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Abstract: La1.03Sr1.97Al0.97M0.03O5 (M = Fe, Co, Ni, and Cu) samples were synthesized using a citrate
sol–gel method to develop a novel environmentally friendly inorganic green pigment. Among them,
the Co-doped sample exhibited a vivid yellow, but not green. Then, (La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5

was synthesized and characterized with respect to the crystal structure, optical properties, and
color. The sample was obtained in a single-phase form and the lattice volume was smaller than
that of the (La0.94Ca0.06)Sr2AlO5 sample, indicating that Mn ions in the lattice of the sample were
pentavalent. The sample exhibited optical absorption at a wavelength below 400 nm and around
650 nm. These absorptions were attributed to the ligand, the metal charge transfer (LMCT), and
d-d transitions of Mn5+. Because the green light corresponding to 500 to 560 nm was reflected
strongly, the synthesized sample exhibited a bright green color. (La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5

showed high brightness (L* = 50.1) and greenness (a* = −20.8), and these values were as high as
those of the conventional green pigments such as chromium oxide and cobalt green. Therefore,
the (La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5 pigment is a potential candidate for a novel environmentally
friendly inorganic green pigment.

Keywords: green pigment; environmentally friendly; Mn5+ ion; yellow pigment; Co2+ ion; lanthanum
strontium aluminate

1. Introduction

Inorganic pigments are widely used as coloring materials for ceramics, glasses, plastics,
and glazes because they have good thermal stabilities and resistances to climatic conditions.
Among various colors, a greenish color makes us feel reposed, healed and relaxed; therefore,
it has been used for a variety of applications. A characteristic of green is that it brings
peaceful images of woods and forests. In addition, green signifies safety on traffic signs and
public guideboards, and such feelings are widely accepted by people [1]. Thus, green is also
used for information boards in evacuation centers and an emergency exits, etc. Moreover,
because green is an intermediate color on the hue circle, it is used in various situations for
harmonization with other colors.

Currently, chromium oxide (Cr2O3), chromium green, cobalt green (CoO·nZnO), and
so on are used as commercially available inorganic green pigments. For Cr2O3, studies have
been conducted to improve its optical reflectance properties by mixing it with TiO2, Al2O3,
and V2O5 [2], or by substituting other metal ions at the Cr3+ site, as in Cr2−xAlxO3 [3].
Sangeetha et al. found that Cr2O3 added with rare earth elements improved the greenness
of the reflectance without decreasing the greenness [4]. Cr3+ is not a harmful ion but Cr2O3
has been synthesized by reducing the Na2Cr2O7 or pyrolysis of CrO3, which contains
Cr6+ [5]. Chromium green is composed of iron blue (Fe4[Fe(CN)6]3) and chrome yellow
(PbCrO4) and is used in paints because of its high hiding power. However, chrome yellow
contains Pb and Cr6+. Cr6+ is identified as a carcinogen by the International Agency for
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Research on Cancer (IARC), and so is well known as a highly toxic element. At the same
time, Pb is identified as possible carcinogenesis. On the other hand, the safety of CoO
in cobalt green has also been questioned due to the concern about adverse effects on the
human body. The use of these pigments has been restricted because they contain harmful
elements (e.g., Cd, Pb, and Cr) and CoO, which has deleterious effect on the human
body and the environment. Therefore, there is a strong desire to develop environmentally
friendly inorganic green pigments to replace harmful inorganic pigments.

Based on this background, in order to develop novel environmentally friendly inor-
ganic green pigments, we took note of pentavalent manganese (Mn5+) ions as a coloring
source. Mn ions are not only harmless but also inexpensive and exhibit various valences to
be utilized in multiple applications. Mn5+ absorbs light with a wavelength of 400 nm or less
based on ligand-to-metal charge transfer (LMCT) transition and d-d transition (3A2 → 3T1
(3P)) [6,7]. Visible light around 650 nm is also absorbed by d-d transition attributed to
3A2 → 3T1 (3F), and therefore, green coloration can be expected by using Mn5+. Although
Mn5+ ions tend to be generally unstable, they can be stable in the following situation: Mn
ions are substituted in tetrahedral sites as well as a host compound, which is comprised of
larger ionic radius elements such as alkali earth metal (Sr and Ba) and smaller ionic radius
elements such as P and Al [6]. Actually, various Mn5+-containing compounds have been
reported [7–12] such as turquoise color pigments based on apatite-type Ba5Mn3−xMxO12Cl
(M = V, P) [13] and Ba3(MO4)2:Mn5+ (M = V, P) phosphors [14].

We focused on LaSr2AlO5 as a host material because it contains only low toxicity
elements. LaSr2AlO5 adopts a tetragonal structure (space group: I4/mcm) [15]. This
complex oxide is stacked alternately with an 8-coordinated La3+/Sr2+ layer, a 10-coordinatd
Sr2+ layer, and a 4-coordinated Al3+ layer through O2-. A number of papers have also
reported the use of LaSr2AlO5 as a base material for photocatalysts and phosphors [15–20].
There are many compounds in which La3+ is replaced by other elements, but few in which
the Al3+ is replaced.

In this study, therefore, La1.03Sr1.97Al0.97M0.03O5 (M = Fe, Co, Ni, and Cu) samples,
whose Al3+ site was substituted by various transition metal elements, had their color
properties characterized. Among them, the Co-doped sample exhibited a vivid yellow, but
not green. Thus, La1−2xCa2xSr2Al1−xMnxO5 (x = 0 and 0.03) samples were synthesized to
obtain a new environmentally friendly green pigment. The Al3+ site in the LaSr2AlO5 host
was partially substituted by Mn5+ ions. At the same time, the La3+ site was replaced by
Ca2+ for charge compensation. The color properties of the samples were evaluated and
compared with commercially available inorganic green pigments.

2. Materials and Methods
2.1. Synthesis

The LaSr2(Al0.97Fe0.03)O5, La1.03Sr1.97(Al0.97M0.03)O5 (M: Ni and Cu), and La1+xSr2−x
(Al1−xCox)O5 (x = 0, 0.03, 0.05 and 0.10) samples were synthesized using a citrate sol–gel
method. La(NO3)3·6H2O (FUJIFILM Wako Pure Chemical Industries Ltd., Osaka, Japan,
99.9%), Sr(NO3)2 (FUJIFILM Wako Pure Chemical Industries Ltd., 98.0%), Al(NO3)3·9H2O
(FUJIFILM Wako Pure Chemical Industries Ltd., 99.9%), Fe(NO3)3·9H2O (FUJIFILM Wako
Pure Chemical Industries Ltd., 99.9%), Co(NO3)2·6H2O (FUJIFILM Wako Pure Chemical
Industries Ltd., 99.5%), Cu(NO3)2·3H2O (FUJIFILM Wako Pure Chemical Industries Ltd.,
99.9%), and Ni(NO3)2·6H2O (Kishida Chemical Co. Ltd., Osaka, Japan, 98.0%) were
weighed so as to obtain the objective compositions and were dissolved in deionized water
to adjust the La, Sr, and (Al + M) concentrations to 0.2 mol L−1. After the solution was
stirred homogeneously, citric acid (FUJIFILM Wako Pure Chemical Industries Ltd., 98.0%)
was added as a chelating agent to complex the cations into the solution in the mole ratio
2:1 with regard to the total cations (La, Sr, Al, and M). The mixed solution was stirred at
80 ◦C until a gel was obtained. Then, the gel was heated in an oven at 120 ◦C for 24 h and
completely dried at 350 ◦C on a mantle heater. The dried gel was calcined in an alumina
crucible at 500 ◦C for 8 h in air. After the calcination, the sample was heated again in an
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alumina boat at 1400 ◦C for 9 h in air. Before characterization, the sample was ground in an
agate mortar with agate pestle.

(La1−2xCa2x)Sr2(Al1−xMnx)O5 (x = 0 and 0.03) samples were prepared by the same
procedure described above. The starting materials, La(NO3)3·6H2O, Ca(NO3)2·4H2O
(FUJIFILM Wako Pure Chemical Industries Ltd., 98.5%), Sr(NO3)2, Al(NO3)3·9H2O, and
(CH3COO)2Mn·4H2O (FUJIFILM Wako Pure Chemical Industries Ltd., 99.9%), were weighed
stoichiometrically.

2.2. Characterization

X-ray powder diffraction (XRD) was conducted using an X-ray diffractometer (Rigaku
Corporation, Tokyo, Japan Ultima IV) to identify the crystal phase and structure. The XRD
patterns were taken with Cu-Kα radiation operating with a tube voltage of 40 kV and a
tube current of 40 mA. The data were collected by scanning over the 2θ range of 20–80◦.
The sampling width was 0.02◦ and the scan speed was 6◦ min−1. The lattice volumes
were calculated from the XRD peak angles refined by α-Al2O3 as a standard and using the
CellCalc Ver. 2.20 software. The Rietveld refinement of the resulting XRD patterns was
performed by the RIETAN-FP software (version 3.12) package to determine the precise
crystal structure [21]. From the Rietveld refinement, the following final R-factors were
obtained: Rwp (R-weighed pattern), Rp (R-pattern), Re (R-expected), S (goodness-of-fit
indicator), and RF (R-structure factor). The optical reflectance spectra of the as-prepared
samples were recorded on an ultraviolet-visible (UV-Vis) spectrometer (JASCO Corporation,
Tokyo, Japan, V-770 with an integrating sphere attachment) using a standard white plate
as a reference. The step width was 1 nm and the scan rate was 1000 nm min−1. The color
properties of the powder samples were evaluated in terms of the Commission Internationale
de l’Éclairage (CIE) L*a*b*Ch◦ system using a colorimeter (Konica-Minolta, INC., Tokyo,
Japan, CR-400). A standard C illuminant was used for the colorimetric measurements. The
L* parameter indicates the brightness or darkness in a neutral grayscale. The a* values
represent the red–green axes, and the b* value yellow–blue axes. The chroma parameter (C)
means the color saturation and is calculated with the formula, C = [(a*)2 + (b*)2]1/2. The hue
angle (h◦) ranges from 0 to 360◦ and is calculated with the formula h◦ = tan−1(b*/a*). The
standard deviations of all values for the L*a*b*Ch◦ color coordinate data were less than 0.1.

3. Results and Discussion
3.1. La1+xSr2−x(Al1−xMx)O5 (M: Fe, Co, Ni, and Cu)
3.1.1. X-ray Powder Diffraction (XRD)

Figure 1 shows the XRD patterns of the LaSr2AlO5, LaSr2(Al0.97Fe0.03)O5, and La1.03Sr1.97
(Al0.97M0.03)O5 (M: Co, Ni, and Cu) samples. In the sample containing Fe, the objective
LaSr2AlO5 phase was obtained in a single-phase form. On the other hand, in the samples
containing Co, Ni, and Cu, the target LaSr2AlO5 phase was obtained as the main phase, but
a few peaks of SrLaAlO4 and SrLaNiO4 were observed as impurities, resulting in a mixed
phase.

3.1.2. Ultraviolet-Visible (UV-Vis) Reflectance Spectra

The UV-Vis reflectance spectra of LaSr2AlO5, LaSr2(Al0.97Fe0.03)O5 and La1.03Sr1.97
(Al0.97M0.03)O5 (M: Co, Ni, and Cu) are depicted in Figure 2. In the case of M = Fe, weak
optical absorption due to the d-d transition of Fe3+ [22] was observed in the visible region
around 420 nm. When M was Ni, the sample absorbed visible light around 650 nm because
of the d-d transition of Ni2+ [23]. The sample with Cu absorbed visible light less than
400 nm and longer than 700 nm. These absorptions were attributed to the charge transfer
between O2p-Cu3d orbitals and the d-d transition of Cu2+ [24]. In the sample with Co, visible
light less than 450 nm was absorbed, which was based on the charge transfer transition
between O2p-Co3d orbitals and the d-d transition of Co2+ [25,26]. In general, the energy
gap of the d-d transition of Co2+ at the tetrahedral site corresponds to green–red light from
530 to 630 nm. In this study, the Al3+ site (ionic radius: 0.039 nm, 4-coordination [27]) was
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substituted with Co2+ (ionic radius: 0.058 nm, 4-coordination [27]), resulting in a stronger
crystal field surrounding Co2+ and the absorption of higher energy light around 450 nm,
corresponding to the blue light region.
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Figure 1. XRD patterns of the LaSr2AlO5, LaSr2(Al0.97Fe0.03)O5, and La1.03Sr1.97(Al0.97M0.03)O5

(M: Co, Ni, and Cu) samples. The standard data of LaSr2AlO5 is based on the literature reported by
Im, W.B et al. (2009) [15].
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Figure 2. UV-Vis reflectance spectra for the LaSr2AlO5, LaSr2(Al0.97Fe0.03)O5, and La1.03Sr1.97

(Al0.97M0.03)O5 (M: Co, Ni, and Cu) samples.

3.1.3. Color Property

The L*a*b*Ch◦ color coordinate data of the LaSr2AlO5, LaSr2(Al0.97Fe0.03)O5, and
La1.03Sr1.97(Al0.97M0.03)O5 (M: Co, Ni, and Cu) powder samples are summarized in Table 1.
The sample photographs are also shown in Figure 3. The LaSr2AlO5 sample reflected the
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entire visible light region and was white. For M = Fe3+ and Cu2+, the visible light region
was almost completely reflected due to the weak d-d transition, and the samples were
almost white. The sample with Ni2+ was a dingy green. This is due to the impurity phase of
SrLaNiO4, which reduces the reflectance of visible light. In the case of Co2+ doping, a bright
yellow color was obtained. In general, Co2+ ions exhibit a vivid blue color in tetrahedral
coordination, as in cobalt blue (CoAl2O4) [28,29]. In the Co-doped sample in this study,
Co2+ is also in a 4-coodinated environment. Despite this, interestingly, the sample exhibited
a yellow color. This is a rare case.

Table 1. Color coordinates for the LaSr2AlO5, LaSr2(Al0.97Fe0.03)O5, and La1.03Sr1.97(Al0.97M0.03)O5

(M: Co, Ni, and Cu) samples.

Samples L* a* b* C h◦

LaSr2AlO5 96.7 −0.69 +2.84 2.92 −
LaSr2Al0.97Fe0.03O5 93.2 −0.24 +5.75 5.76 92.4

La1.03Sr1.97Al0.97Co0.03O5 76.9 −4.36 +62.2 62.4 94.0
La1.03Sr1.97Al0.97Ni0.03O5 55.6 −1.83 +25.7 25.8 94.1
La1.03Sr1.97Al0.97Cu0.03O5 82.1 −2.45 +14.5 14.7 99.6
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Figure 3. Photographs of the LaSr2AlO5, LaSr2(Al0.97Fe0.03)O5, and La1.03Sr1.97(Al0.97M0.03)O5

(M: Co, Ni, and Cu) samples.

To investigate the composition dependence of the yellow-colored Co-doped samples,
La1+xSr2−x(Al1−xCox)O5 (x = 0.03, 0.05, and 0.10) samples were synthesized. X-ray powder
diffraction measurements showed that the samples with x = 0.05 and 0.10 were mixed
phases, as was the sample with x = 0.03, but the target LaSr2AlO5 phase was obtained as
the main phase. The Co2+ content dependence on the lattice volume of the samples is sum-
marized in Table 2. Since the ionic radius of Co2+ (0.090 nm, 8-coordination [27]) is smaller
than that of Sr2+ (0.126 nm, 8-coordination [27])/La3+ (0.116 nm, 8-coordination [27]), the
lattice volume should shrink when the 8-coordination Sr(1)/La sites in the host material
are replaced with Co2+. However, the lattice volume of the sample increased with Co2+

content up to x = 0.05. As noted above, this indicates that the Al3+ sites in the host lattice
were partially replaced by larger Co2+ ions. Therefore, the chromophore in this sample is
considered to be a 4-coordinated Co2+ ion.

Table 2. Lattice volumes of the La1+xSr2−x(Al1−xCox)O5 (0 ≤ x ≤ 0.10) samples. The numbers in
parentheses are the estimated standard deviations.

x Lattice Volume/nm3

0 0.52431(6)
0.03 0.52486(4)
0.05 0.52538(4)
0.10 0.52541(6)

Table 3 summarizes the L*a*b*Ch◦ color coordinate data for La1+xSr2−x(Al1−xCox)O5
(x = 0, 0.03, 0.05, and 0.10). The sample photographs are also shown in Figure 4. All samples
exhibited a yellow color but become slightly darker with increasing Co2+ concentration.
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Table 3. Color coordinate data for the La1+xSr2−x(Al1−xCox)O5 (x = 0, 0.03, 0.05, and 0.10) samples.

x L* a* b* C h◦

0 96.7 −0.69 +2.84 2.92 −
0.03 76.9 −4.36 +62.2 62.4 94.0
0.05 75.8 −4.52 +67.2 67.4 93.8
0.10 62.2 −1.78 +58.7 58.7 91.7
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Figure 4. Photographs of the La1+xSr2−x(Al1−xCox)O5 (x = 0, 0.03, 0.05, and 0.10) samples.

Unfortunately, the LaSr2(Al0.97Fe0.03)O5 and La1.03Sr1.97(Al0.97M0.03)O5 (M: Co, Ni, and
Cu) samples did not exhibit a green color, so we synthesized (La1−2xCa2x)Sr2(Al1−xMnx)O5
(x = 0, 0.03) and characterized it in the next section.

3.2. (La1−2xCa2x)Sr2(Al1−xMnx)O5 (x = 0 and 0.03)
3.2.1. X-ray Powder Diffraction (XRD)

Figure 5 shows the XRD patterns of the (La1−2xCa2x)Sr2(Al1−xMnx)O5 (x = 0 and
0.03) and (La0.94Ca0.06)Sr2AlO4.97 samples. All samples were obtained in a single-phase
form. The lattice volume of each sample was calculated from the XRD peak angles and
is summarized in Table 4. The lattice volume decreased in the order of undoped > Ca2+-
doped > Ca2+-Mn5+ co-doped. In (La0.94Ca0.06)Sr2AlO4.97, some of the La3+ (ionic radius:
0.116 nm, 8-coordination [27]) ions in LaSr2AlO5 were replaced by smaller Ca2+ ions (ionic
radius: 0.112 nm, 8-coordination [27]), which resulted in the lattice volume contraction. In
the sample co-doped with Ca2+ and Mn5+, the lattice volume was further decreased. The
ionic radii of the 4-coordinated Mn2+ and Mn4+ are 0.039 and 0.066 nm, respectively [27],
and those are equal to or larger than Al3+ (ionic radius: 0.039 nm, 4-coordination [27]),
so the lattice volume in Table 4 should be the same or increase when Mn2+ or Mn4+ is
dissolved in the Al3+ site, but it actually decreased. Accordingly, the decrease in lattice
volume was not only because La3+ was substituted with Ca2+, but also because some
of the Al3+ ions in the host material were replaced by smaller Mn5+ ions (ionic radius:
0.033 nm, 4-coordination [27]), although the substitution by Mn6+ is also in accordance
with this result.

Table 4. Lattice volume of the LaSr2AlO5, (La0.94Ca0.06)Sr2AlO4.97, and (La0.94Ca0.06)Sr2(Al0.97Mn0.03)
O5 samples. The numbers in parentheses are the estimated standard deviations.

Samples Lattice Volume/nm3

LaSr2AlO5 0.52475(2)
(La0.94Ca0.06)Sr2AlO4.97 0.52394(4)

(La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5 0.52380(4)

The Rietveld analysis of the XRD patterns of LaSr2AlO5, (La0.94Ca0.06)Sr2AlO4.97, and
(La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5 was performed to determine the average La–O, Sr–O,
and Al–O bond length. The Rietveld refinement profiles of the samples are shown in
Figure 6. The detailed crystallographic data are summarized in Table 5. The refined
structural parameters of the samples are tabulated in Table 6. The crystallographic parame-
ters of LaSr2AlO5 reported by W. B. Im et al. [15] were employed as the initial structure



Ceramics 2023, 6 2275

for fitting. The refined crystal structure of (La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5 illustrated
by the VESTA program [30] is shown in Figure 7, where the Ca2+ and Mn5+ cations
in (La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5 were located at octahedral and tetrahedral sites, re-
spectively. The average bond lengths of La−O, Sr(2)−O, and Al−O for the LaSr2AlO5,
(La0.94Ca0.06)Sr2AlO4.97, and (La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5 samples are summarized
in Table 7. In the case of (La0.94Ca0.06)Sr2AlO4.97, the average Al−O bond length was
longer than in LaSr2AlO5. This is because some of the La3+ (ionic radius: 0.116 nm,
8-coordination [27]) sites in LaSr2AlO5 were replaced by smaller Ca2+ ions (ionic radius:
0.112 nm, 8-coordination [27]), resulting in a shorter average La−O bond length. On the
other hand, the average Al−O bond length of the (La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5 sample
was shorter than that of the (La0.94Ca0.06)Sr2AlO4.97 sample. This is considered to be because
some of the Al3+ ions (ionic radius: 0.039 nm, 4-coordination [27]) in (La0.94Ca0.06)Sr2AlO4.97
were replaced by smaller Mn5+ (ionic radius: 0.033 nm, 4-coordination [27]) ions, resulting
in shorter average Al−O bond length. Consequently, Mn ions are present as Mn5+ in the
lattice of the (La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5 sample.
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Figure 5. XRD patterns of the (La1−2xCa2x)Sr2(Al1−xMnx)O5 (x = 0 and 0.03) and (La0.94Ca0.06)
Sr2AlO4.97 samples. The standard data of LaSr2AlO5 is based on the literature reported by Im,
W.B et al. (2009) [15].

Table 5. Crystallographic data for the LaSr2AlO5, (La0.94Ca0.06)Sr2AlO4.97, and (La0.94Ca0.06)Sr2

(Al0.97Mn0.03)O5 samples refined via the Rietveld analysis. The numbers in parentheses are the
estimated standard deviations.

Samples LaSr2AlO5 (La0.94Ca0.06)Sr2AlO4.97
(La0.94Ca0.06)Sr2
(Al0.97Mn0.03)O5

Crystal system Tetragonal Tetragonal Tetragonal
a/nm 0.688766(5) 0.688455(5) 0.688338(7)
b/nm − − −
c/nm 1.105570(10) 1.105399(11) 1.105249(14)

V/nm3 0.524481(7) 0.523926(8) 0.523677(10)
Rwp 4.391 4.684 3.647
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Table 5. Cont.

Samples LaSr2AlO5 (La0.94Ca0.06)Sr2AlO4.97
(La0.94Ca0.06)Sr2
(Al0.97Mn0.03)O5

Rp 2.943 3.122 2.372
Re 2.663 2.637 2.537
S 1.649 1.776 1.437

RF 2.403 2.556 2.465
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red lines represent the observed and calculated intensities, respectively. The difference profiles
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Table 6. Atomic coordinates and isotropic displacement factors (Biso) for the LaSr2AlO5, (La0.94Ca0.06)
Sr2AlO4.97, and (La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5 samples refined via the Rietveld analysis. The
numbers in parentheses are the estimated standard deviations.

Atom Site Occupancy x y z 100 × Biso/nm2

LaSr2AlO5
La 8h 0.5 0.31923(9) =x(La) + 1/2 0 0.48(2)
Sr1 8h 0.5 =x(La) =y(La) 0 =Biso(La)
Sr2 4a 1 0 0 1/4 0.37(3)
Al 4b 1 1/2 0 1/4 0.39(9)
O1 4c 1 0 0 0 3.7(3)
O2 16l 1 0.1352(5) =x(O2) + 1/2 0.1510(3) 0.97(10)

(La0.94Ca0.06)Sr2AlO4.97
a

La 8h 0.438(3) 0.3199(1) =x(La) + 1/2 0 –
Ca 8h 0.062 b =x(La) =y(La) 0 –
Sr1 8h 0.5 =x(La) =y(La) 0 –
Sr2 4a 1 0 0 1/4 –
Al 4b 1 1/2 0 1/4 –
O1 4c 0.893(14) 0 0 0 –
O2 16l 1 0.1343(5) =x(O2) + 1/2 0.1488(3) –

(La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5
a

La 8h 0.414(3) 0.3195(1) 0.8195 0 –
Ca 8h 0.086 b =x(La) =y(La) 0 –
Sr1 8h 0.5 =x(La) =y(La) 0 –
Sr2 4a 1 0 0 1/4 –
Al 4b 0.973(10) 1/2 0 1/4 –
Mn 4b 0.027 c 1/2 0 1/4 –
O1 4c 1 0 0 0 –
O2 16l 1 0.1344(5) =x(O2) + 1/2 0.1495(3) –

a The isotropic displacement parameters (Biso) for the (La0.94Ca0.06)Sr2AlO4.97 and (La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5
samples were fixed with LaSr2AlO5. b (Ca, g) = 0.5 − (La, g). c (Mn, g) = 1.0 − (Al, g).
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Table 7. Average bond length of La−O, Sr(2)−O, and Al−O for the (La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5

sample refined via the Rietveld analysis.

Samples LaSr2AlO5 (La0.94Ca0.06)Sr2AlO4.97
(La0.94Ca0.06)Sr2
(Al0.97Mn0.03)O5

La−O/nm 0.2625 0.2611 0.2615
Sr(2)−O/nm 0.3585 0.3597 0.3593

Al−O/nm 0.1712 0.1721 0.1716

3.2.2. Ultraviolet-Visible (UV-Vis) Reflectance Spectra

Figure 8 shows the UV-Vis reflectance spectra of the LaSr2AlO5, (La0.94Ca0.06)Sr2AlO4.97,
and (La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5 samples. The results confirm the presence of Mn5+

ions in the co-doped sample. The samples without Mn5+ reflected totally visible light to ex-
hibit a white color. On the other hand, the Mn5+-doped sample strongly absorbed the light
at wavelengths below 400 nm and around 650 nm. The former absorption was assigned to
the combination of LMCT transition and the d-d transition attributed to the 3A2 to 3T1 (3P)
transition of Mn5+ [6,7]. The latter was attributed to the d-d transition corresponding to the
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3A2 to 3T1 (3F) transition of Mn5+ [6,7]. As a result, the (La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5
sample only reflected light around 520 nm corresponding to green light, and showed a
green color. If Mn ions are hexavalent, optical absorption based on Mn6+ ions appears at
wavelengths below 450 nm and around 550 nm, due to the LMCT transition as well as the
2E1 to 2T1 transition of Mn6+ [6]. In that case, the sample should show an indigo color, not
green. These crystallographic and optical reflectance properties support the fact that Mn
ions are present not as Mn6+ but Mn5+ in the sample.
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3.2.4. Comparison with Commercially Available Pigments 
The color parameters of the (La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5 sample were compared 
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high as those of the commercial pigments. The b* of the synthesized pigment was positive 
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Chromium oxide had negative high a* and positive high b* values, giving it a yellowish 
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Figure 8. UV-Vis reflectance spectra for the LaSr2AlO5, (La0.94Ca0.06)Sr2AlO4.97, and (La0.94Ca0.06)
Sr2(Al0.97Mn0.03)O5 samples.

3.2.3. Color Properties

The L*a*b*Ch◦ color coordinate data for the LaSr2AlO5, (La0.94Ca0.06)Sr2AlO4.97, and
(La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5 pigments are summarized in Table 8. The photographs
are also displayed in Figure 9. As discussed for the UV-Vis reflectance spectra in Figure 8,
the samples without Mn5+ exhibited a white color due to the total reflection of visible light.
For the (La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5 pigment, a bright green color with a high L* value
(50.1) and a negatively high a* value (−20.8) was achieved because the sample intensely
reflected green light around 500~560 nm.

Table 8. Color coordinate data for the LaSr2AlO5, (La0.94Ca0.06)Sr2AlO4.97, and (La0.94Ca0.06)
Sr2(Al0.97Mn0.03)O5 pigments.

Sample L* a* b* C h◦

LaSr2AlO5 96.2 −0.732 +1.89 2.03 111
(La0.94Ca0.06)Sr2AlO4.97 95.5 −0.854 +3.27 3.38 104

(La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5 50.1 −20.8 +7.65 22.2 160
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3.2.4. Comparison with Commercially Available Pigments

The color parameters of the (La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5 sample were compared
with those of the commercial green pigments such as chromium green (Cr2O3) and cobalt
green deep and pale (CoO·ZnO), as listed in Table 9. Their photographs are also shown in
Figure 10. The absolute value of a* of the (La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5 pigment was as
high as those of the commercial pigments. The b* of the synthesized pigment was positive
and low, so its hue angle (h◦) was 160◦, close to 180◦, which means the purest green color.
Chromium oxide had negative high a* and positive high b* values, giving it a yellowish
green color. Although the h◦ of cobalt green deep was the most ideal, its brightness (L*) was
lower than those of the other pigments, giving it a dark green color. Cobalt green pale had
a higher absolute value of a* but a negative b* value, giving it a bluish green color. These
results indicate that the color property of the (La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5 pigment is
well balanced for an environmentally friendly inorganic green pigment.

Table 9. Color coordinate data for the (La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5 sample and the commercially
available green pigments.

Sample L* a* b* C h◦

(La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5 50.1 −20.8 +7.65 22.2 160
Chromium oxide 50.2 −20.5 +18.2 27.4 138

Cobalt green deep 33.3 −19.9 +3.88 20.3 169
Cobalt green pale 52.3 −24.4 −5.53 25.0 193
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4. Conclusions

The (La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5 sample was synthesized as an environmentally
friendly inorganic green pigment. The sample was obtained in a single-phase form and the
lattice volume was reduced compared with those of LaSr2AlO5 and (La0.94Ca0.06)Sr2AlO4.97.
These results indicate that a solid solution was successfully obtained, and Mn ions are
present in the lattice as Mn5+. The (La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5 sample exhibited
optical absorption in visible light at wavelengths below 400 nm and around 650 nm due to
the LMCT and d-d transitions of Mn5+. Therefore, this sample strongly reflected green light
between 500 and 560 nm, and showed a bright green color. (La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5
exhibited negatively high a* (−20.8) and h◦ (160), which were comparable to those of the
conventional green pigments containing toxic elements. In conclusion, (La0.94Ca0.06)Sr2
(Al0.97Mn0.03)O5 could be a novel environmentally friendly inorganic green pigment.
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