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Abstract: Chest X-ray imaging plays a vital and indispensable role in the diagnosis of lungs, enabling
healthcare professionals to swiftly and accurately identify lung abnormalities. Deep learning (DL)
approaches have attained popularity in recent years and have shown promising results in automated
medical image analysis, particularly in the field of chest radiology. This paper presents a novel DL
framework specifically designed for the multi-class diagnosis of lung diseases, including fibrosis,
opacity, tuberculosis, normal, viral pneumonia, and COVID-19 pneumonia, using chest X-ray images,
aiming to address the need for efficient and accessible diagnostic tools. The framework employs a
convolutional neural network (CNN) architecture with custom blocks to enhance the feature maps
designed to learn discriminative features from chest X-ray images. The proposed DL framework is
evaluated on a large-scale dataset, demonstrating superior performance in the multi-class diagnosis
of the lung. In order to evaluate the effectiveness of the presented approach, thorough experiments
are conducted against pre-existing state-of-the-art methods, revealing significant accuracy, sensitivity,
and specificity improvements. The findings of the study showcased remarkable accuracy, achieving
98.88%. The performance metrics for precision, recall, F1-score, and Area Under the Curve (AUC)
averaged 0.9870, 0.9904, 0.9887, and 0.9939 across the six-class categorization system. This research
contributes to the field of medical imaging and provides a foundation for future advancements in
DL-based diagnostic systems for lung diseases.

Keywords: deep learning framework; convolutional neural network; lung diseases; optimizing; chest
X-ray imaging; multi-class diagnosis

1. Introduction

Lung diseases, such as fibrosis, opacity, tuberculosis, and pneumonia (viral and
COVID), pose a significant global health burden, impacting the lives of countless indi-
viduals worldwide. These diseases are characterized by their detrimental effect on lung
function, notably leading to a loss of lung elasticity. This decrease in elasticity results in
a reduced total volume of air that the lungs can hold, consequently impairing respira-
tory function. The ability of some lung diseases to spread rapidly, especially in cases of
infectious conditions like tuberculosis and pneumonia, underscores the critical need for
prompt and accurate diagnosis. Early identification of these diseases is paramount, as it
enables the timely initiation of appropriate treatment, essential in mitigating the spread
of the disease and improving patient outcomes. The rapid and accurate diagnosis of lung
diseases benefits individual patients by providing them with the necessary treatment. It
plays a crucial role in public health by controlling the spread of infectious respiratory
conditions [1–4].

In the dynamic and evolving landscape field of medical diagnostics, the integration
of cutting-edge technologies has become essential, especially in the area of pulmonary
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health. Within this context, chest X-ray imaging emerges as a fundamental tool. It offers a
non-invasive and efficient approach to detecting and analyzing lung abnormalities. This
imaging technique is of paramount importance for healthcare professionals. It facilitates the
rapid and accurate diagnosis of a wide range of lung diseases, making it a key component
in managing and treating pulmonary conditions. The strength of chest X-ray imaging
lies in its ability to deliver clear and comprehensive images of the chest cavity. These
detailed visualizations are crucial for clinicians in accurately detecting, monitoring, and
addressing different lung pathologies. As advancements in medical science continue, the
role of chest X-ray imaging in diagnosing and managing lung diseases is increasingly
significant, underscoring the need for ongoing research and development in this vital area
of healthcare [5–8].

In the last few years, the domain of medical image analysis has revolutionized with
the introduction of deep learning (DL) methodologies. These approaches are attributable
to the inherent capacity of DL to automate and enhance complex analytical processes,
thus introducing novel prospects in medical diagnostics. The impact of DL is particularly
pronounced in the area of chest radiology, where these advanced computational techniques
have shown exceptional proficiency. DL algorithms, characterized by their sophisticated
pattern recognition capabilities, have substantially improved the way chest images are
interpreted, offering a more nuanced and accurate approach to detecting and diagnosing
lung-related diseases. These techniques leverage large datasets of medical images, learning
intricate patterns and anomalies that might elude traditional methods, thereby providing
a more comprehensive and detailed understanding of pulmonary conditions. As such,
DL in chest radiology not only represents a technological advancement but also marks a
significant leap in the ability of medical professionals to diagnose and treat lung diseases
with greater precision and effectiveness. This integration of DL into chest radiology
augments not only the diagnostic accuracy but also fosters the development of personalized
treatment strategies. Such advancements are pivotal in improving patient outcomes,
marking a significant stride in managing and treating pulmonary health juncture [9,10].

This paper presents an innovative DL framework engineered for the multi-class
diagnosis of lung diseases by analyzing chest X-ray images. Our objective is to address the
increasing demand for efficient diagnostic tools and to harness the advanced capabilities
offered by DL technologies. The proposed framework is a state-of-the-art convolutional
neural network (CNN) architecture. This architecture is designed to extract and assimilate
discriminative features from chest X-ray images, a process crucial for accurate lung disease
identification. The CNN’s ability to process and analyze complex visual data from X-rays
enables it to identify subtle patterns and anomalies of various lung conditions, which
might be challenging to discern through conventional diagnostic methods. The proposed
framework provides more accurate, efficient, and reliable diagnostic solutions, and the
reliability of the diagnostic outcomes is enhanced by the robustness of the model, which is
trained and validated on an extensive dataset, ensuring consistent performance across a
wide range of cases.

The most important contributions of this work are as follows:

• We propose an innovative adaptation of the VGG19 to enhance the diagnostic capabili-
ties of this established CNN model, and we introduce the integration of custom blocks
into the architecture. These blocks augment the network’s capacity to encapsulate
crucial image features, paramount in accurately classifying chest X-ray images. The
custom blocks are designed to enhance the feature maps generated by the preceding
layers through the CNN’s normalization, regularization, and spatial resolution en-
hancement. This process results in a more comprehensive and nuanced representation
of the image data, enabling the model to detect and differentiate between subtle and
complex patterns indicative of different lung diseases.

• We manage the challenge of dataset imbalance, a common issue in medical imaging
studies; our research focuses on a dataset comprising chest X-ray images categorized
into six types: opacity, COVID-19, fibrosis, tuberculosis, viral pneumonia, and normal.
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The original dataset exhibited a significant imbalance among these categories, a factor
that can adversely impact the performance of DL models. To mitigate this issue
and enhance the robustness of our model, we employed the data augmentation
strategy. This technique involves artificially expanding the dataset by generating
new, modified versions of existing images through various transformations such as
rotation, scaling, and flipping. So, by applying these augmentations, we were able to
transform the imbalanced dataset into a balanced one, ensuring that each class was
equally represented.

The structure of this work is organized as follows: Section 2 is devoted to integrating
generative AI with chest X-ray imaging. Section 3 reviews relevant studies in the field, pro-
viding the context to this topic. Section 4 details the proposed methodology, encompassing
the collection used, the algorithm implemented, the data augmentation strategy, and the
metrics for evaluating our approach. Section 5 is dedicated to presenting the experimental
analysis and the outcomes obtained. In Section 6, the optimization strategies employed
in our research are discussed. Finally, Section 7 concludes the article by discussing future
research directions.

2. Integrating Generative AI with Chest X-ray Imaging

Integrating Generative AI with chest X-ray imaging for multi-class diagnosis stands
at the forefront of medical innovation, creating a critical nexus between state-of-the-art
computational methods and medical expertise. At the core of this integration is the strategic
use of data augmentation techniques, which encompass a suite of manipulations such as
horizontal flipping, brightness adjustments, shifts, rotations, zooms, shears, and changes
in fill mode. These classical strategies are not merely tools for image manipulation but
are pivotal in crafting a versatile and comprehensive dataset that challenges and refines
the learning processes of DL models. These data augmentation techniques enrich the
training data with various variations, replicating the diverse array of scenarios that a DL
model would encounter in the real world. By systematically altering images through these
techniques, the model is exposed to a broad spectrum of variations akin to the range it
would need to interpret in a clinical environment. This exposure is critical, as chest X-rays
inherently exhibit a degree of variability owing to numerous factors, such as differences
in patient anatomy, positioning during the scan, the calibration of imaging equipment,
and the intricacies of exposure settings. Each X-ray is a unique confluence of these factors,
and a robust DL model must be capable of this variability to provide accurate diagnoses.
In a clinical context, the ability of a model to generalize across various conditions and
imaging nuances directly translates to its diagnostic utility. The performance of DL models
on chest X-rays can significantly affect patient outcomes, as these models assist in early
detection, accurate diagnosis, and timely treatment of pulmonary conditions. The multi-
class diagnosis capability that Generative AI integration brings is precious in settings where
a swift differential diagnosis is critical. Moreover, the variability introduced through data
augmentation techniques aids in mitigating overfitting. In overfitting, a model performs
exceptionally well on training data but fails to generalize to new, unseen data. By learning
from augmented images that reflect a wider range of clinical scenarios, DL models develop
a more robust understanding of the features that truly indicate specific diseases rather than
artefacts of the dataset they were trained on [11,12].

Generative AI has emerged as a groundbreaking solution in managing one of the most
persistent challenges in medical imaging: category disparities in collection. In diagnostic
modelling, especially with chest X-ray imaging, collections often exhibit a significant
inequality, with a preponderance of common illnesses overshadowing rarer pathologies.
This imbalance risks developing biased or underperforming diagnostic models that excel at
recognizing frequently occurring conditions but falter with less common ones. Such a skew
in data can lead to diagnostic inaccuracies, potentially impacting patient care, especially for
those with less common diseases that are underrepresented in the training data. As a result,
the diagnostic models trained on these augmented datasets gain a more comprehensive
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understanding of a wider array of pathologies, leading to improved identification and
classification capabilities across the spectrum of disease [13,14].

AI-integrated Computer-Aided Diagnosis (AI-CAD) systems are designed to enhance
the accuracy, speed, and efficiency of diagnosing diseases, thereby revolutionizing patient
care and treatment outcomes. Integrating AI into CAD systems has opened up new
frontiers in medical imaging analysis, offering powerful tools for detecting, characterizing,
and monitoring various health conditions. At the core of AI-CAD systems is the application
of advanced DL algorithms, which enable these systems to analyze complex medical images
with a level of detail and accuracy previously unattainable. These AI models are trained on
vast datasets of medical images, learning to recognize patterns and anomalies indicative
of specific diseases. By doing so, AI-CAD systems assist radiologists and clinicians in
making more informed diagnostic decisions, reducing the likelihood of human error and
the variability that can occur in image interpretation. Furthermore, AI-CAD systems help
to alleviate the workload on medical professionals. AI-CAD systems can rapidly process
and analyze these images, highlighting areas of concern for further review by a radiologist.
This speeds up the diagnostic process and allows radiologists to focus their expertise on
more complex cases, improving overall healthcare delivery. Moreover, AI-CAD systems
are continuously evolving. These systems learn and improve as they are exposed to more
data, increasing their diagnostic accuracy. This continuous learning process ensures that
AI-CAD systems remain at the forefront of medical technology, adapting to new challenges
and advancements in healthcare [15,16].

3. Relative Work

The utilization of DL techniques in identifying abnormalities in chest X-ray images
has attained significant traction in recent years. This surge in popularity is attributed
to the remarkable capabilities of these algorithms in discerning intricate patterns and
irregularities that might elude traditional analysis methods. In medical research, the
application of artificial intelligence (AI) has become increasingly prominent, particularly in
facilitating the diagnosis of various health conditions. Numerous studies leveraging AI in
medical diagnostics have reported positive results, demonstrating both the accuracy and
efficacy of these technologies [17–23]. This section delves into the strategies employed by
previous researchers in this domain.

Sarkar et al. [24] proposed a multi-scale CNN model designed for a six-class cate-
gorization task, focusing on identifying tuberculosis, bacterial pneumonia, fibrosis, viral
pneumonia, normal lung conditions, and COVID-19 using 5700 chest X-ray images. This
study examines the efficacy of the VGG19 and the VGG16 models in their standard form
and the VGG16 with multi-scale feature mapping forms. The standard VGG19 model
achieved an accuracy of 95.61% and the VGG16 of 95.79%. However, when the VGG16
model was enhanced, the accuracy improved to 97.47%. In [25], the authors proposed a
2D-CNN model designed for a six-class categorization assignment, focusing on determin-
ing fibrosis, viral pneumonia, tuberculosis, bacterial pneumonia, normal lung conditions,
and COVID-19 employing chest X-ray images. This work analyses the effectiveness of the
VGG19 and the VGG16 models in their standard format and the 2D-CNN model. The stan-
dard VGG19 model reached an accuracy of 89.51%, the VGG16 of 90.43% and the 2D-CNN
model of 96.75%. Also, in [26], the authors suggested a ResNet50 with deep features
model designed for a five-class categorization assignment, focusing on determining viral
pneumonia, tuberculosis, bacterial pneumonia, normal lung conditions, and COVID-19
using 2186 chest X-ray images. The model gained an accuracy score of 91.60%.

The study [27] proposes a DL model for multi-class categorization aimed at identifying
pneumonia, COVID-19, normal, and lung cancer utilizing CT and chest X-ray images. This
study examines the efficacy of four distinct architectural combinations, which integrate
VGG19 and ResNet152V2 with various neural network models like CNN, GRU (Gated
Recurrent Unit), and Bi-GRU (Bidirectional Gated Recurrent Unit). The accuracy achieved
by the VGG19, combined with a CNN model, is 98.05%. In work [28], the authors sug-
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gested a DL multi-class categorization model to determine COVID-19, viral pneumonia,
normal, and lung opacity, employing chest X-ray images. This study analyses the effec-
tiveness of the MobileNetV2 model in its standard format and the modified MobileNetV2
model. The standard MobileNetV2 model reached an accuracy of 90.47%, and the mod-
ified MobileNetV2 model of 95.80%. In [29], the authors propose a DL-based diagnostic
system specifically designed to detect pneumonia utilizing X-ray images rapidly. This
study compares the analysis of two prominent DL methods: VGG19 and ResNet50. These
methods were evaluated for their efficacy in diagnosing three distinct conditions: pneu-
monia, COVID-19, and normal lung health. The findings of this study with the proposed
diagnostic system have accuracy with the VGG19 method of 96.60%, while the ResNet50
method recorded an accuracy score of 95.80%. Furthermore, in [30], the authors suggested
an altered VGG16 model designed for a three-class categorization assignment, focusing
on determining pneumonia, normal lung conditions, and COVID-19 utilizing chest X-ray
images. The altered VGG16 model earned an accuracy score of 91.69%.

Sanida et al. [31] proposed a DL model designed for a three-class categorization task,
focusing on identifying pneumonia, normal lung conditions, and COVID-19 using chest
X-ray images. This study examines the efficacy of the VGG19 model in its standard form
and in modified forms that include the integration of inception blocks. The standard VGG19
model attained an accuracy of 98.17%. However, when the VGG19 model was enhanced
with two inception blocks, the accuracy increased to 99.25%. Furthermore, incorporating
a single inception block into the VGG19 model resulted in an accuracy of 98.59%. These
results demonstrate the substantial impact that architectural modifications, such as the
addition of inception blocks, can have on the performance of a DL model in medical image
analysis. In [32], the authors explore the efficacy of a novel deep CNN method called
Decompose, Transfer, and Compose (DeTraC). This technique is specifically developed to
address the challenges of identifying anomalies in image datasets pertaining to pneumonia,
SARS, and COVID-19. The study uses various established CNN models, including VGG19,
GoogleNet, ResNet, AlexNet, and SqueezeNet. Each model is assessed for accurately
categorizing anomalies within the dataset. The DeTraC with the VGG19 model attained an
accuracy score of 97.35%.

Hemdan et al. [33] focused on binary categorization to differentiate between COVID-19
and healthy cases using chest X-ray scans. The study utilized a small dataset of 50 scans,
divided into 25 scans representing COVID-19 cases and 25 from healthy individuals.
Central to their research was the development of COVIDX-Net, a diagnostic system that
leverages seven different pre-trained models. These models included VGG19, Xception,
ResNetV2, InceptionV3, DenseNet201, InceptionResNetV2, and MobileNetV2. VGG-19
emerged as the most effective classifier among the seven models, reaching an accuracy of
90.00% and an F1-score of 0.91. Conversely, InceptionV3 was found to have the lowest
accuracy in this study, with a rate of 50.00%. In [34], the authors propose an imaging-based
fusion technique to differentiate between COVID-19 and healthy cases employing chest
X-ray images. This method combines features extracted from chest X-ray images using two
distinct processes: the histogram-oriented gradient (HOG) and the VGG-19 model. The
HOG with the VGG19 model achieved an accuracy score of 99.49%.

In the work [35], the authors utilized four different DL models—ResNet50, DenseNet121,
VGG16, and VGG19—applying the concept of transfer learning to diagnose X-ray images.
The study aimed to differentiate between COVID-19 and normal lung conditions. Transfer
learning, a method where a model developed for one assignment is reused as the starting
point for a model on a second assignment, is particularly effective in systems where the
available data is limited, as is often the case in medical imaging. The performance of
the VGG16 and VGG19 models outperformed the other two DL strategies, ResNet50 and
DenseNet121. The work reported an overall categorization accuracy of 97.00% for ResNet50,
96.66% for DenseNet121, and 99.33% for VGG16 and VGG19.

Numerous studies in the field of medical imaging have demonstrated impressive
accuracy rates in scenarios involving binary or limited-class categorization. However,
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a recurrent issue observed in these studies is a notable decline in performance when
the number of categories to be classified increases. This decline in accuracy is primarily
attributed to the heightened complexity involved in distinguishing between multiple
conditions, particularly when these conditions exhibit only subtle differences in their
features. Such a challenge becomes increasingly pronounced in multi-class categorization
contexts, where the distinction between various lung diseases can be nuanced and complex.
This inherent limitation significantly impacts the practical utility of these models in real-
world clinical settings, where patients often present with a range of diverse lung conditions.
In such scenarios, the ability to accurately categorize multiple lung diseases becomes not
just beneficial but essential. Consequently, there is a pressing need for a specially designed
and robust DL framework capable of performing multi-class categorization of lung diseases
with a high accuracy rate and reliance. Such a framework would be invaluable in real-life
clinical applications, enabling healthcare professionals to provide more accurate diagnoses
and, therefore, more effective treatments for patients with complex lung conditions. This
need underscores the importance of ongoing research and development in the field of
DL to create more advanced and capable diagnostic tools that can meet the demands of
modern healthcare. Table 1 summarises works for lung disease identification, the number
of categories, the model employed, and the accuracy rate attained.

Table 1. A summary of works for lung diseases identification.

Work Categories Best Model Accuracy (%)

[24] 6 VGG16+multi-scale 97.47
[25] 6 2D-CNN 96.75
[26] 5 ResNet50 91.60
[27] 4 VGG19+CNN 98.05
[28] 4 Modified MobileNetV2 95.80
[29] 3 VGG19 96.60
[30] 3 VGG16 91.69
[31] 3 VGG19+two inception blocks 99.25
[32] 3 DeTraC+VGG19 97.35
[33] 2 VGG19 90.00
[34] 2 VGG19+HOG 99.49
[35] 2 VGG19 99.33

4. Methodology
4.1. Chest X-ray Collection

In our work, the primary collection utilized for experimentation was the COVID-19
Radiography Database [36]. This comprehensive collection comprises 21,165 chest X-ray
images, encompassing a diverse range of cases: 6012 show lung opacity, 3616 images
are of COVID-19-positive cases, 10,192 depict normal lung conditions, and 1345 are of
viral pneumonia. Additionally, to broaden the scope of our study, we incorporated im-
ages representing fibrosis with 1686 images and tuberculosis with 3500 sourced from the
NIH Chest X-ray Dataset [37]. This integration of additional cases enhances the diver-
sity and comprehensiveness of our collection. A representative sample of this extensive
chest X-ray collection is illustrated in Figure 1, showcasing the variety of cases and con-
ditions included in our study. This diverse collection is instrumental in training and
evaluating our DL model, ensuring it is robust and effective in diagnosing a wide range of
pulmonary conditions.

The distribution of lung diseases in the collection utilized is illustrated in Figure 1.
Figure 2 displays a sample of a normal instance and five different conditions that may harm
the lungs. Figure 2a showcases an opacity, which can be identified by areas of increased
radiodensity. In this image, there are regions where the normally transparent appearance
of the lung fields is obscured, indicating the presence of fluid, cells, or other substances
that impede the passage of X-rays. Figure 2b represents a case of tuberculosis. Tuberculosis
often manifests as well-defined nodules or consolidations, primarily in the upper lobes
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of the lungs. The image may show scarring or calcification due to the infection, which is
denser than the surrounding lung parenchyma. Figure 2c depicts fibrosis, characterized
by a reticular pattern, with the lung architecture appearing distorted and retracted due
to the fibrotic process. This can lead to a honeycombing appearance, with small cystic
spaces surrounded by fibrous tissue. Figure 2d indicates a viral infection of the lungs,
which can present as a more diffuse, bilateral interstitial pattern. This can result in haziness
across the lung fields without a single dominant focus of consolidation, which is often
more pronounced in the peripheral areas of the lungs. Figure 2e indicates COVID-19,
which typically presents with bilateral peripheral ground-glass opacities and may include a
consolidation pattern characterized by interlobular septal thickening superimposed on the
ground-glass opacities. Lastly, Figure 2f is a normal lung X-ray, which serves as a control
image against which the pathological images can be compared. It exhibits clear lung fields
without abnormal opacification, well-defined diaphragms, and sharp costophrenic angles,
which indicate the absence of disease.

Figure 1. The distribution of lung diseases in the collection [36,37].

Figure 2. Samples by category from the collection (a–f) [36,37].
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4.2. Collection Splitting

In our study, 80% of the collection is designated for the training phase. Within
this portion, we further divided the collection into two segments: 60% was used for
direct training purposes, while the remaining 20% was set aside for validation. This
validation segment is crucial in DL models and ensuring their accuracy and reliability.
The remaining 20% of the collection was reserved for the testing phase, which is critical
for evaluating the performance of DL models under conditions that simulate real-world
scenarios [38]. The collection distribution into these training, validation, and testing
segments is comprehensively illustrated in Table 2.

Table 2. The collection distribution.

Condition Training Collection Validation Collection Testing Collection

Opacity 3833 958 1221
Tuberculosis 2264 566 670
Fibrosis 1094 274 318
Viral pneumonia 867 216 262
COVID 2291 572 753
Normal 6516 1629 2047

Total 16,865 4215 5271

4.3. Image Preprocessing and Augmentation

Image preprocessing is a critical step to ensure compatibility with the CNN ar-
chitecture. Initially, all images in the collection are resized to a uniform dimension of
224 × 224 pixels. This standardization is essential as larger images might obscure the criti-
cal traits necessary for accurate diagnosis. Following the resizing process, pixel values in
all images are normalized to a range between 0 and 1. This normalization step is crucial
for harmonizing the input data and enhancing the CNN’s ability to process the images
effectively [39].

Moreover, image augmentation techniques [12] are employed to tackle the challenge
posed by the limited quantity of images in the training collection and enhance the efficiency
of the training process. These techniques include various transformations for expanding
the training collection and introducing a diversity of image orientations and scales. This
diversity is vital in preventing the model from overfitting to the training collection, thereby
ensuring that the model generalizes well to new, unseen data.

In our study, we have employed a series of data augmentation techniques (except
normal lung conditions) to enhance the quality of the training collection, as detailed
in Table 3. So, each category of training collection has 6516 images, such as normal
lung conditions. These techniques, pivotal in increasing the diversity and robustness
of the training collection, include height shift, zoom, random rotation, brightness range,
horizontal flipping, shearing transformation, fill mode, and width shift. The combination
of resizing, normalization, and augmentation [40,41] strategies is pivotal in optimizing the
training process and improving the overall performance and reliability of the CNN model
in diagnosing lung conditions.

Figure 3 provides visual examples of these data augmentation techniques applied
to the training collection. Each technique introduces specific changes that challenge the
model to learn the essential features of the anatomical structures, regardless of these
variations, ensuring that the model’s performance is robust across a wide range of imaging
conditions. The horizontal flip technique mirrors the original image along the vertical axis.
This simulates the scenario where an image could be oriented differently, and the model
must recognize structures regardless of their left–right orientation. The brightness range
technique adjusts the intensity of the pixels in the image, simulating variations in exposure
levels that can occur during X-ray image acquisition. This ensures that the model is not
overly reliant on specific brightness levels for feature identification. Width shift and height
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shift techniques involve translating the image horizontally or vertically, respectively. This
simulates slight patient movements or different positioning that can result in shifts in the
anatomical structures in the images. The rotation augmentation applies a slight angular
rotation to the image, which helps the model learn to identify features that may not be
perfectly aligned due to variations in patient positioning during the X-ray procedure. Zoom
applies a uniform scaling to the image, enlarging or shrinking it. This can be reflective of the
varying sizes of patients or the distance between the X-ray source and the patient during
image capture. The shear transformation applies a shearing effect, skewing the image.
This can mimic the effect of angled perspectives, where the anatomy appears distorted
due to the imaging angle relative to the body. Lastly, fill mode deals with how to handle
newly introduced pixels in transformations that change the geometry of the image, such as
rotation or width/height shifts. This technique ensures that the model is not confused by
artificial pixel values that do not represent true anatomical structures.

Table 3. Details of data augmentation strategies in the training collection.

Parameter Value

Horizontal flip True
Brightness Range [0.5, 1.30]
Width shift [0.7, 1.25]
Rotation [+30, −30]
Zoom [0.4, 0.9]
Height shift 0.25
Sheare 0.35
Fill mode Nearest

Figure 3. Example of data augmentation techniques for viral pneumonia.
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4.4. Proposed Modified VGG19 Model

In this study, we introduce a tailored modification to the VGG19 architecture to
enhance its capability to extract deep features. VGG19 stands out as a DL model for
its notable depth, featuring 19 layers, which positions it among the deeper architectures
in the VGG [42] series. Implementing small convolutional filters across the network is
instrumental in capturing intricate details within image data. This structural design enables
VGG19 to learn complex features at multiple levels of abstraction, a characteristic that
has proven highly beneficial in a variety of image recognition assignments. The standard
VGG19 model comprises 19 layers, including 16 convolutional layers and 3 fully connected
layers, supplemented with 4 max-pooling layers as shown in Figure 4.

The modification we propose focuses on the outputs of the last 3 max-pooling layers,
redirecting them through a newly incorporated series of layers. This series comprises
(1) batch normalization, (2) dropout, and (3) up-sampling. Batch normalization [43] im-
proves the neural network’s stability and performance, normalizing the previous layer’s
output to a standard scale. This process is critical in addressing the internal covariate shift,
whereby the distribution of network activations varies significantly during training, thus
impeding the model’s learning efficiency. By applying batch normalization, we actively re-
calibrate the outputs from the network’s previous layers to adhere to a standard scale. This
recalibration is a profound transformation that normalizes the input for each mini-batch,
ensuring consistency in the input data distribution as it flows through successive layers.
Such normalization proves instrumental in accelerating the training process, as it allows for
higher learning rates and reduces the sensitivity to the initial weights. This is particularly
advantageous in the medical imaging domain, where the heterogeneity and complexity
of the data can be a substantial barrier. For instance, lung X-ray images present many
subtle variances due to differences in patient anatomy, the position during X-ray capture,
and the inherent characteristics of various lung pathologies. These subtle variances can
manifest as minute pixel intensity and contrast differences, challenging conventional neural
network models without batch normalization. By implementing batch normalization, our
model gains increased stability during training, manifesting in enhanced performance and
generalizability when processing lung X-ray images. This stability is pivotal in ensuring
that the internal dynamics of the network do not overshadow the subtle nuances of lung
pathologies. Instead, they are captured, retained, and emphasized throughout the learning
process, leading to a model that is robust and remarkably sensitive to the intricacies of lung
disease presentations.

Following batch normalization, our model employs a dropout [44] layer, a regular-
ization method to prevent overfitting. Overfitting occurs when a neural network model
becomes excessively complex, capturing noise and spurious details in the training data
that do not generalize to new, unseen data. In medical imaging, where the diversity of
presentations and the subtlety of pathological features are vast, overfitting can drastically
undermine the model’s utility in clinical settings. The dropout layer addresses this issue
by introducing a form of controlled randomness during the training process. With each
iteration, a specified proportion of the neuron outputs is randomly set to zero, effectively
dropping out those units from the network. This random omission of neuron outputs
compels the network to develop a more distributed data representation. The underlying
principle is to prevent the network from becoming overly reliant on any particular set of
features, promoting the learning of robust and redundant feature representations. The
dropout layer encourages the neural network to learn to classify lung pathologies using
a diverse array of features from across the entirety of its architecture. By doing so, the
network becomes adept at recognizing patterns indicative of disease, even when some data
points are missing or obscured. This is common in real-world medical imaging due to
factors such as patient movement or variable imaging conditions. Moreover, the utilization
of dropout in neural networks mirrors the principles of ensemble learning within a single
model architecture, akin to having multiple models contribute to the outcome. Each pass
through the network during training uses a different version of the network, resulting in
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a model that is less sensitive to the idiosyncrasies of the training data and more capable
of generalizing from the learned patterns to accurately diagnose new and unseen X-ray
images. This aspect of dropout is particularly salient in medical imaging analysis, ensuring
that the model retains its diagnostic accuracy not just on the data it was trained on but also
on future clinical cases.

Figure 4. The block diagram of the basic VGG19 model.

Finally, the up-sampling [45] layer plays a crucial role in this modified architecture.
The up-sampling layer’s fundamental role emerges after the VGG19 convolutional layers
have successfully extracted the depth and complexity of features from the input images.
While adept at feature extraction, these convolutional layers inevitably reduce the spatial
dimensions of the input due to max pooling. Max pooling results in losing finer spatial
details crucial for precise medical diagnostics. The up-sampling process is specifically engi-
neered to counteract this reduction in spatial resolution. It works by effectively increasing
the size of the feature maps, thereby restoring the spatial dimensions that were compressed
during max pooling. This restoration is not merely a scaling up of the feature map; it is
a process that aims to reconstruct the critical spatial details that are often lost in lower
resolutions. In lung X-ray analysis, this spatial detail reconstruction is paramount. Lung
pathologies, such as nodules, opacities, or other anomalies, often manifest as subtle and
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minute variations in the X-ray images. The ability of the up-sampling layer to enlarge the
feature maps without losing these vital details allows the model to maintain the integrity of
such critical information. This maintenance and enhancement of spatial resolution ensure
that the model can accurately identify and analyse these pathologies, which might be
missed or inaccurately represented in lower resolutions. Furthermore, the up-sampled
feature maps allow the model to understand better the spatial relationships and structures
within the lung images. This understanding is crucial when distinguishing between vari-
ous lung conditions, where abnormalities’ location, shape, and size can indicate specific
diseases. By providing a more detailed and nuanced view of the lung’s internal structures,
the up-sampling layer significantly contributes to the model’s diagnostic accuracy, making
it an invaluable tool in the early detection and analysis of lung diseases.

Our approach ensures that the detailed, nuanced features identified early in the
feature extraction process are not lost or overly processed in subsequent stages. As a result,
the modified VGG19 model strikes a balance between maintaining depth and enhancing
efficiency. It is specifically designed to optimize the extraction of deep features, rendering it
highly suitable for advanced image analysis tasks that require a nuanced understanding of
complex image data. The detailed architecture of the modified VGG19 model is presented
in Table 4, and Figure 5 illustrates the block diagram of the model.

Table 4. Detailed architecture of modified VGG19 model.

Layer (Type) Output Shape Param #

input_1 (Input Layer) (None, 224, 224, 3) 0
conv2d (Conv2D) (None, 224, 224, 64) 1792
conv2d_1 (Conv2D) (None, 224, 224, 64) 36,928
max_pooling2d (MaxPooling2D) (None, 112, 112, 64) 0
conv2d_2 (Conv2D) (None, 112, 112, 128) 73,856
conv2d_3 (Conv2D) (None, 112, 112, 128) 147,584
max_pooling2d_1 (MaxPooling2D) (None, 56, 56, 128) 0
conv2d_4 (Conv2D) (None, 56, 56, 256) 295,168
conv2d_5 (Conv2D) (None, 56, 56, 256) 590,080
conv2d_6 (Conv2D) (None, 56, 56, 256) 590,080
conv2d_7 (Conv2D) (None, 56, 56, 256) 590,080
batch_normalization (BatchNorm) (None, 56, 56, 256) 1024
dropout (Dropout) (None, 56, 56, 256) 0
up_sampling2d (UpSampling2D) (None, 112, 112, 256) 0
conv2d_8 (Conv2D) (None, 112, 112, 512) 1,180,160
conv2d_9 (Conv2D) (None, 112, 112, 512) 2,359,808
conv2d_10 (Conv2D) (None, 112, 112, 512) 2,359,808
conv2d_11 (Conv2D) (None, 112, 112, 512) 2,359,808
batch_normalization_1 (BatchNorm) (None, 112, 112, 512) 2048
dropout_1 (Dropout) (None, 112, 112, 512) 0
up_sampling2d_1 (UpSampling2D) (None, 224, 224, 512) 0
conv2d_12 (Conv2D) (None, 224, 224, 512) 2,359,808
conv2d_13 (Conv2D) (None, 224, 224, 512) 2,359,808
conv2d_14 (Conv2D) (None, 224, 224, 512) 2,359,808
conv2d_15 (Conv2D) (None, 224, 224, 512) 2,359,808
batch_normalization_2 (BatchNorm) (None, 224, 224, 512) 2048
dropout_2 (Dropout) (None, 224, 224, 512) 0
up_sampling2d_2 (UpSampling2D) (None, 448, 448, 512) 0
global_average_pooling2d (GlobalAvg) (None, 512) 0
dense (Dense) (None, 256) 131,328
dense_1 (Dense) (None, 128) 32,896
dense_2 (Dense) (None, 6) 774

Total params: 20,194,502
Trainable params: 20,191,942
Non-trainable params: 2560
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Figure 5. The block diagram of the modified VGG19 model.

4.5. Implementation Settings

Table 5 offers a detailed account of the computational environment and the hyperpa-
rameters chosen to execute our experiments. The experiments were performed on a system
running Windows 10 Pro, with 16 GB of RAM. We used the NVIDIA RTX 3050 GPU model
with 8 GB of onboard memory. Python language we used, and the back-end framework
was the Keras package with TensorFlow, which provides a high-level, user-friendly API for
constructing and training models. Our model was trained for 30 epochs to ensure sufficient
training without excessive overfitting. The Adam optimizer was chosen for its adaptiveness
in updating network weights. This optimization algorithm is known for its efficiency with
large collections and high-dimensional parameter spaces, often in image categorization
tasks. A mini-batch size of 32 was selected for the better convergence properties, and a
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learning rate of 0.0001 was set, allowing the model to converge gradually. The loss function
used was cross-entropy, a standard choice for categorization problems.

Table 5. Implementation settings for our experiments.

Name Values/Types

Operating system Windows 10 Pro
RAM 16 GB
GPU NVIDIA RTX 3050 8 GB
Language Python
Backend Keras package with TensorFlow
Number of epochs 30
Optimizer Adam
Mini batch size 32
Learning rate 0.0001
Loss function Cross-entropy

4.6. Quality Measures

In the domain of DL, the assessment of a model’s aptitude for a given task is contingent
upon certain evaluative quality measures [46–48]. These measures are indispensable in
ascertaining the model’s capacity to generalize from the training collection to unseen
data—essentially, its predictive power in real-world systems. Accuracy, precision, recall,
and F1-score offer insights into various aspects of model performance, such as its overall
correctness, ability to minimize false positives, effectiveness in identifying all relevant
examples, and balance between precision and recall, respectively.

As delineated by Equation (1), accuracy quantifies the percentage of images the model
correctly categorized to the total number of images assessed. As specified by Equation (2),
precision assesses the proportion of true positives within the subset of samples labelled
as positive by the model. Recall, also known as sensitivity and detailed in Equation (3),
gauges the model’s ability to identify all relevant samples within the actual positive category
accurately. Additionally, the F1-score is a composite metric that harmonizes precision and
recall, providing a singular measure of the classifier’s exactitude, as shown by Equation (4).

Accuracy =
(TP + TN)

(TP + FN + FP + TN)
(1)

Precision =
TP

(TP + FP)
(2)

Recall =
TP

(TP + FN)
(3)

F1-score = 2 × (Precision × Recall)
(Precision + Recall)

(4)

where TNs , or true negatives, denotes the count of negative examples the model accurately
categorizes as negative. FPs, or false positives, represent instances where the model
erroneously categorizes negative examples as positive. TPs, or true positives, corresponds
to the number of positive examples the model correctly recognizes. Conversely, FNs,
or false negatives, indicates examples where the model incorrectly categorizes positive
examples as negative.

5. Investigation Outcomes

Our methodology was evaluated using the testing collection composed of images
completely unseen during training to ensure an unbiased and objective assessment of
the performance of the basic and the modified VGG19 model. Additionally, the testing
collection was isolated from image augmentation techniques that might influence the
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model’s learning in a way that could give an advantage to this specific collection. With
testing collection, we can simulate the model’s deployment in a real-world scenario with
new patient images. The performance of these unseen images provides a measure of the
model’s true diagnostic ability and indicates how it would function when applied in a
clinical setting.

5.1. Accuracy and Loss Curves

Figure 6 illustrates that for the modified VGG19 model, the training accuracy curve
maintains a consistently high trajectory, which points to the model’s ability to fit the training
data well. The validation accuracy curve, although slightly lower, follows a similar trend,
reflecting that the model generalizes well to new image data. On the loss curve side, the
model effectively minimizes the error between its predictions and the actual labels. The
validation loss demonstrates some variability but generally follows the downward trend of
the training loss, which corroborates the model’s capacity to generalize without overfitting.

Figure 6. Accuracy and loss curves for the basic and the modified VGG19 model.

5.2. Classification Report

The classification report shown in Table 6 for the modified VGG19 model offers a
comprehensive view of its performance metrics across different categories in the context of
lung X-ray image analysis. The precision metric reflects the accuracy of positive predictions
for each category. It signifies the proportion of true positives among all instances catego-
rized as positives by the model. For instance, the precision 1.0000 for COVID indicates
that the model perfectly identifies COVID cases without any false positives. Similarly, high
precision values in other classes, like 0.9933 for opacity, denote a high level of reliability
in the model’s positive predictions for these conditions. Recall, another critical metric,
measures the model’s capability to correctly identify all samples of a given category. It is
the proportion of actual positives that were correctly identified. The recall of 1.0000 for the
sample indicates that the model successfully recognized all tuberculosis cases in the test
collection. High recall values across categories suggest that the model is highly sensitive
and effective in detecting the presence of these lung conditions. The F1-score, a harmonic
mean of precision and recall, provides a single measure that balances both the precision and
recall. It is particularly useful when the distribution of class instances is uneven or when
the cost of false positives and false negatives varies. For example, the F1-score of 0.9973
for COVID implies a near-perfect balance between precision and recall, indicating the
model’s exceptional performance in identifying COVID cases. Similarly, high F1-scores for
other classes like fibrosis 0.9752 and normal 0.9878 highlight the model’s overall robustness
and effectiveness.

The classification report shown in Table 7 for the basic VGG19 model shown for opacity,
the precision is 0.9696, suggesting that the model is highly accurate in its predictions for
this category, the recall for tuberculosis is 0.9985, indicating that the model is exceptionally
good at identifying all cases of tuberculosis, fibrosis has an F1-score of 0.9158, indicating a
solid balance between precision and recall.
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Table 6. Classification report for the modified VGG19 model.

Category Precision Recall F1-Score

Opacity 0.9933 0.9738 0.9835
Tuberculosis 0.9955 1.0000 0.9978
Fibrosis 0.9604 0.9906 0.9752
Viral 0.9886 0.9924 0.9905
COVID 1.0000 0.9947 0.9973
Normal 0.9845 0.9912 0.9878

Table 7. Classification report for the basic VGG19 model.

Category Precision Recall F1-Score

Opacity 0.9696 0.9394 0.9542
Tuberculosis 0.9941 0.9985 0.9963
Fibrosis 0.8635 0.9748 0.9158
Viral 0.9353 0.9924 0.9630
COVID 0.9893 0.9867 0.9880
Normal 0.9674 0.9580 0.9627

The comparison between the classification reports in Tables 6 and 7 of the modified
and basic VGG19 models reveals significant improvements in the modified model across
all categories. The modified VGG19 demonstrates superior precision, recall, and F1-score
in the opacity category, indicating a more accurate and reliable performance in the tubercu-
losis category, where the modified model not only improves precision but also achieves a
perfect recall, leading to a higher F1-score. The improvements are particularly striking in
the fibrosis category, where the modified VGG19 shows a substantial increase in precision
while maintaining high recall, resulting in a markedly better F1-score. Similarly, for the
viral category, the modified model exhibits a notable enhancement in precision without
compromising the recall and an improved overall F1-score. In the case of COVID, the
modified VGG19 achieves perfect precision and slightly better recall and F1-score, under-
scoring its enhanced diagnostic accuracy. Finally, the modified model outperforms the
basic model in all metrics for the normal category, indicating a more consistent and reliable
performance. These outcomes suggest that the modifications made to the VGG19 model
have significantly bolstered its capabilities, making it a more robust tool for accurate image
categories of lung diseases.

5.3. Overall Performance

Table 8 encapsulates the overall performance of the basic and the modified VGG19
model as applied to the categorization of lung diseases utilizing chest X-ray images. The
accuracy of the modified VGG19 stands at 98.88%, a substantial increase from the already
high 96.57% of the basic model. This high level of accuracy indicates the modified model’s
robustness and potential as a reliable diagnostic aid. Precision shows a remarkable improve-
ment in the modified model, 0.9870, compared to the basic model, 0.9532. This precision is
crucial in medical diagnostics to avoid misdiagnosis and to ensure appropriate treatment
planning. In terms of recall, the modified VGG19 achieves 0.9904, surpassing the basic
model’s 0.9750. This means the modified VGG19 successfully identified 99.04% of all actual
cases of lung diseases, a crucial capability in medical imaging where missing a positive
diagnosis can have significant consequences. The F1-score, which balances precision and
recall, is higher in the modified model 0.9887 than in the basic model 0.9633, reinforcing the
model’s balanced performance in correctly identifying cases and minimizing false positives
or negatives. Lastly, the AUC metric is significantly higher in the modified VGG19 0.9939
than in the basic model 0.9836. This high AUC value indicates the modified model’s ability
to distinguish between different lung conditions, affirming its utility in a clinical setting
where such differentiation is critical to appropriate patient care.
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Table 8. Overall performance of the basic and the modified VGG19 model.

Average Basic VGG19 Modified VGG19

Accuracy 96.57% 98.88%
Precision 0.9532 0.9870

Recall 0.9750 0.9904
F1-score 0.9633 0.9887

AUC 0.9836 0.9939

5.4. Confusion Matrix

The confusion matrix displayed in Figure 7 illustrates the performance of the modified
VGG19 model on the test collection of lung disease images. Each row of the matrix
corresponds to the actual category, while each column represents the model predictions.
The model correctly identified 749 cases as COVID, with 4 cases that were actually COVID
incorrectly categorized as something else. There were no non-COVID cases miscategorised
as COVID. All 315 fibrosis cases were correctly identified, with 2 recategorizations as
normal and 1 as opacity. Most normal cases were correctly categorized (2029 out of 2047),
with a small number of subcategorization as other diseases—6 as fibrosis, 7 as opacity,
2 as tuberculosis, and 3 as viral pneumonia. The model correctly identified 1189 out of
1221 opacity cases, with some confusion where 7 cases were miscategorised as normal
and 24 as fibrosis. Only 1 case of opacity was miscategorised as tuberculosis. The model
identified all 670 tuberculosis cases with no subcategorization. The model also performed
exceptionally well in categorizing viral pneumonia cases, with 260 out of 262 cases correctly
identified and only 2 cases subcategorization as normal. From the outcomes, the confusion
matrix suggests that the modified VGG19 model exhibits high accuracy in categorizing
different lung diseases, which is essential for developing reliable AI-assisted diagnostic
tools in healthcare.

The confusion matrix for the basic VGG19 model in Figure 8 for COVID, identified
743 true positives. While well identified with 310 correct predictions, fibrosis is confused
with normal, suggesting some feature overlap between the two categories. The normal cate-
gory has the highest number of instances and is identified correctly with 1961 true positives,
although there are notable confusions with opacity and fibrosis. Opacity is predominantly
identified correctly with 1147 true positives, but some confusion with normal and fibrosis
could indicate similar visual features that the model struggles to differentiate. Tuberculosis
is accurately identified with 669 true positives and almost no recategorisations, demon-
strating the model’s effectiveness for this category. Viral infections are perfectly identified
with 260 true positives, indicating that the model has learned distinguishing features for
this category very well. The basic VGG19 model is highly effective at diagnosing various
conditions, with particularly strong performance in distinguishing tuberculosis and viral
infections. However, there is room for improvement in differentiating between normal,
opacity, and fibrosis cases, as evidenced by the misclassifications between these categories.

5.5. Receiver Operating Characteristic (ROC) Curves

The ROC curves displayed in Figure 9 are a powerful tool for evaluating the diagnostic
ability of the modified VGG19 model for lung disease categorization employing X-ray
images. The curve for COVID, with an AUC of 0.9973, indicates a high true positive
rate and a low false positive rate, which shows excellent model performance in COVID
detection. Similarly, the AUC for tuberculosis stands at 0.9997, which suggests that the
model can distinguish between X-ray images with tuberculosis and those without it. The
ROC curves for fibrosis, normal, opacity, and viral pneumonia also show high AUC values
(all above 0.98), indicating that the model performs very well across these conditions.
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Figure 7. The confusion matrix of lung diseases in the test collection for the modified VGG19 model.

Figure 8. The confusion matrix of lung diseases in the test collection for the basic VGG19 model.

The ROC curves for the basic VGG19 model are depicted in Figure 10. The curve for
COVID, with an AUC of 0.9925, displays a high true positive rate and a low false positive
rate, indicating the superior basic model performance in COVID identification. Also, the
AUC for tuberculosis stands at 0.9988, which implies that the basic model can differentiate
between X-ray images with tuberculosis and those without it. Furthermore, the ROC curves
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for fibrosis, normal, opacity, and viral pneumonia display high AUC values (above 0.96),
suggesting that the basic model manages these situations well.

Figure 9. The ROC curves of lung diseases in the test collection for the modified VGG19 model.

Figure 10. The ROC curves of lung diseases in the test collection for the basic VGG19 model.

5.6. Comparisons with Related Work

Table 9 offers a comprehensive synopsis for multi-class lung disease identification
through automated diagnosis using DL models. The research by Sarkar et al. [24] employs
the VGG16 model enhanced with multi-scale features, achieving an accuracy of 97.47%,
an F1-score of 0.9500, and an AUC of 0.9900 on a dataset comprising 5700 images across
six categories. Sultana et al. [25] utilize a 2D-CNN model on a significantly larger dataset
of 14,948 images spanning the same six categories. Their model achieves an accuracy of
96.75%, an F1-score of 0.9386, and an AUC of 0.9939. The work of Al et al. [26] explores



J 2024, 7 67

using ResNet50 on a dataset of 2186 images across five categories. While their model
achieves a lower accuracy of 91.60% and an AUC of 0.9900, the F1-score is not reported.
Ibrahim et al. [27] present an approach using VGG19 combined with a CNN, applied to a
large dataset of 33,676 images across four categories. Their model achieves an impressive
accuracy of 98.05%, an F1-score of 0.9824, and an AUC of 0.9966, showcasing the strength
of VGG19 when enhanced with additional CNN layers. Sanida et al. [28] modified the
MobileNetV2 model to analyze a dataset of 21,165 images across four categories, reaching
an accuracy of 95.80% and an F1-score of 0.9629. Their study emphasizes the effectiveness
of lightweight models like MobileNetV2 in lung disease diagnosis. Our research employs
a modified VGG19 model on an extensive dataset of 48,582 images across six categories.
Our model outperforms the others in terms of accuracy, reaching 98.88%, and maintains a
high F1-score of 0.9887 and an AUC of 0.9939. This demonstrates the superiority of our
modified VGG19 in multi-class lung disease identification, balancing high accuracy with
robust performance metrics.

Table 9. Comparisons with related work for multi-class lung disease identification.

Work Categories Number of
Images Model Accuracy

(%) F1-Score AUC

[24] 6 5700 VGG16+multi-scale 97.47 0.9500 0.9900
[25] 6 14,948 2D-CNN 96.75 0.9386 0.9939
[26] 5 2186 ResNet50 91.60 - 0.9900
[27] 4 33,676 VGG19+CNN 98.05 0.9824 0.9966

[28] 4 21,165 Modified
MobileNetV2 95.80 0.9629 -

Ours 6 48,582 Modified VGG19 98.88 0.9887 0.9939

6. Discussion

Integrating Generative AI with DL in medical imaging, particularly in diagnosing
lung diseases, marks a significant stride in healthcare technology. Despite the advance-
ments achieved using DL techniques in accurately diagnosing lung conditions such as
opacity, COVID-19, fibrosis, tuberculosis, viral pneumonia, and normal lung conditions,
substantial research gaps and problems remain that present challenges and motivations for
further study.

A primary research gap in this field is the lack of highly accurate and robust automated
systems for diagnosing various lung diseases from chest X-ray images. While traditional
models have shown promise, their effectiveness in distinguishing between different lung
conditions, especially those with subtle radiographic differences, is limited. This gap
becomes more pronounced with emerging diseases like COVID-19, where rapid and
accurate diagnosis is crucial. There is also a need for models that can generalize well
across diverse patient populations and varying image qualities, a challenge not fully
addressed by existing models.

Current DL models face issues such as overfitting, limited interpretability, and the need
for large annotated collections. Overfitting leads to models performing well on training
data but failing to generalize to new data. The nature of DL models also poses a challenge,
as medical professionals require models that provide interpretable diagnostic insights.
Furthermore, the performance of these models is highly dependent on the quantity and
quality of the training data, which can be a limitation in medical imaging due to privacy
concerns, data availability, and the labour-intensive process of medical annotation.

The motivation for research in integrating Generative AI with medical imaging stems
from the impact of advanced diagnostic tools on patient care and healthcare systems.
The potential to enhance the accuracy and efficiency of diagnosing lung diseases is a
development that carries far-reaching implications for patients and healthcare providers.
So, by automating the diagnostic process, an AI-integrated CAD system can alleviate
this burden, enabling quicker times for medical image analysis. The modified VGG19
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model, with its deeper architecture, offers a promising avenue for improvement over
traditional models.

Our approach utilizes the outputs from the last three max-pooling layers of the VGG19
model. We redirect these through custom layers, including batch normalization, dropout,
and up-sampling. This not only refines the feature maps generated by the preceding
layers but also enhances the model’s capability to identify subtle and complex patterns
characteristic of different lung diseases. Moreover, improving the generalizability and
interpretability of the modified model significantly increases their clinical applicability,
leading to broader adoption in healthcare settings.

The comparison between the basic VGG19 model and the modified reveals significant
enhancements in the latter’s diagnostic capabilities. The modified VGG19 model’s accuracy
is markedly superior, registering at 98.88%, which is an increase of nearly 2.5 percent-
age points over the basic model. The confusion matrix of the modified VGG19 shows a
commendable increase in true positive rates for most categories. The basic VGG19 model
showcases AUC values exceeding 0.96 across all categories, affirming its robustness as a
reliable diagnostic tool. Nevertheless, the modified VGG19 model achieved even higher
AUC values that exceeded 0.98 for all categories. These AUC values indicate an excep-
tionally high true positive rate and a low false positive rate, essential for accurate medical
diagnosis. These results suggest that the modifications made to the VGG19 model have
substantial practical implications. They indicate a potential for significantly more accurate
diagnoses and better patient management strategies. The modified VGG19 model stands
out as an improved tool in the medical imaging field, with its enhanced performance likely
to contribute to more effective healthcare.

7. Conclusions and Future Work

Our work introduced a novel DL framework, which harnesses the power of VGG19
architecture by integrating custom blocks into the model. We developed a system capable of
multi-class diagnosis of a spectrum of lung conditions, including fibrosis, opacity, tubercu-
losis, normal lung states, viral pneumonia, and COVID-19 pneumonia. This DL framework
system is particularly noteworthy given chest X-rays’ critical role in promptly and accu-
rately identifying pulmonary abnormalities. Our evaluation process, conducted on an
extensive dataset, highlights the framework’s remarkable capabilities, surpassing existing
state-of-the-art methods in lung disease diagnosis. The achieved accuracy 98.88% is a testa-
ment to the framework’s precision and reliability. The framework demonstrated superior
accuracy and exhibited exceptional performance across critical metrics like precision, recall,
F1-score, and AUC, averaging 0.9870, 0.9904, 0.9887, and 0.9939, respectively. In future
work, we intend to harness the power of GANs to create a more diverse and representative
range of synthetic medical images and extend this study in several directions, including
enhancing the model’s generalization to different patient demographics, integrating it
with other diagnostic tools and electronic health records for more comprehensive patient
assessments, and expanding its applicability to other thoracic and respiratory conditions.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial intelligence
AUC Area under the curve
Bi-GRU Bidirectional gated recurrent unit
CNN Convolutional neural network
DeTraC Decompose, transfer, and compose
DL Deep learning
GRU Gated recurrent unit
GPU Graphics processing unit
HOG Histogram-oriented gradient
ROC Receiver operating characteristic
VGG Visual geometry group
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