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Abstract: In buried plastic water pipes, the predominantly fluid-borne wave is of particular interest,
as it plays a key role in the propagation of leak noise. Consequently, it has been studied by several
researchers to determine the speed of wave propagation and its attenuation with distance. These
features are encapsulated in the wavenumber. By examining the factors that govern the behaviour
of this wavenumber, this paper presents an in-depth examination of the physical mechanisms of
leak noise propagation. To achieve this, an alternative physics-based model for the wavenumber
is developed, using the concept of the wave dynamic stiffnesses of the individual components
within the pipe system, i.e., the water in the pipe, the pipe wall, and the surrounding medium. This
facilitates a clear interpretation of the wave behaviour in terms of the physical properties of the
system, especially the interface between the pipe and the surrounding medium, which can have a
profound influence on the leakage of acoustic energy from the pipe wall into the external medium.
Three systems with different types of surrounding medium are studied, and the factors that govern
leak noise propagation in each case are identified. Experimental results on two distinct test sites from
different parts of the world are provided to validate the approach using leak noise as an excitation
mechanism.

Keywords: leak noise wave propagation; predominantly fluid-borne wavenumber; buried plastic
water pipes; wave dynamic stiffness

1. Introduction

Pipelines are crucial elements in many engineering systems and are widely used to
transport water [1,2]. However, the efficiency of these systems can be compromised by
issues such as water leaks [3,4]. When undetected or neglected, these leaks can lead to
significant wastage of water, posing both environmental and economic challenges across
the world [5–7]. In 2019, the European Environmental Agency reported that water scarcity
impacted 29% of the EU territory for at least one season [8]. Furthermore, it is estimated
that about 23% of drinking water in Europe is lost on average [9]. Meanwhile, in Brazil,
the average water loss is around 38%, with eight states experiencing even more alarming
losses exceeding 50%, such as the Roraima state, in which the loss is about 75% [10].

The modelling of wave propagation in buried water pipes is particularly important for
the water industry, as they search for ways to improve leak detection technology [11–13].
In buried plastic water distribution pipes, leak noise propagates as a predominantly fluid-
borne (s = 1) wave [14,15]. This is an axisymmetric (n = 0) wave, where the acoustic pressure
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of the water is strongly coupled to the vibrations of the pipe wall [16]. The wave involves
a large radial motion of the pipe wall and an axial plane wave motion of the water. At
frequencies much lower than the ring frequency of the pipe [15], the other axisymmetric
structural-acoustic wave is the (s = 2) wave, which is a predominantly structure-borne
wave. However, this wave tends not to be strongly excited by a leak, which generates an
oscillating pressure inside the pipe due to turbulence as the water escapes from the pipe.
Thus, the focus of this paper is the predominantly fluid-borne wave, a graphical description
of which can be found in a webinar by the International Water Association Water Loss
Specialist Group [17].

The detection and localization of water leaks via vibro-acoustic methods, such as
acoustic correlators [18], rely primarily on the time delay estimation technique [19,20],
which depends heavily on the way in which leak noise propagates. To determine the way
in which this is affected by the properties of the pipe and the surrounding medium, a model
is needed. Modelling wave propagation in buried plastic pipes is more challenging than for
metal pipes because of the high degree of dynamic coupling between the water, the plastic
pipe wall, and the surrounding soil. These effects need to be appropriately modelled to
ensure that accurate predictions can be made of the speed and attenuation of leak noise
propagation. Although there is water–pipe–soil coupling in metal pipes, in general, it is
much less than for a plastic pipe, due to the much higher hoop stiffness of metal pipes used
in water distribution systems. Much research on wave propagation in fluid-filled pipes has
been carried out hitherto. Fuller and Fahy [21] determined the propagation characteristics
of axisymmetric waves and the dispersion curves of thin-walled pipes in vacuo filled with
ideal fluid using the Donnel–Mushtari shell theory. The authors also investigated how the
vibrational energy in the pipe wall and the fluid within the pipe changes with frequency.
In 1994, Pinnington and Briscoe [14] determined approximate analytical expressions for the
two wavenumbers (s = 1, 2) for an in vacuo fluid-filled pipe. Unlike previous work, their
analysis was confined to frequencies well below the ring frequency of the pipe and was the
basis for the later work by researchers on leak detection in water-filled plastic pipes. Xu
and Zhang [22] studied the vibrational energy flow input from an external force as well
as the transmission along the shell. The authors found that the input power flow, as well
as the power flow transmitted along the shell, depends highly upon the characteristics of
the waveforms travelling in the pipe wall. Sinha et al. [23] investigated the axisymmetric
motion of submerged fluid-filled pipes and determined which modes leak energy into
the surrounding fluid. Pan et al. [24] studied axisymmetric acoustic wave propagation
in a fluid-filled pipe with arbitrary thickness both experimentally and numerically. A
few years later, Prek [25] experimentally investigated a frequency domain method for the
determination of wave propagation characteristics in fluid-filled viscoelastic pipes, using
different pipe wall materials. The authors carried out complex wavenumber estimation
using hydrophones.

Some researchers have also focused on the wave characteristics of fluid-filled pipes
buried in soil. Long et al. [26] studied the axisymmetric wave modes propagating in buried
iron fluid-filled pipes, predicting the corresponding phase velocity. Further, Long et al. [27]
studied the attenuation of some waves that propagate in buried iron water pipes. Deng and
Yang [28] adopted the Flügge shell theory to model a pipe and the Winkler model for the
surrounding soil. The authors studied the effects of wall thickness, the elastic properties
of the soil, and the fluid velocity variations. Leinov et al. [29] conducted some laboratory
tests involving the propagation of guided waves in a carbon steel pipe buried in sand. The
authors investigated the attenuation properties of the waves for various sand conditions
including loose, compacted, mechanically compacted, water-saturated, and drained.

Building on the work of Pinnington and Briscoe [14,15], Muggleton et al. [16] de-
veloped an analytical model to predict both the wave speed and attenuation of a buried
water-filled plastic pipe. The soil was treated as a fluid supporting two different waves,
each of which exerted normal dynamic pressure on the pipe wall. Although the shear
coupling of the pipe to the surrounding soil was not properly accounted for, the theoretical
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and experimental results showed good agreement at low frequencies. The soil properties
were then modelled more effectively in the subsequent work of Muggleton and Yan [30], in
which the soil was coupled to the pipe in the radial direction but not in the axial direction.
In this case, there is a lubricated contact between the pipe wall and the surrounding soil.
The authors derived wavenumbers for the two coupled axisymmetric waves (s = 1 and s = 2)
and showed that the shear modulus of the soil is an important parameter, influencing the
speed of the predominantly fluid-borne wave. A couple of years later, Yan and Zhang [31]
studied the low-frequency acoustic characteristics of propagation and attenuation of the
(s = 1 and s = 2) waves in immersed pipes conveying fluid. They investigated the influence
of material properties and the effects of shell thickness/radius ratio as well as the density
of the contained fluid.

In 2018, Brennan et al. [32] compared the analytical model to predict the wavenum-
ber of the s = 1 under a lubricated contact between the pipe wall and the soil, with a
finite element model of the water–pipe–soil system, and some experimental results from
different test sites. The authors validated the conclusions found in [30] concerning the
importance of the shear modulus of the soil on the speed of the predominantly fluid-borne
wave. Gao et al. [33] proposed a more complete model to predict the relationships for the
predominantly fluid-borne wave. In this model, the pipe is connected to the soil both
radially and axially with perfect bonding at the pipe–soil interface. It was found that the
surrounding medium effectively adds mass to the pipe wall, whereas the shear properties
of the soil effectively add stiffness. The model described in [33] was further adapted by
Liu et al. [34] to investigate vibro-acoustic propagation in buried gas pipes. They proposed
an effective radiation coefficient to measure the radiation of the gas-dominated and shell-
dominated waves. Wang et al. [35] investigated the wave characteristics of buried water
pipes considering the viscosity and fluid flow using a model derived from Love’s thin shell
theory. Investigations were carried out by analyzing the effect of different types of soil and
pipes and showed that a viscous fluid causes greater wave attenuation compared to an
ideal fluid.

For the purposes of studying buried water plastic pipes in the context of water leak
detection, the model developed in [33] is considered to be the most complete. This paper
builds on the work described in these articles. The aim is to present a comprehensive
investigation into the physical mechanisms governing leak noise propagation. To achieve
this, and especially to determine the role of the interface between the pipe and the sur-
rounding medium, the model from [33] is reformulated in terms of the wave dynamic
stiffnesses, namely the pipe, the water, and the surrounding medium. It is believed that
such an investigation, which assimilates much of the previous work in a convenient and
physically interpretable form, has not been carried out before. At the core of the model is
the wavenumber of the predominantly fluid-borne wave, which is written in terms of the
wave dynamic stiffnesses. To validate the model, some experimental results are presented
on the measurement of the real and imaginary parts of the wavenumber from two sites in
which a plastic water pipe is buried in sandy and clay soil, respectively. In both cases, the
pipe vibration is generated by a leak.

The paper is organised as follows. Following the introduction, in Section 2, the
objectives of the paper are defined, as are the assumptions made in the derivation of the
wavenumber for the predominantly fluid-borne wave. Section 3 describes the derivation of
the wavenumber as a function of wave dynamic stiffness matrices of the component parts
of the system. Some experimental work to validate the wave dynamic stiffness approach is
carried out in Section 4. The dynamic stiffnesses of the component parts are presented for
three types of surrounding medium in Section 5 and their physical significance is discussed.
The influences of the various parts of the system on the propagation characteristics of the
predominantly fluid-borne wave are discussed in Section 6, and some conclusions are given
in Section 7. There is also an Appendix, which shows how the lubricated interface between
the pipe and soil can be described using the proposed model.
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2. Problem Statement

The water-filled pipe surrounded by an external medium of interest is shown in
Figure 1a. The external medium can be either water or soil. The pipe has a mean radius a
and wall thickness h.
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Figure 1. A schematic diagram of a water-filled buried pipe (a) general layout; (b) applied forces and
coordinate system.

Of interest in this paper is the way in which the pipe material and its geometry,
along with the soil properties, affect noise propagation from a leak to a measurement
point. Of particular interest is the effect of the axial coupling between the pipe and its
surrounding medium and how this influences the radiation of acoustic leakage energy
into the surrounding medium. To achieve this, an analytical model of the wavenumber is
required, and in this paper, this is derived as a function of the wave dynamic stiffnesses
of the component parts of the system, i.e., the water in the pipe, the pipe wall, and the
surrounding medium. By focusing on wave dynamic stiffnesses, it is possible to identify
and assess the specific contribution of each part. Wave dynamic stiffness is similar in
concept to wave impedance described by Fahy and Gardonio [36], but rather than using
the variables of force (or pressure) and velocity, displacement is used instead of velocity,
as this is more convenient for the model of the pipe system since the displacement of the
pipe wall is directly proportional to the acoustic pressure. The result is a more compact
and elegant model with less complicated algebraic expressions. It essentially involves a
pressure that is harmonic in both space and time being applied to a structure or a fluid.
For an arbitrary one-dimensional structure in the x direction, which has a wavenumber k,



Acoustics 2024, 6 161

this could be p = P exp(j(ωt − kx)), where ω is the circular frequency and j =
√
−1. The

response is then described by v = V exp(j(ωt − kx)), since the structure/fluid is considered
to be linear. The wave dynamic stiffness is defined as the ratio K(ω, k) = P(ω, k)/V(ω, k),
i.e., it is a complex quantity that is dependent on both the frequency and wavenumber.
The real part of the wave dynamic stiffness is related to the stiffness or inertial properties
of the system and the imaginary part of the wave dynamic stiffness is related to energy
dissipation.

The wavenumber of the predominantly fluid-borne wave is the key quantity that
captures the way in which the leak noise propagates in the pipe, and is derived in the
following section. The following simplifying assumptions are made:

• The pipe and surrounding medium are of infinite extent in the axial direction, and the
surrounding medium is of infinite extent in the radial direction;

• The predominantly fluid-dominated axisymmetric wave is the only wave propagating
in the pipe and is wholly responsible for the propagation of leak noise;

• The frequency range of interest is well below the pipe ring frequency, so that bending
in the pipe wall is neglected. The ring frequency is the resonance frequency where the
circumference is equal to one wavelength of a compressional wave in the pipe wall;

• The frequency range of interest is such that an acoustic wavelength of water is much
greater than the diameter of the pipe.

In such a system, the frequency response function (FRF) between the acoustic pressure
at an arbitrary position in the pipe and the acoustic pressure at another position d metres
away is given by

H(ω, d) = exp(−jkd) (1a)

which simply represents a decaying, predominantly fluid-borne, propagating wave. The
wavenumber is complex, because the amplitude of the wave decreases as it propagates
along the pipe. To clarify how the wavenumber is related to the physical behaviour of the
wave, it is useful to rewrite Equation (1a) as [20]

H(ω, d) = exp(−ωβd) exp(−jωd/c) (1b)

where β = −Im{k}/ω = ηwave/2c is a measure of the loss as the wave propagates along the
pipe wall and c = ω/Re{k} is the speed at which it propagates, and
ηwave = −2Im{k}/Re{k} is defined as the loss factor. Thus, the two main features of
the predominantly fluid-borne propagating wave, namely the speed at which it propagates
and the amount it decays, are encapsulated in the wavenumber. The following sections
show how the wavenumber is related to the pipe and soil properties in a clear physical
way using the concept of wave dynamic stiffness. Three distinct scenarios are investigated
involving water, clay soil, and sandy soil as the surrounding mediums and the governing
factors influencing the leak noise propagation in each case are identified.

3. Derivation of the Wavenumber

The pipe system can be split into three components: the water within the pipe, the pipe wall,
and the surrounding medium. This is shown in Figure 1b, in which the applied forces per unit
area/pressures to each component are shown. Note that these are assumed to be harmonic in
both space and time, i.e., fp,m = Fp,m exp(j(ωt − kx)), pw,p,m = Pw,p,m exp(j(ωt − kx)), and the
axial and radial displacements of the three components are given by up,m = Up,m exp(j(ωt − kx))
and ww,p,m = Ww,p,m exp(j(ωt − kx)) , respectively. Radial pressures are applied to each com-
ponent, but axial forces are only applied to the pipe and the external medium, as there is no
axial reaction force between the water inside the pipe and the pipe wall. The frequency domain
relationships between the forces per unit area/pressures and the axial and radial displacements
for each of the three components are given by

Pw = K(water)Ww (2a)
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{
Fp
Pp

}
=

[
K(pipe)

11 K(pipe)
12

K(pipe)
21 K(pipe)

22

]{
Up
Wp

}
(2b)

{
Fm
Pm

}
=

[
K(medium)

11 K(medium)
12

K(medium)
21 K(medium)

22

]{
Um
Wm

}
(2c)

where the K’s are the wave dynamic stiffnesses of the component parts. Note that
F = Fp + Fm and P = Pw + Pp + Pm, as the component parts, act in parallel so the applied
force/pressure is shared between them. Note also that at the water/pipe/surrounding
medium interface Ww = Wp = Wm, so the combined system wave dynamic stiffness
equation can be alternatively written as

p =
[
K(pipe) + K(water) + K(medium)

]
u (3)

where p =
{

F P
}T , u =

{
Up Wp

}
, and K(pipe) =

[
K(pipe)

11 K(pipe)
12

K(pipe)
21 K(pipe)

22

]
, K(water) =[

0 0
0 K(water)

]
, and K(pipe) =

[
K(medium)

11 K(medium)
12

K(medium)
21 K(medium)

22

]
. To calculate the wavenumber, all

the dynamic stiffnesses in Equation (3) are first determined. Following this step, free
vibration is considered by setting p = 0, from which the dispersion characteristic for the
predominantly fluid-borne wavenumber for the pipe system is estimated. In the following
subsections, the wave dynamic stiffness matrices for the three components of the system
are derived. After that, the predominantly fluid-borne wavenumber is then derived.

3.1. Wave Dynamic Stiffness Matrix for the Pipe Wall

The derivation of the dynamic stiffness matrix for the pipe wall K(pipe) is based on
the work by Pinnington and Briscoe [14]. As the formulation is related to the problem of
leak detection, only axisymmetric motion of the pipe wall is considered. Furthermore, as
the frequency range of interest is much lower than the ring frequency, bending of the pipe
wall is neglected [14]. To simplify the stress–strain relationships, it is assumed that the
pipe thickness h is small compared to the mean radius a. Applying Hooke’s and Newton’s
laws, the relationships between the axial force per unit surface area of the pipe fp applied
to the pipe alone, and the pressure pp acting on the pipe alone, to the axial and radial
displacements up and wp are determined to be [14]

fp = ρpipeh
∂2up

∂t2 −
E∗

pipeh

1 − ν2
pipe

(
∂2up

∂x2 +
νpipe

a
∂wp

∂x

)
(4a)

pp = ρpipeh
∂2wp

∂t2 −
E∗

pipeh

a
(

1 − ν2
pipe

)(νpipe
∂up

∂x
+

wp

a

)
(4b)

where E∗
pipe = Epipe

(
1 + jηpipe

)
, ρpipe and νpipe are the complex Young’s modulus, density,

and Poisson’s ratio of the pipe, respectively, in which Epipe and ηpipe are the storage mod-
ulus and loss factor of the pipe wall, respectively [37]. Note that as shown in Figure 1b,
the applied pressure and distributed axial force are assumed to be harmonic in both space
and time, so that pp = Pp exp(j(ωt − kx)), fp = Fp exp(j(ωt − kx)), and the resulting
displacements are up = Up exp(j(ωt − kx)) and wp = Wp exp(j(ωt − kx)). Substituting
pp, fp, up and wp in Equations (4a) and (4b), and assuming that the wave speed in the pipe
wall is much greater than the predominantly fluid-borne wave in the pipe (which is the
case for plastic water distribution pipes where the wave speed in the pipe wall is typically
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between three and four times that of the predominantly fluid-borne wave [14]), such that
(ka)2K̃(pipe) ≫ ω2ρpipeh, results in

{
Fp
Pp

}
=

[
(ka)2K̃(pipe) jkaνpipeK̃(pipe)

−jkaνpipeK̃(pipe) K̃(pipe) − ω2ρpipeh

]{
Up
Wp

}
(5)

where K̃(pipe) = E∗
pipeh/

[
a2
(

1 − ν2
pipe

)]
is the hoop stiffness of a cylindrical ring of unit

length, in which the displacement in the axial direction is constrained to be zero. The
matrix in Equation (5) is the wave dynamic stiffness matrix for the pipe wall, K(pipe) in
Equation (3).

3.2. Wave Dynamic Stiffness Matrix of the Water within the Pipe

The acoustic pressure at any point in the pipe due to the predominantly fluid-borne
wave is given by [14]

pr = Pr exp(j(ωt − kx)) (6)

where Pr = PJ0
(
kR

waterr
)

is the amplitude of the pressure at radius r, in which J0(•) is a

Bessel function of the first kind of zero order, and kR
water =

√
k2

water − k2 is the component of
the wavenumber in the radial direction, in which kwater = ω/cwater is the wavenumber for
water, where cwater is the wave speed in an infinite homogeneous body of water, which is
approximately 1500 m/s. The relationship between the pressure and the radial acceleration
is given by ρwater

∂2wr
∂t2 = − ∂pr

∂r so that ω2ρwaterWr = kR
waterPJ′0

(
kR

waterr
)
, where ′ denotes the

derivative with respect to r. Considering the relationship between Pr and P, by setting
r = a, which is the mean radius of the pipe, the wave dynamic stiffness of the water at a
radius a is determined to be

Pa

Wa
=

ω2ρwater

kR
water

J0
(
kR

watera
)

J′0
(
kR

watera
) (7a)

At low frequencies, when the acoustic wavelength in water is much greater than
the diameter of the pipe J0

(
kR

watera
)
/J′0
(
kR

watera
)

≈ −2/kR
watera. Noting that k2

water =
ω2ρwater/Bwater, Pw = Pa and Ww = Wa, Equation (7a) can be written as

Pw

Ww
= K(water) =

K̃(water)(
k2

k2
water

− 1
) (7b)

where K̃(water) = 2Bwater/a, in which Bwater is the bulk modulus of water. Equation (7b)
gives the non-zero element in the matrix K(water).

3.3. Wave Dynamic Stiffness Matrix of the Surrounding Medium

In the derivation of the wave dynamic stiffness matrix, it is assumed that the surround-
ing medium is homogeneous and isotropic and can support the propagation of dilatational
and shear waves, i.e., it has both bulk and shear storage moduli, denoted by Bmedium and
Gmedium, respectively. This means that the analysis is valid for soil, but a surrounding
medium of water can also be considered by simply setting the shear modulus to zero.

The wave equations for the surrounding medium are given in terms of displacement
potentials as [38]

∇2ψ − 1
c2

s

∂2ψ

∂t2 = 0 (8a)

∇2ϕ − 1
c2

d

∂2ϕ

∂t2 = 0 (8b)
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where ∇2 = ∂2

∂r2 + 1
r

∂
∂r + ∂2

∂x2 , and cd =
√
(Bmedium + 4Gmedium/3)/ρmedium and

cs =
√

Gmedium/ρmedium are the wave speeds corresponding to dilatational and shear
waves, respectively. These two waves are given by

ψ = ΨH0

(
kR

s r
)

exp(j(ωt − kx)) (9a)

ϕ = ΦH0

(
kR

d r
)

exp(j(ωt − kx)) (9b)

where H0(•) is a Hankel function of the second kind of zero order describing the outgo-
ing waves that are propagating from the pipe wall into the surrounding medium, and

kR
s =

√
k2

s − k and kR
d =

√
k2

d − k are the surrounding medium radial wavenumbers, in
which ks = ω/cs and kd = ω/cd are the dilatation and shear wavenumbers. The surround-
ing medium displacement in the axial and radial directions are related to the displacement
potentials by [33]

umedium =
∂ϕ

∂x
− 1

r
∂ψ

∂r
− ∂2ψ

∂r2 (10a)

wmedium =
∂ϕ

∂r
+

∂2ψ

∂x∂r
(10b)

Substituting Equations (9a) and (9b) into Equations (10a) and (10b) and setting r = a,
results in {

Um
Wm

}
=

[
kR

s Hs −jkHd
−jk kR

d

]{
kR

s ΨH′
0
(
kR

s a
)

ΦH′
0
(
kR

d a
) } (11)

where Hs = H0
(
kR

s a
)
/H′

0
(
kR

s a
)

and Hd = H0
(
kR

d a
)
/H′

0
(
kR

d a
)
. The relationship between

the shear and normal stresses, and the displacements are respectively given by

τ = −Gmedium

(
∂wmedium

∂x
+

∂umedium
∂r

)
(12a)

σ = −(Bmedium − 2Gmedium/3)∇2ϕ − 2Gmedium
∂wmedium

∂r
(12b)

where the stresses are related to forces applied in the same direction as the displacements.
Combining Equations (10a), (10b), (12a), and (12b), and setting r = a, results in{

Fm
Pm

}
= Gmedium

[
2k2 − k2

s j2kkR
d

−j2k
(
1 + kR

s rHs
)

kR
d −

(
2k2 − k2

s
)
rHd

]{
kR

s ΨH′
0
(
kR

s a
)

ΦH′
0
(
kR

d a
) } (13)

Combining Equations (11) and (13) gives{
Fm
Pm

}
= Gmedium

[
−ςkR

d j
(
2 − ςHd

)
k

−j
(
2 − ςHd

)
k 2

a + ςHs HdkR
s

]{
Um
Pm

}
(14)

where ς = k2
s

kR
d kR

s Hs+k2 Hd
. The matrix in Equation (14) is the wave dynamic stiffness matrix

for the surrounding medium, denoted by K(medium). If the surrounding medium is water,
then it has no shear stiffness, and Equation (14) reduces to

{
Fm
Pm

}
=

0 0

0 Bwater
k2

d
kR

d
Hd

{Um
Pm

}
. (15)
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3.4. Determination of the Predominatly Fluid-Borne Wavenumber

To determine an expression for the wavenumber, F is first set to zero in Equation (3),

and it is noted from Equations (5) and (14) that K(pipe)
21 = −K(pipe)

12 and K(soil)
21 = −K(soil)

12 ,
so that

P
W

∣∣∣∣
F=0

= K(water) + K(pipe) + K(pipe_medium) + K(medium) (16)

where K(pipe) = K(pipe)
22 , K(pipe_medium) =

(
K(pipe)

12 +K(medium)
12

)2

K(pipe)
11 +K(medium)

11

and K(medium) = K(medium)
22 .

Also, by setting P = 0, so that there are only free waves, and substituting for K(water)

from Equation (7b), Equation (16) can be rearranged to give an expression for the wavenum-
ber of the predominantly fluid-borne wave, to give

k = kwater

(
1 +

K̃(water)

K(pipe) + K(pipe_medium) + K(medium)

) 1
2

(17)

Note that the wavenumber is a function of the wave dynamic stiffnesses. One of
these is related to the water in the pipe, K̃(water), one to the pipe wall K(pipe), one to the
surrounding medium K(medium), and one is related to the interaction between the pipe and
the surrounding medium K(pipe_medium). Note, however, that the wave dynamic stiffnesses
given in Equation (17) are functions of the wavenumber k, so it must be solved in a recursive
way. If there is no axial distributed force acting on the pipe from the surrounding medium,
as would be the case if the surrounding medium is water, then K(pipe_medium) = 0. This is
also the condition when the contact between the soil and the pipe wall is lubricated, which
was considered in [30]. The formulation for this in terms of wave dynamic stiffness is given
in Appendix A.

The wavenumber rewritten in terms of wave dynamic stiffnesses as in Equation (17)
represents a novel approach. This new way of expressing the wavenumber facilitates an
investigation into the way in which the pipe properties and the interface between the soil
and the pipe affect the wave behaviour and, hence, leak noise propagation.

4. Experimental Measurements in Two Test Rigs
4.1. Descriptions of Test Rigs

To validate the theoretical model described in Section 3, some experimental data from
two tests rigs were compared with predictions from the model. The test rigs are located in
São Paulo in Brazil, which is known to have clay soil, and Blithfield in the UK, which is
known to have sandy soil. Their schematic diagrams are shown in Figure 2a,b, respectively,
together with photographs of the accelerometers at the access points. More information
about these experiments has been previously documented in [32] for the São Paulo test rig
and [20] for the Blithfield test rig. Note that the photographs of the São Paulo test rig show
the pipe before it was buried.

The São Paulo test rig consists of a polyvinyl chloride (PVC) pipe buried at a depth
of about 0.5 m in stiff clay soil [31]. Tables 1 and 2 show the estimated pipe and soil
parameters. Measurements were made at access points P1 and P2, which are 7 m apart,
with the leak located 1.25 m from Point P1, as shown in Figure 2a. The leak was created
with a small hole in the pipe and the vibration of the pipe was measured using type
4506-B-003 Bruel and Kjaer accelerometers with a voltage sensitivity of 500 mV/g. Two
60 s time histories were recorded using an LMS Scada data acquisition system with a
sampling frequency of 12.8 kHz. The Blithfield test rig consists of a pipe made from high-
performance polyethylene (HPPE) and is buried at a depth of about 0.8 m in sandy soil [20].
The estimated pipe and soil properties are given in Tables 1 and 2. The measurement
positions were at access points P1 and P2, which are 30 m apart, and the leak was created at
point P1, as shown in Figure 2b. The leak was generated using a small globe valve attached
to the end of a standpipe connected to the underground hydrant valve, and the vibration
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of the pipe was measured using type 4383 Bruel and Kjaer accelerometers with a charge
sensitivity of 31 pC/g. Two 60 s time histories were recorded using a DATS data acquisition
system with a sampling frequency of 5 kHz.
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Table 1. Pipe properties of each test rig.

Properties of the Pipe Blithfield São Paulo

Young’s modulus Epipe (N/m2) 1.78 × 109 4.3 × 109

Density ρpipe (kg/m3) 900 900
Loss factor ηpipe 0.06 0.06

Poisson’s ratio νpipe 0.4 0.4
Pipe radius a (mm) 80 35.8

Pipe wall thickness h (mm) 9.85 3.4

Table 2. Soil properties of each test rig.

Properties Blithfield São Paulo

Bulk modulus Bmedium (N/m2) 1.36 × 108 4.0 × 109

Shear modulus Gmedium (N/m2) 3.2 × 107 1.44 × 108

Bulk and shear loss factor 0.06 0
Density ρmedium (kg/m3) 2000 2000

Poisson’s ratio 0.39 0.49
Dilatational wave speed cd (m/s) 299 1442

Shear wave peed cs (m/s) 126 552

4.2. Experimental Results

The processed experimental data is plotted in Figure 3. There are three plots for each
data set, corresponding to the wave speed, wave attenuation (in dB/m), and coherence.
Also plotted in each graph (with the exception of coherence) is the predicted quantity,
calculated using the model with the parameters given in Tables 1 and 2. The wave speed
can be determined from the experimental data by noting that the wave speed c = ω/Re{k}
and Re{k} = −ϕ/∆ where ϕ is the phase of the cross-spectrum and ∆ is the difference
in path lengths between the leak and the two measurement positions. The attenuation in
dB/m is given by 20 log10|T|/∆ where T is the FRF between the acceleration at the two
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measurement positions [32]. The experimental data contains leak noise within a certain
frequency band because of the band-pass filtering effects of the pipe–sensor system and
the measurement noise. This frequency band corresponds to when the frequency range
in which the coherence is high, and is denoted as a shaded area with vertical dotted
lines at the edges. The coherence between signals measured at points A and B is defined
as γ2

AB(ω) = |SAB(ω)|2/SAA(ω)SBB(ω), in which SAB(ω) is the cross-spectral density
between the signals, and SAA(ω) and SBB(ω) are the power spectral densities of the signals
at points A and B, respectively.
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Figure 3. Comparison of measurements made on the two sites shown in Figure 2 and predictions
made using the model with the parameters given in Tables 1 and 2. (a) São Paulo, Brazil (clay soil);
(b) Blithfield, UK (sandy soil). (i) wave speed, (ii) attenuation, (iii) coherence (thick blue solid lines);
predictions (thin black solid lines). The shaded region bounded by the red thick dotted lines denotes
the bandwidth where there is good coherence.

For the São Paulo data, the frequency range over which leak noise was measured was
found to be between 220 Hz and 780 Hz. Note that the factors affecting this frequency
range are dependent on the specific pipe geometry and material properties of each pipe–
soil system, and are discussed in detail in [20]. Within this bandwidth, the wave speed
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which, on average, is about 550 m/s, is reasonably well predicted, as is the attenuation
that ranges from about 2 dB/m to 7 dB/m. For the Blithfield data, it can be seen that
the frequency range in which there is measured leak noise is from about 20 Hz to 145 Hz.
Within this bandwidth, the wave speed which, on average, is about 380 m/s, is reasonably
well predicted, as is the attenuation that ranges from about 0.1 dB/m to 1.5 dB/m. The
bandwidth in which leak noise is found is much lower than for the São Paulo data because
the distance between the measurement points is much greater (30 m compared to 7 m).
Because of the larger pipe resulting in a smaller hoop stiffness, and a much lower shear
modulus of the soil, the wave speed is much lower than the São Paulo test rig. The
attenuation rates for the two test rigs cannot be compared directly because the frequency
ranges in which there is leak noise are different. However, the attenuation rate is predicted
to be much higher in the Blithfield test rig, primarily because of the soil properties.

5. Effects of the Component Parts of the System

To illustrate the relative importance of the wave dynamic stiffness terms K(pipe),
K(pipe_medium), and K(medium) in Equation (17), their real and imaginary parts are plotted
for three conditions in Figures 4a and 4b, respectively. In each case, the pipe is considered
to be made from medium-density polyethylene (MDPE), whose dimensions and material
properties are given in Table 3. The properties of three types of surrounding medium,
namely water, stiff clay soil, or sandy soil, some of which have been determined from
measurements at different test sites, are given in Table 4.
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for three systems with the same buried MDPE pipe for a surrounding medium of (i) water,
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{

K̃(pipe)
}
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{

K̃(pipe)
}

(black dashed line); K(soil)/Re
{

K̃(pipe)
}

(thin red solid line);(
K(pipe) + K(pipe_soil) + K(soil)

)
/Re

{
K̃(pipe)

}
(thick solid blue line).



Acoustics 2024, 6 169

Table 3. Medium-density polyethylene (MDPE) pipe properties used in the simulations.

Properties of the MDPE Pipe Value

Young’s modulus Epipe (N/m2) 2 × 109

Density ρpipe (kg/m3) 900
Loss factor ηpipe 0.06

Poisson’s ratio νpipe 0.4
Pipe mean radius a (mm) 84.5

Pipe wall thickness h (mm) 11

Table 4. Water and soil properties used in the simulations.

Properties Water Stiff Clay Soil Sandy Soil

Bulk modulus Bwater, Bmedium (N/m2) 2.25 × 109 4.0 × 109 4.0 × 107

Shear modulus Gmedium (N/m2) 0 2.4 × 108 1.5 × 107

Bulk and shear loss factor 0 0 0
Density ρmedium (kg/m3) 1000 2000 2000

Poisson’s ratio 0.5 0.47 0.33
Dilatational wave speed cd (m/s) 1500 1414 141

Shear wave speed cs (m/s) 0 346 86

If the surrounding medium is water, then no waves radiate from the pipe into the
surrounding medium. If the surrounding medium is stiff clay soil, then a shear wave
propagates from the pipe into the soil, and if the surrounding medium is sandy soil, then
both shear and dilatational waves radiate from the pipe into the soil [20,32].

5.1. Pipe In Vacuo

Before discussing the effects of the different types of surrounding medium, it is instructive
to review the in vacuo case with the new formulation, i.e., a water-filled pipe alone, such
that K(medium) = 0. This case has been extensively studied, for example [14,16], so it is only

briefly discussed here. Referring to Equation (17), Re
{

K(pipe)
}
=

Epipeh

a2
(

1−ν2
pipe

) − ρpipehω2 and

Re
{

K(pipe_medium)
}
=

−Epipehν2
pipe

a2
(

1−ν2
pipe

) , so that Re
{

K(pipe) + K(pipe_medium)
}
=

Epipeh
a2 − ρpipehω2,

which means that the pipe is unconstrained in the axial direction. The term
Epipeh

a2 is the axially
unconstrained hoop stiffness, which is constant with frequency, and the inertial effect of the
pipe is given by the term −ρpipehω2, which is very small for frequencies well below the ring
frequency.

For an in vacuo pipe, Im
{

K(pipe)
}
=

Epipehηpipe

a2
(

1−ν2
pipe

) and Im
{

K(pipe_medium)
}
= −

Epipehν2
pipeηpipe

a2
(

1−ν2
pipe

) ,

so that Im
{

K(pipe) +K(pipe_medium)
}
=

Epipehηpipe
a2 , which is constant with frequency. Thus, for fre-

quencies well below the ring frequency K(pipe) +K(pipe_medium) +K(medium) ≈
Epipeh

a2

(
1+ jηpipe

)
.

5.2. Pipe Surrounded by Water

This case has been studied in [39] and is only briefly discussed here in the context of the
new formulation. The real parts of the wave dynamic stiffnesses K(pipe), K(pipe_medium) and
K(medium), normalised by Re

{
K̃(pipe)

}
, are plotted in Figure 4(ai) for the case when the

pipe is surrounded by water. Note that the model is valid since the upper frequency of
800 Hz is about 1/3 of the ring frequency. The difference between this case and the in

vacuo case is that K(medium) = Bwater
k2

d
kR

d
Hd, so that Re

{
K(medium)

}
= Bwaterk2

dRe
{

Hd
kR

d

}
,

which is negative or equal to zero, and exhibits mass-like behaviour [32]. It can be seen
from Figure 4(ai) that Re

{
K(medium)

}
is zero at zero frequency and becomes increasingly
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negative as frequency increases. Thus, the total real part of the dynamic stiffness, given by
the thick solid blue line in Figure 4(ai), has a normalised value corresponding to the axially
unconstrained hoop stiffness at zero frequency. It reduces as frequency increases, which is
mainly due to the mass loading effect of the surrounding water.

The normalised imaginary parts of the wave dynamic stiffnesses K(pipe), K(pipe_medium)

and K(medium) are plotted in Figure 4(bi). Again, note that the only difference between this
case and the in vacuo case is that Im

{
K(medium)

}
= Bwaterk2

dIm
{

Hd/kR
d
}

, which is zero at
zero frequency and is small but negative as frequency increases. This means that a small
amount of acoustic energy passes from the water to the pipe, which occurs because of
decaying wavefields in both the pipe and the soil, with the decay being greater in the pipe
than in the soil at any axial position. A normalised dynamic stiffness either higher or lower
than the green dotted line means that the component has a greater or lesser effect than that
of the pipe.

5.3. Pipe Surrounded by Stiff Clay Soil

The main differences between this case and when the pipe is surrounded by water are
that the soil has a shear stiffness and the bulk modulus of the soil is much higher than that
of water. In the particular case studied, the shear stiffness of the soil, given by 2Gmedium

a , is

larger than the constrained hoop stiffness of the pipe given by
Epipeh

a2
(

1−ν2
pipe

) . This has an effect

on the pipe wave speed and is discussed further in the next section.
The real parts of the wave dynamic stiffnesses K(pipe), K(pipe_medium) and K(medium), nor-

malised by Re
{

K̃(pipe)
}

, are plotted in Figure 4(aii). Note that Re
{

K(pipe)
}

=
Epipeh

a2
(

1−ν2
pipe

) −
ρpipehω2 as in the previous case. However, Re

{
K(pipe_medium)

}
is very small in comparison to

Re
{

K(pipe)
}

, and is zero at zero frequency, so that Re
{

K(pipe) + K(pipe_medium)
}
≈ Re

{
K(pipe)

}
,

which means that the pipe is constrained in the axial direction due to the shear stiffness of
the soil and, consequently, has a higher hoop stiffness than when the pipe is surrounded by
water. Note that Re

{
K(medium)

}
is about 50% greater than Re

{
K(pipe)

}
, which can be seen by

examining the values at zero frequency in Figure 4(aii). As the wave dynamic stiffness of the soil
also exhibits mass-like behaviour, the Re

{
K(medium)

}
decreases as frequency increases. Thus, at

zero frequency, the total real part of the dynamic stiffness, given by the thick solid blue line in
Figure 4(aii), has a normalised value corresponding to the sum of the axially constrained hoop
stiffness and the shear stiffness of the soil. It reduces as frequency increases, which is mainly
due to the mass loading of the soil.

The normalised imaginary parts of the wave dynamic stiffnesses K(pipe), K(pipe_medium)

and K(medium) are plotted in Figure 4(bii). Note that Im
{

K̃(pipe)
}

is the same as the in vacuo

case, and that Im
{

K(pipe_medium)
}
≫ Im

{
K(medium)

}
for frequencies greater than about

200 Hz, so at higher frequencies, Im
{

K(pipe_medium)
}

accounts for the majority of energy
dissipation in this case. This means that the axial connection between the pipe and the
soil, which was neglected in [32] is an important factor in the leakage of acoustic energy
from the pipe to the soil in this case and should be included in a model of the pipe–soil
system. At higher frequencies, Im

{
K(pipe_medium)

}
is proportional to frequency, so the

energy dissipation due to shear wave propagation in the soil has the effect of adding linear
viscous damping to the pipe.

5.4. Pipe Surrounded by Sandy Soil

The main difference between this case and when the pipe is surrounded by clay soil
is that the bulk and shear modulus are much smaller. This means that the shear stiffness
of the soil only has a marginal effect on the pipe wave speed. However, because both the
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shear and dilatational wave speed in the soil are smaller than the pipe wave speed, both
waves radiate from the pipe, creating a large radiation-damping effect on the pipe.

The real parts of the wave dynamic stiffnesses K(pipe), K(pipe_medium) and K(medium),
normalised by Re

{
K̃(pipe)

}
, are plotted in Figure 4(aiii). Note that Re

{
K̃(pipe)

}
is the same

as in the previous cases. However, Re
{

K(pipe_medium)
}

and Re
{

K(medium)
}

are both very

small in comparison to Re
{

K(pipe)
}

, so that Re
{

K(pipe) + K(pipe_medium) + K(medium)
}
≈

Re
{

K(pipe)
}

, which means that although the pipe is constrained in the axial direction due
to the shear stiffness of the soil at zero frequency, the surrounding soil only has a marginal
stiffening effect at higher frequencies. The slight reduction in the total dynamic stiffness as
frequency increases is due to the mass loading effect of the soil as before.

The normalised imaginary parts of the wave dynamic stiffnesses K(pipe), K(pipe_medium)

and K(medium) are plotted in Figure 4(biii). Note that, as with in the previous cases,

Im
{

K(pipe)
}
=

Epipehηpipe

a2
(

1−ν2
pipe

) , but for frequencies up to about 100 Hz, Im
{

K(pipe_medium)
}
≈

Im
{

K(medium)
}

, and for frequencies greater than about 300 Hz, Im
{

K(pipe_medium)
}

≪

Im
{

K(medium)
}

, which is in contrast to the case when the pipe is surrounded by stiff clay

soil. At higher frequencies, Im
{

K(medium)
}

is proportional to frequency, so the energy
dissipation due to shear and dilatational wave propagation in the soil has the effect of
adding linear viscous damping to the pipe.

6. Estimation of Wave Speed and Wave Loss Factor

Approximate expressions for the wave speed and wave loss factor can be determined
to gain further physical insight. First, Equation (17), can be written as

k
kwater

=

(
1 +

1
Re{γ}(1 + jη)

) 1
2

(18)

where γ = K(pipe)+K(pipe_medium)+K(medium)

K̃(water) and η = Im{γ}
Re{γ} is the combined loss factor for the

pipe wall, the surrounding medium, and the water contained in the pipe. If η ≪ 1, then
Equation (18) can be written as

k
kwater

=

(
1 +

1
Re{γ}

) 1
2
(

1 − jη
2(1 + Re{γ})

) 1
2

(19)

Noting that c = ω
Re{k} and ηwave = − 2Im{k}

Re{k} , the wave speed and loss factor associated
with this wave for a small loss factor are given by

c ≈ cwater

(
1 +

1
Re{γ}

)− 1
2

(20a)

ηwave ≈ η

1 + Re{γ} (20b)

The wave speeds and wave loss factors for the pipe systems surrounded by the three
surrounding media whose parameters are given in Table 4 are shown in Figures 5a and 5b,
respectively. Figure 5c shows β = ηwave

2c normalised by the attenuation factor for a massless
in vacuo pipe.
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Figure 5. Properties of the three systems corresponding to those in Figure 4 for a surrounding medium
of (i) water, (ii) clay soil, and (iii) sandy soil; (a) Wave speeds; massless in vacuo pipe (thin red solid
line); pipe surrounded by the medium, (thick blue solid line); shear wave in the external medium
(thick green dotted line); dilatational wave in the external medium (thick black dashed-dotted line).
(b) Loss factors; pipe surrounded by external medium (thick blue solid line); massless in vacuo pipe
(thin red solid line). (c) Normalised value of β.

6.1. Pipe In Vacuo

This is the benchmark case which the others are compared with. As the loss factor of the
pipe wall is much less than one, the wave speed is given by Equation (20a). If the mass of

the pipe is neglected, then Re{γ} =
Epipeh/a2

2Bwatera , which is the ratio of the axially unconstrained
hoop stiffness of the pipe and the stiffness of the water inside the pipe. For the parameters
given in Tables 3 and 4, Re{γ} ≈ 0.06, which results in a wave speed of about 351 m/s. This
reduces marginally with frequency due to the mass of the pipe wall. The wave loss factor
is given with Equation (20b) which, for the parameters given in Tables 3 and 4, is given by
ηwave ≫ ηpipe, and is constant with frequency. If the mass of the pipe wall is neglected, the
loss factor of the pipe is much less than unity, and Re{γ} ≪ 1, which is the case for the pipe
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with the parameters given in Table 1, then β ≈ ηpipe

2cwater(Re{γ})
1
2
= 3.5 × 10−4 s/m. Note that

this term is constant with frequency.

6.2. Pipe Surrounded by Water

The wave speed is plotted in Figure 5(ai). Also plotted in this figure is the wave
speed for a massless in vacuo pipe for comparison, and the wave speed of the dilatational
wave in the surrounding water. The main effect of the mass of the pipe and the mass-
loading effect of the surrounding water is to marginally reduce the wave speed as frequency

increases from c ≈ cwater

(
1 + 2Bwatera

Epipeh/a2

)− 1
2

at zero frequency, which is shown as the circle

in Figure 5(ai). The wave loss factor is plotted in Figure 5(bi) together with the loss factor of
the pipe. It can be seen that at zero frequency, ηwave ≈ ηpipe, as the added mass effect has no
influence at this frequency. It can also be seen that the loss factor marginally increases with
frequency, which is because Re{k} reduces because of the mass loading of the surrounding
water. Note that because no waves propagate from the pipe into the water, the acoustic
energy is constrained in the pipe.

Combining the wave speed and the wave loss factor gives the attenuation factor β.
This is normalised by the attenuation factor for the massless in vacuo case discussed in
Section 5.1 and is plotted in Figure 5(ci). It can be seen that this increases with frequency,
which is due to a small increase in the wave loss factor and a larger decrease in the wave
speed. Both are predominantly due to the mass loading of the surrounding water.

6.3. Pipe Surrounded by Stiff Clay Soil

The wave speed is plotted in Figure 5(aii), together with the shear and dilatational
wave speeds in the soil. As there is significant loss in the system at higher frequencies,
Equation (20a) is only valid at low frequencies (less than about 100 Hz). At zero frequency,

however, Equation (20a) is valid and Re{γ(0)} =

(
Epipehηpipe

a2
(

1−ν2
pipe

) + 2Gmedium
a

)
/
(

2Bwater
a

)
. For

the parameters given in Tables 3 and 4, Re{γ(0)} = 0.18, which gives a wave speed of
approximately 585 m/s. This is shown as the circle in Figure 5(aii). It can be seen that
as frequency increases, the wave speed first decreases by a small amount, which is due
predominantly to the mass loading of the soil, and then increases by a small amount, which
is due to the shear wave radiation into the soil. Note that the dilatational wave does not
propagate away from the pipe because the dilatational wave speed is greater than the
wave speed in the pipe. However, because the shear wave speed in the soil is non-zero but
smaller than the pipe wave speed, it propagates at an angle of approximately 59◦ from the
axis of pipe, leaking energy into the soil.

The wave loss factor is plotted in Figure 5(bii) together with the loss factor of the pipe.
It can be seen that at low frequencies, below about 200 Hz, the wave loss factor is signif-
icantly less than the pipe loss factor. At zero frequency, it is given by ηwave ≈ ηpipe

1+Re(γ(0)) .
It is clear that the large shear stiffness of the soil is responsible for this. As the frequency
increases, the wave loss factor increases significantly, and this is due to the leakage of
energy from the pipe into the soil, by way of the radiated shear wave. The normalised value
of β is plotted in Figure 5(cii). It can be seen that this is less than unity at zero frequency, but
it increases rapidly with frequency. Concerning the two factors that affect this parameter,
the pipe wave speed is approximately constant with frequency, so the wave loss factor is
the main influence on the frequency dependency of β.

6.4. Pipe Surrounded by Sandy Soil

The wave speed is plotted in Figure 5(aiii), together with the shear and dilatational
wave speeds in the soil. As with the clay soil, there is a significant loss in the system
at higher frequencies, so Equation (20a) is only valid at low frequencies (less than about
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100 Hz). At zero frequency, Re{γ(0)} =

(
Epipehηpipe

a2
(

1−ν2
pipe

) + 2Gmedium
a

)
/
(

2Bwater
a

)
, and for the

parameters in Tables 3 and 4, Re{γ(0)} = 0.08. This results in a wave speed of about
398 m/s, which remains roughly constant over the whole frequency range shown. Because
the shear and dilatational wave speeds in the soil are smaller than the pipe wave speed,
they propagate at angles of approximately 77◦ and 66◦, respectively, from the axis of pipe,
leaking energy into the soil.

The wave loss factor is plotted in Figure 5(biii) together with the loss factor of the pipe.
It can be seen that for practically the whole frequency range, the wave loss factor is greater
than the pipe loss factor. At zero frequency, it is given by ηwave ≈ ηpipe, and then increases
almost linearly with frequency. At low frequencies, the loss is significantly greater than
that for the clay soil which is due to two things: The first is that the soil does not have a
significant stiffening effect, and the second is that two waves, rather than one, propagate
energy from the pipe into the soil. The normalised value of β is plotted in Figure 5(ciii).
Because the pipe wave speed is approximately constant with frequency, the dominant
influence on this parameter is the wave loss factor.

7. Conclusions

This paper has presented a detailed investigation into the physical mechanisms of
leak noise propagation in buried plastic water pipes, which include the material properties
of the system, the geometry, and, importantly, the interface between the pipe and soil. To
facilitate this work, an alternative physics-based model for the wavenumber of a buried
plastic water pipe was developed. By assuming that there is only one dominant wave in the
pipe, namely the predominantly fluid-borne wave, a compact model of the wavenumber
has been presented. This involves the wave dynamic stiffness matrices of the component
parts of the system. It has been shown that, although the shear stiffness of the soil and the
hoop stiffness of the pipe have a strong influence on the wave speed, the axial connection
between the pipe and the soil can have a significant impact on wave attenuation in some
situations. To support the theoretical modelling, some experiments were performed on
two test rigs characterised by distinct pipe and soil properties. The model gave good
predictions of the experimental results in both cases. The new model can, therefore, predict
the wave behavior in buried plastic water pipes, and hence be used to determine the factors
governing the way in which leak noise propagates in them.
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Appendix A Lubricated Connection between the Pipe and the Soil

In the work [39], it was assumed that there was no axial coupling between the soil
and the pipe. They called this a “lubricated” condition. In this case, Equation (3) can be
written as

{
F
P

}
=

[K(pipe)
11 K(pipe)

12

K(pipe)
21 K(pipe)

22

]
+

[
0 0
0 −K(water)

]
+

0 0

0 K(medium)
22 − K(medium)

12 K(medium)
21

K(medium)
22

{Up
Wp

}
(A1)

Following the procedure in the derivation of Equation (17), i.e., setting F = P = 0 and
substituting K(water) from Equation (7b), results in

k = kwater

(
1 +

K̃(water)

K(pipe) + K(medium)

) 1
2

(A2)

where K(pipe) = K(pipe)
22 +

(
K(pipe)

12

)2

K(pipe)
11

and K(medium) = K(medium)
22 +

(
K(medium)

12

)2

K(medium)
11

. Note that

in this case, K(pipe) = E∗
pipeh/a2, which is the hoop stiffness of a ring of unit length in

which there is no axial constraint (i.e., it is free to move in the axial direction). When
the pipe is coupled both radially and axially with the soil (as is the case in Section 3),
K(pipe) = E∗

pipeh/
[

a2
(

1 − ν2
pipe

)]
, which is the hoop stiffness of a ring of unit length, in

which there is an axial constraint (i.e., there is no displacement in the axial direction).
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