataset.

Hyperparameters for TL from Simulations

Hyperparameter Value

l2 regularizer 0.005
Drop out 0

Hidden Layer activation function ReLu
Output Layer activation function Sigmoid

Training epochs 500
Batch Size 4
Optimizer Adam

Learning rate E-3
Loss Function Binary cross entropy

Table 5. Result of hyperparameter optimization for transfer learning from the synthetic dataset.

Hyperparameters for TL from Experimental Data

Hyperparameter Value

l2 regularizer 0.001
Drop out 0

Hidden Layer activation function ReLu
Output Layer activation function Sigmoid

Training epochs 750
Batch Size 2
Optimizer Adam

Learning rate E-3
Loss Function Binary cross entropy

3.3. Transfer Learning from Experimental Data

In this paragraph, TL is implemented using experimental data relating to component
1 for the source dataset and experimental data relating to part 2 for the target dataset.

Figure 6 illustrates the progression of predictive metrics concerning the number of
experimental data points associated with component 2 utilized during the fine-tuning
phase. It is essential to note that these curves depict the trend of the mean metric values.

Analyzing the trend of the control network, it can be affirmed that its capability to
achieve satisfactory predictive performance is evident when utilizing a large amount of
data during the fine-tuning process. Consequently, the challenge of forecasting the weld
line’s visibility based on process parameters is solvable through neural networks.

Figure 6 also presents the curves related to the TL models implemented with soft
start and random initialization modes. In this case, pre-training was carried out using
experimental data (obtained from machine tests) related to part 1. It is noticeable how
the curves related to the transferred models were consistently positioned above the curve
related to the CN. Specifically, the CN achieved predictive capacity similar to TL models
only when 60 data points from the target dataset were utilized. Therefore, implementing
TL in both forms allowed obtaining a predictive model for component 2 using fewer data
points than a training mode without TL.

The trend of the recall curve is particularly significant. Maximizing recall entails
minimizing false negatives, thus points erroneously classified as defect-free. Having a high
recall value helps reduce the risk of producing and potentially introducing components
with poor aesthetic characteristics into the market. If the number of transfer data points
is less than 60, TL models consistently exhibit higher recall values than the CN. The
CN reaches the recall value of TL models only when utilizing 60 data points from the
target dataset.

When comparing the curves of the transferred models, it is observed that both transfer
methods consistently produced accuracy and AUC values that closely resembled each
other. Additionally, employing the soft start transfer method conferred notable advantages
regarding recall, mainly when a limited number of experimental points were utilized for
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fine-tuning. Nonetheless, compared with the CN, the advantage of TL models diminished
as the number of data points used in the transfer phase increased.
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The results of this initial analysis thus confirmed the effectiveness of the TL soft start,
as previously observed by Tercan et al. [39]. However, unlike the previous case, in this
scenario, the RI-type TL proved superior to the CN (in the study by Tercan et al. [39], the RI
model did not lead to any advantages over the non-pre-trained network).
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From the previous observations, it is possible to notice how TL can reduce the data
necessary to achieve an acceptable predictive capacity for the ANN related to component 2.
The final performances achieved using 60 transfer data points for the three trained models
(CN, RI, and SS) were similar, indicating that TL can effectively reduce the required data
volume without compromising the ANN’s performance.

In conclusion of this section, the repeatability of the results will be observed. To this
end, Figure 7 shows a box plot comparing the CN and the SS model (the box plot results
from evaluating the metrics as described in Section 2.5).
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From Figure 7, it is evident that the average performance of the pre-trained model was
superior to that of the CN, and the variability of the results was lower in the pre-trained
model. This observation becomes particularly pronounced when considering the AUC
and Recall metrics. These metrics showed high variability due to the inconsistent training
outcomes of the control network. Specifically, when the number of transfer data points was
limited, the control network produced a constant output equal to the majority class. This
compromised the value of recall and AUC and underscored an additional advantage of
TL application.

The present study confirmed the feasibility of employing TL to diminish the exper-
imental data required for training predictive models in injection molding [39–42]. This
introduces the potential to utilize ML and TL techniques to forecast the occurrence of
aesthetic defects.

3.4. Transfer Learning from Simulation Data

The effect of replacing experimental data related to part 1 with simulations of the
molding process of part 1 was also evaluated. The data from the target dataset remained
unchanged from the previous case (experimental data related to part 2). In Figure 8, the
average value of the metrics is again represented as a function of the number of data points
used for knowledge transfer.

It is worth noting that all the observations made in the previous paragraph remain
valid. The advantage of the SS model over the RI model became apparent when a low
number of data were used in the transfer.

The best models derived from transfer learning using experimental data and synthetic
data were compared. The comparison was conducted through a boxplot, depicted in
Figure 9. The boxplot also describes the evolution of the metrics as the number of data
points used in the transfer increased.

From Figure 9, it is evident that both SS models exhibited comparable performances.
Nonetheless, it is worth highlighting that transferring from simulation results showed an
overall improvement in the model’s mean performance, particularly in terms of accuracy
and AUC, while also reducing the variability of the metrics. The cause of this difference
was presumed to stem from the greater generality of synthetic data. The imperfect clas-
sification conducted through the FLR (Section 2.3) rendered the synthetic dataset more
easily adaptable than the experimental dataset. Additionally, the presence of outliers or
points incorrectly classified by the operators in the experimental source dataset led the TL
from experimental data to require more data points to adapt to the new domain. It is also
important to point out that the slight difference between the hyperparameters of the two
models could have contributed to this variation in performance.

The comparison between the two soft start TL methods, along with the results pre-
sented in Figure 7, allows for extending the comparison between CN and SS using experi-
mental data to the comparison between CN and SS using simulations.

Finally, in Figure 6, it can be observed that the performance of the SS model pre-trained
on synthetic data stabilized around 20 data points, whereas the control network achieved a
comparable performance to this model only when approximately 50 data points from part 2
were utilized. On the other hand, from Figure 8, it can be seen that the SS model pre-trained
on synthetic data stabilized its performance using only 10 data points for fine-tuning. In
contrast, the control network matched the performance of this model only when employing
60 data points for knowledge transfer. The recent observations indicated a 60% reduction in
the amount of part 2 data needed to train the neural network through transfer learning from
simulation. Conversely, transfer learning from simulation extended this reduction to 83%.
Transfer learning from simulation minimized the data points required for good forecasting
capacity. Furthermore, this approach maximized cost efficiency compared to traditional
training methods. The final performances of both SS models, achieved with 30 or more
data points from part 2, were nearly identical. In Figures 10 and 11, the confusion matrices
for the TL from experimental and artificial data, respectively, are reported. For each cell of
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the matrix, an example of a component relating to the cell is shown. The matrices relate to
fine-tuning with 60 data relating to part 2.
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Implementing transfer learning from a synthetic dataset has led to results comparable,
if not superior, to TL from experimental data. This success is primarily attributed to
the correlation established between simulation results and experimental observations
during the data processing (Section 2.3). However, it is essential to acknowledge that
correlating experimental data with simulations requires the evaluation of five samples



J. Manuf. Mater. Process. 2024, 8, 98 16 of 20

related to component 1, underscoring that generating synthetic datasets also involves
experimental endeavors.
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Therefore, this current work extends the findings of Gim et al. [42] by introducing the
possibility of employing simulations to pre-train predictive models capable of assessing
the occurrence of aesthetic defects in components manufactured through injection molding.
This enables further reductions in the costs associated with obtaining predictive models.

3.5. Effect of Geometry on TL

Finally, the effect of geometry on transfer learning was evaluated. To do this, the TL
between simulations of the molding process of component 1 and the experimental data
of component 2 was compared with the TL between both simulations and experimental
data from component 1. It is important to note that, for the subsequent comparison, the
models were retrained from scratch. To mitigate the influence of the target dataset size
(as the number of experimental data varied between part 1 and part 2), the comparison
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was conducted by isolating 100 experimental points from each dataset. The results of
this comparison are described by the boxplot shown in Figure 12. Again, the comparison
was made by observing the evolution of the metrics as the number of data used in the
transfer increased.
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In Figure 12, it can be observed that the two transferred models (both using SS)
exhibited very similar mean values and variability of metrics. It is noticeable that the
model trained with simulations and data from part 1 achieved slightly higher mean values
of the metrics than the model transferred to component 2. Additionally, the variability
range of the metrics for the model related to component 2 was higher, especially when
using limited data points in the transfer, compared to what was observed in the model
related to part 1. This observation can be attributed to the lesser similarity between the
experimental dataset of part 2 and the synthetic dataset, as opposed to the experimental
dataset of component 1. Therefore, the SS related to part 2 will require more data to bridge
the gap between the source and target datasets. The slight differences between these
two transferred models are acceptable, given the significant reduction in experimental
and computational burden associated with developing the classifier for part 2. In fact, in
implementing the second model, there was no need to collect new simulations; instead, TL
allowed the reuse of data collected for part 1. The application of TL, in all cases, reduced
the number of experimental data required to achieve acceptable predictive metric values
compared to non-pre-trained models.

4. Conclusions

In conclusion, this study delved into the realm of transfer learning (TL) applied to
predictive modeling for injection molding processes, explicitly focusing on forecasting
weld line visibility. Through extensive experimentation and analysis, several key findings
have emerged, shedding light on the efficacy and implications of TL in this context.

First and foremost, the investigation into TL from experimental data showcased
promising results. By leveraging knowledge from a source dataset relating to component 1
and transferring it to predict weld line presence on component 2, a significant improvement
in predictive performance compared to traditional training methods was observed. No-
tably, TL models consistently outperformed the control network, mainly when fine-tuning
was conducted with limited data points. It is also important to note how the TL from
experimental data reached similar metrics values to the non-pre-trained model, but with
60% less data relating to part 2. This highlights the potential of TL to enhance predictive
capabilities while minimizing the data required for training, thus presenting a valuable
avenue for cost-effective and efficient modeling within the injection molding domain.

Furthermore, the exploration of TL from simulation data yielded equally compelling
insights. By replacing experimental data with molding process simulations, comparable
or even superior performance in predictive metrics was seen. Furthermore, the TL from
simulations achieved metric values similar to those of the control model, but with 83%
less data. The findings suggest that TL from simulation data could be a valuable tool for
enhancing predictive capabilities, while mitigating the challenges associated with data
collection and processing in real-world industrial settings.

Moreover, the effects of geometry on the model’s predictive ability were evaluated.
Compared to the model trained using only component 1 data, the model targeting part 2
had lower metrics mean values but higher variability. Nonetheless, TL facilitated the reuse
of data collected for component 1, thereby reducing the experimental and computational
burden of developing classifiers for subsequent components. This underscores the practical
significance of TL in streamlining the modeling process and maximizing cost efficiency in
industrial applications.

In summary, this study demonstrated the possibility of using transfer learning to
predict the aesthetic characteristics of components made by injection molding. It also
showed the possibility of using simulation data to improve the classifiers’ performance.

It is reasonable to think that this work can be extended by considering transfer learning
between components made of different materials and/or on different injection molding
machines. All of this will progressively bring ML closer to application in an industrial
context, making it an increasingly competitive alternative for determining the process
parameters of injection molding machines.
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