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Abstract: In the business of growing and selling ornamental plants, it is important to keep track of
plants from nursery to distribution. Radio Frequency Identification (RFID) technology provides an
easier tracking method for inventories of plants by attaching tags with unique identifiers. Due to the
vast area of most nurseries, there is a need to have an efficient method of scanning RFID tags. This
paper investigates the use of drones and RFID, specifically, the effects of RFID reader power and
flight altitude on tag counts. The experimental setup evaluated three RFID reader power levels (15
dBm, 20 dBm, and 27 dBm), three flight altitudes (3 m, 5 m, and 7 m), the number of passes (one or
two), and two plant types (‘Green Giant’ arborvitae and ‘Sky Pencil” holly). For RFID tags, four types
were used (L5, L6, L8, and L9), with two antenna types (dog-bone and square-wave) and two at-
tachment types (loop-lock and stake). For each power level, the UAV was flown to three different
altitudes of 3 m, 5 m, and 7 m above the ground. At each altitude, two scan passes were performed
at a constant speed of approximately 1.5 m/s. Each plot of plants (two in total) was randomly tagged
with a total of 40 RFID tags per plot. Field data were collected from September to December 2023
(on a total of eight dates). The data showed that a power level of 15 dBm and an altitude of 3 m
yielded a tag count of 53%, while counts of 34% and 16% were achieved at 5m and 7 m, respectively.
At 20 dBm and an altitude of 3 m, the count accuracy across all tag types and both plants was 90%.
When the altitude was increased to 5 m and 7 m, tag-count accuracy dropped to 75% and 33%,
respectively. The highest count accuracy was observed at 27 dBm and an altitude of 3 m, with a
reading accuracy of 98%. Tag types L6 and L9 performed better at any power level and altitude,
while L5 and L8 performed well at a higher power level and lower altitude. In this experiment,
canopy properties (size and shape) had no effect on the number of tags read. This study aimed to
evaluate the RFID power and UAV altitude achieving the highest accuracy in scanning the RFID
tags. Furthermore, it also assessed the effects of plant growth on the scanning efficiency and accu-
racy of the system.
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1. Introduction

The ornamental horticulture industry in the United States is a multibillion-dollar in-
dustry that significantly contributes to the economy of every state [1]. The economic im-
pact of the green industry, including ornamental plants, is substantial, with a total output
of tree production and tree care services valued at $14.55 billion, translating into $21.02
billion in total output impacts, 259,224 jobs, and $14.12 billion in value added [2]. The
largest individual industry sectors in terms of employment and GDP contributions are

AgriEngineering 2024, 6, 1319-1335. https://doi.org/10.3390/agriengineering6020076

www.mdpi.com/journal/agriengineering



AgriEngineering 2024, 6

1320

landscaping and horticultural services; greenhouse, nursery, and floriculture production;
and lawn and garden equipment and supplies stores [3]. The production and commercial-
ization of ornamental plants have faced challenges, particularly due to the impact of the
COVID-19 pandemic. Substantial changes have occurred in food and ornamental plant
production chains, and variation in the size of companies between small and large pro-
ducers is common in the flower and ornamental plant production sector [4,5]. Despite
these challenges, the ornamental plant agribusiness has shown increasing production
trends, indicating its resilience and potential for growth [6]. The significance of ornamen-
tal plants extends beyond their economic value. Ornamental plants play a crucial role in
developing the agricultural sector and agro-tourism, contributing to the overall diversifi-
cation and growth of the horticultural industry [7]. Additionally, the use of ornamental
plants in phytoremediation presents an ecological alternative for removing contaminants
from water, air, and soil, highlighting their environmental importance [8].

The significance of inventory in ornamental plant production is multifaceted and cru-
cial for various aspects of the industry. Inventory management plays a pivotal role in en-
suring the availability of diverse ornamental plant species, which is essential for meeting
the demands of the market and consumers [9]. Additionally, inventory management is
vital for maintaining the visual quality of plants and determining their productivity,
which ultimately influences their commercial value [9]. Furthermore, inventories of orna-
mental plants are essential for assessing the attractiveness of these plants to natural ene-
mies of pests, which can have implications for pest control in horticultural settings [10].
Moreover, inventory management is integral for the conservation and sustainable exploi-
tation of ornamental plant species. Neglected and underutilized plants (NUPs) have the
potential for sustainable exploitation in the ornamental horticultural sector, and invento-
rying these species is a crucial step in recognizing their value and feasibility for commer-
cialization [11]. Additionally, the conservation of ornamental plant genetic resources
through inventory management is essential for preserving biodiversity and supporting
research initiatives [12].

Furthermore, inventory management is important for addressing challenges such as
plant diseases associated with phytoplasma and viruses, which can significantly impact
the production of ornamental plants and lead to economic losses [13]. By maintaining ac-
curate inventories, producers can effectively monitor and manage the health of ornamen-
tal plants, mitigating the impact of diseases and ensuring the quality of the plants for com-
mercial purposes.

Using drones in inventory management for ornamental plant production has
emerged as a significant technological advancement with many implications. Drones, also
known as unmanned aerial vehicles (UAVs), have been increasingly employed in agricul-
ture for monitoring and managing crop production [14,15], and their application in the
ornamental plant industry is gaining traction [16]. Drones serve as a smart farming tech-
nology, enabling the monitoring and prediction of crop performance and assessing the
need for and impacts of fertilizer and pesticide applications. This technology has the po-
tential to revolutionize inventory management in ornamental plant production by provid-
ing efficient and accurate data collection on plant growth, health, and spatial distribution.
Integrating drones in inventory management for ornamental plants offers several ad-
vantages, including the ability to conduct rapid and comprehensive surveys of plant pop-
ulations, leading to improved decision-making processes for producers [16]. Drones can
facilitate the assessment of plant health. Additionally, using drones can contribute to op-
timizing resource utilization, such as of water and fertilizers, by providing real-time data
on plant conditions and environmental factors. Furthermore, the employment of drones
in inventory management aligns with the broader trend in precision agriculture, where
technology is leveraged to enhance the efficiency and sustainability of agricultural prac-
tices [16]. The high-resolution imaging capabilities of drones enable detailed monitoring
of ornamental plant nurseries, allowing for precise inventory assessments and identifying
areas for improvement or intervention. This level of precision can lead to more targeted
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and effective management strategies, ultimately contributing to the overall productivity
and quality of ornamental plant production.

RFID and drones are increasingly being used for inventory management in various
industries. The integration of RFID technology with drones has shown promising results
in enhancing inventory control and supply chain management. Li et al. (2021) established
a passive RFID localization scheme based on drones for inventory management in ware-
houses, demonstrating the potential of this technology in real-world applications [17].
Furthermore, Turkler et al. (2022) highlighted the use of drones carrying RFID readers for
dynamic inventory checks in factory environments, emphasizing the practicality of this
approach in industrial settings [18]. Additionally, Guruswamy et al. (2022) emphasized
the implementation of RFID and drone technology in retail supply for tracking products
and improving inventory management, further supporting the relevance of these technol-
ogies in supply chain operations [19]. Moreover, Wang et al. (2017) estimated RFID values
from the perspective of inventory management and proved that RFID revolutionized sup-
ply chain management [20]. Additionally, Li and Visich (2006) mentioned that RFID can
be used to track the movement of products through the supply chain from production to
the retail point of sale in real time, providing higher visibility for inventory and assets in
the supply chain [21]. With RFID systems, companies would have increased product vis-
ibility, reduce out-of-stock items, trim warehouse costs, eliminate stock errors, reduce
theft and shrinkage, and allow companies to regularly update their logistics and inventory
databases. Furthermore, Li et al. (2022) investigated drone-based RFID localization for fast
and accurate inventory management [17]. The literature has also discussed the potential
of drones to provide valuable information for inventory tracking and management in var-
ious industries, including construction projects. Quino et al. (2021) used drones and RFID
to address the specific need to move toward on-demand plant inventory [22]. Their work
focused on evaluating different RFID tags with respect to the tags’ distance and orienta-
tion in relation to the RFID reader. They also developed their own RFID reader, which
could be attached to a drone. Quino et al. (2022) also investigated the relationship between
drone speed and the number of flights needed to increase the number of scans of RFID
tags made by the drone [23]. Cutting-edge drone technology has been identified to make
inventory control more economical and efficient, aligning with the growing interest in
leveraging drones for supply chain optimization. This could be further expanded into
multiple drones flying together in a swarm [24], increasing efficiency even more.

Although outdoor plant inventorying using RIFD and UAVs has been investigated,
there has been no definitive result concerning the system’s accuracy in reading the tags
attached to the plants. For plant inventory applications, accuracy in scanning and count-
ing the tags is paramount. This study aims to evaluate the RFID power and UAV altitude
achieving the highest accuracy in scanning the RFID tags. Furthermore, it also assesses
the effects of plant growth on the scanning efficiency and accuracy of the system.

2. Materials and Methods

The present study conducted experiments in reading RFID tags attached to plants in
a nursery via an RFID-RM mounted on a UAV at different altitudes and RFID power set-
tings.

2.1. Study Site, UAV, and RFID Tags

The field data were collected at Dudley Nurseries in Thomson, GA, USA (33.52242,
-82.51449). A heavy lift drone (Matrice 600 Pro, Shenzhen, China) (Figure 1a) was used to
carry the 285 g RFID Reader Module (RFID-RM) (Figure 1b) and antenna. The RFID-RM
and antenna were used to scan the RFID tags [22] that were attached to plants’ stems or
stakes [23]. The UAV was able to handle a maximum payload of 6 kg, including a single
Turnigy 2200 mAh LiPo battery.
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(b)
Figure 1. (a) DJI Matrice 600 Pro and (b) RFID Reader Module (RFID-RM).

Figure 2a shows the RFID tags used in the experiment. All the tags used in the exper-
iment were passive and operated at a frequency of 900 Mhz. There were four types with
two different antenna designs (dog-bone and square-wave) and two attachment mecha-
nisms (loop-lock and stake). A summary of the tag types is shown in Table 1. The tags
were manufactured by Avery Dennison Corp., Mentor, OH, USA. The experimental lay-
out also included 2 marker tags (Figure 2b) of the L5 type, which were used to identify the
number of scan passes and the UAV height, respectively. The markers allowed us to au-
tomate the data collection without having to land the UAV every time the height was
changed, which minimized the experiment time by 67%, from 9 take-off and landing cy-
cles to just 3. The previous method required the UAV to land after each flight level and
power setting combination. The Electronic Product Codes (EPCs) of the markers were
used to separate the data in the log file into data per pass and UAV altitude.

Label L5 Location = oeation
plant Type P2 455 ant Type P2 594
Rep 555  owoscassasnasssissisds Rop 855 seissooiiossimioesd

Figure 2. RFID tag types (a) and marker tags (b).

Table 1. Summary of RFID tag types.

Tag Type Antenna Attachment
L5 dog-bone stake
L6 dog-bone loop-lock
L8 square-wave stake
L9 square-wave loop-lock

There were 20 tags per type spread across the two plots. Each plot included a total of
40 tags, with 10 tags of each type. The 40 tags were placed randomly within each plot. The
location for each tag was determined using a randomizer program.
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2.2. RFID Reader Module (RFID-RM) and Dashboard Application

The RFID module used in the experiment was smaller and lighter than the one used
in prior work [22]. The RFID-RM utilized an ARM microcontroller (ATSAM3XS8E, Micro-
chip, Chandler, AZ, USA) and an RFID Module chip (M6E-NANO, Novanta, MA, USA).
The RFID chip could be programmed to output a maximum power of 27 dBm. It also had
a transceiver (xBee, Digi, MN, USA), real-time clock (R.T.C.), and microSD card. The an-
tenna used in this experiment was also lighter, although it had the same specifications as
the antenna used in a previous experiment [22]. The antenna was suspended underneath
the RFID-RM (Figure 3) with a carabiner and tensioner, unlike the previous experiment,
in which the antenna was rigidly attached. The current configuration allowed the antenna
to sway and be detached quickly from the UAV. The module was powered by a 2200 mAh
4-cell LiPo battery mounted on the UAV chassis.

Figure 3. RFID-RM and suspended antenna.

The microcontroller in the RFID-RM controlled the RFID chip by setting the power
output and turned on the antenna to start scanning. The antenna emitted radio frequency
signals where the passive tags were energized then transmitted the data back to the an-
tenna. Data read by the RFID chip were sent serially to the microcontroller, where they
were stored to the microSD card and simultaneously broadcast wirelessly to the base com-
puter via the xBee transceiver.

A dashboard application installed in the base computer (Figure 4a) was developed to
control the RFID power setting and record the tag IDs scanned by the RFID-RM. Addi-
tionally, the dashboard application was able to enable/disable saving data to the microSD
card and set the tag EPCs for the ‘pass’ and ‘height’ marker tags. To minimize delays in
data reception from the RFID-RM, the dashboard application did not print the tag EPCs.
Another application (Figure 4b) was developed to display the tag EPCs and monitor the
tag EPCs for the ‘pass’ and ‘height’ tag EPCs. Both applications ran side by side, and each
received data from its own xBee transceiver.

# RFID Dashboard v2023 % 8 RFID Tag Console
PORT CONFIGURATION COM Pt Baud Rate

| serial port <] stopaits [1stopbit parity [Noparty 9l v Stat Scan Cear
Baud Rate | 57600 v Data Bits | 8 | Flow Control | None v

RFID CONFIGURATION
Power uSD Status

Height Tag Start

Pass Tag

TERMINAL

Status:

Pass Tag Marker!

:
(a) (b)

Figure 4. The (a) main dashboard and (b) marker detection applications.
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2.3. Plant Type and Plot Layout

Two plant types were provided by Dudley Nurseries for this study: Thuja X ‘Green
Giant’ (Figure 5a) and Ilex crenata ‘Sky Pencil” (Figure 5b). ‘Green Giant’ arborvitae is an
upright-growing needle evergreen, and ‘Sky Pencil” holly is an upright-growing broadleaf
evergreen. Production blocks of these plants were located in different areas of the nursery,
namely block W7 (33.52218, —82.51450) for the ‘Green Giant’ and block W10 (33.52330,
—82.51448) for the ‘Sky Pencil.” Forty plants were randomly selected within the larger pro-
duction block for tag treatments. The term ‘plot’ describes the sub-area within the larger
nursery block where tagged plants were located. On each reading date (4 total), 10 plants
were randomly selected for canopy measurements (height from the substrate surface to
the uppermost foliage and canopy width measured in two directions at right angles). Fig-
ure 6a shows the aerial view of plot W7, and tag assignments, including the ‘pass’ and
‘height’ tags, are described in the assignment map in Figure 6b. Tagged plants were one
row and column apart, with the pass and height markers situated on the front side (Figure
7). Plot W10 had a layout similar to plot W7; however, the tag placements were different
due to the random tag assignment.

(a) (b)
Figure 5. ‘Green Giant” arborvitae (a) and ‘Sky Pencil” holly (b).

L9 L6 L9 L6 L8 L5 L9 L9 L9 L8 P

L6 L8 L8 L6 L8 L5 L6 L8 L8 L8

L5 L6 L6 L5 L5 L6 L6 L9 L8 L8

L5 L6 L5 L5 L9 L9 L9 L5 L9 L9 H

(b)
Figure 6. W7 study area (a) and RFID tag assignment map (b).



AgriEngineering 2024, 6

1325

Pass Tag
Height Tag

s
S

Figure 7. Pass and height tag positions relative to the plot.

2.4. UAV Flight Plan and Repetitions

The experimental design evaluated three RFID power settings: 15 dBm, 20 dBm, and
27 dBm. The UAV was flown at three altitudes for each power setting: 3 m, 5 m, and 7 m.
The flight plan for each power setting was as follows: The UAV would take off and fly to
the lowest altitude (3 m), where it would make two passes in a U-shaped pattern. Between
passes at the same altitude, the UAV would fly to the pass marker once the ‘pass’ EPC tag
was acknowledged by the marker detection application. Once the second pass was com-
pleted, the UAV was flown over the height tag marker until the ‘height’ EPC tag was de-
tected. The UAV would be flown up to the next altitude (5 m) and the process repeated
until completion of all three altitudes. Once flights had been completed at all three alti-
tudes the UAV had landed, the RFID-RM was set to the next power level. Landing the
UAV was required since the RFID power setting could not be re-programmed midflight.
Once the power level was changed, the entire process was repeated two more times, as
described above, until a total of three take-off and landing cycles were conducted per plot.
The ground speed of the UAV was maintained at approximately 1.5 m/s.

Before any UAV flight campaign, a scan of the plot was performed using a handheld
RFID reader (RFD8500, Zebra, Lincolnshire, IL, USA) to ensure all the tags were present
(40 unique tags per plot). The tag EPC and type for each plant were recorded in both plots.
These data were used as a lookup table for tags that had been scanned and read. It allowed
classification of the tags read and identified the scanning frequency of a certain tag type.

2.5. Data Processing

Since the RFID-RM module was able to scan all tags within its range, the logged data
in the microSD card and dashboard application could have contained invalid or unknown
RFID tags. Thus, a desktop application was created to process the data from the two main
sources. Processing data from both sources allowed for cross-checking of the data for con-
sistency, and it also acted as a redundancy system in case data from either source were
corrupted. The data processing flow is described in Figure 8.

Log files were loaded to the data processing application as text files. The application
read each datum (tag EPC) and identified its validity in the first 6 bytes, which should
have been ‘00 00 4C". Then the application looked for the EPCs of the ‘pass’ and “height’
markers and isolated the EPCs into each pass made per flight level. With the data sorted
into passes per flight level, the EPCs in each pass were classified into their tag types (L5,
L6, L8, or L9) by referencing them with a lookup table with the EPCs of the tags attached
to the plants.
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Read data from log
file.

l

Filter RFID tag data.

|

Detect pass and
heighttags, isolate
data for each pass

and height.

|

[Count total number of|
tag EPCs and unique|
tag EPCs.

|

Classify EPCs into
tag types L5, L6, L8
and L9.

Figure 8. Data processing flow.

2.6. Plant Canopy Measurement

At each data collection date, the canopy sizes of 10 pre-selected plants for each species
were measured to monitor growth. Three canopy measurements were taken, consisting of
two width measurements (East-West, width 1 and North-South, width 2) and height from
the substrate surface to the uppermost foliage. The 10 plants measured were randomly
selected and tagged at the start of the experiment. The plants were measured before each
flight campaign. A growth index (GI) was calculated for every measurement period using
the following formula:

Gl =mxhxr? (1)

where:

h—plant height;

r—mean of width 1 and width 2.

Black plastic containers for ‘Green Giant’ arborvitae were size #3 (C-1200; 24 cm tall
x top diameter of 28 cm), and those for ‘Sky Pencil” holly were #7 (C-2800; 29 cm tall x top
diameter of 36 cm). Both containers were manufactured by Nursery Supplies, Chambers-
burg, PA, USA. The size of the experimental plot within each larger nursery production
block (W7 and W10) differed slightly due to the container spacing used by the nursery.
Figure 9 shows the spacing and layout of the plants in both plots.

PLOT W7 PLOT W10
‘T 19om ‘m‘
B=61cm B =69 cm
C=76cm C=104cm
(a) (b)

Figure 9. Pot spacing measurements for blocks W7 (a) and W10 (b).
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2.7. Scanning Efficiency and Accuracy

To determine the efficiency and accuracy of the tag-counting process, the net differ-
ence in unique tags read between the first and second passes (diff) was calculated. A neg-
ative value indicated a decrease in the number of unique tags detected between the first
and second passes.

dif f = pass2 — pass1 2)

where:

pass1—number of unique tags detected in the first pass;

pass2 —number of unique tags detected in the second pass.

Count accuracy was determined by the number of unique valid tags read per pass at
each RFID power setting and UAV altitude. This also constituted the sum of the unique
tag per type. To achieve 100% accuracy, there should have been 10 unique tags detected
per tag type.

L1+L2+L3+L4

Accuracy = 20 x 100% 3)

2.8. Statistical Analysis

The plant growth index (GI) was correlated by the total number of RFID tags read
before processing. The more RFID tags read by the system, the higher the chance of read-
ing all the unique tags. This was important in achieving the highest count accuracy. Linear
regression was applied to analyze the relationship between the plant growth index and
the total number of tags counted. The plant GI was set as the independent variable, while
the dependent variable was the total tags read. For plot W7, there were only three meas-
urement periods (September 21, October 27, and November 1) while plot W10 had four
(September 21, October 27, November 1, and December 14). The plant GI in these periods
was correlated with the total tags read in the same period. The hypothesis was that plant
canopy growth would not affect the scan count of the tags. There should have been no
large positive linear association between plant growth and tag count.

3. Results

In total, eight field experiments were conducted on September 9 and 21-22, October
19, November 1-2 and 27, and December 14-15. However, data for plot W7 were not gath-
ered on December 14 and 15 due to some plants accidentally being harvested by the
nursery along with the RFID tags. Each experiment consisted of three take-off and landing
cycles with an average flight time of 5.4 min.

3.1. Unique Tag Counts

Figures 10 and 11 show the unique RFID tags read at different RFID power settings
and UAV altitudes classified into different tag types. Data are the average of all flights.
Each tag type should have a maximum of 10 counts.

Unique ID Per Tag Type, Plot W7 @ 15 dBm Unique ID Per Tag Type, Plot W7 @ 20 dBm Unique ID Per Tag Type, Plot W7 @ 27 dBm

10 12 10

7.5 9 75
€ € €
3 3 3

o 5 O 6 o 5
o o o
I I it

25 3 25

0 - - 0 0

L5 L6 L8 L9 L5 L6 L8 L9 L5 L6 L8 L9
M 3m M 5m W 7m M 3m M 5m M 7m M 3m M 5m M 7m

Figure 10. Average number of unique tags detected per tag type for plot W7.
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Unique ID Per Tag Type, Plot W10 @ 15 dBm

10

7.5

Tag Count
(4]

25

0 -
L5

M 3m

Net Difference of Unique ID Tags, Plot W7 @ 15

Tag Count

L6

W 5m

dBm

Unique ID Per Tag Type, Plot W10 @ 20 dBm Unique ID Per Tag Type, Plot W10 @ 27 dBm

7.5 7.5

Tag Count
(4]

Tag Count
(9]

25 25

| 0
L8 L9

L9

L5 L6 L8 L9 L5 L6 L8

M 7m M 3m W 5m W 7m M 3m M 5m M 7m

Figure 11. Average number of unique tags detected per tag type for plot W10.

Data were the average of the experiments. The lowest RFID power level of 15 dBm re-
sulted in the lowest unique tag count, especially at higher altitudes. There was evidence of
tags not being read, specifically for L5 at the altitude of 7 m. Increased RFID power improved
the tag count but performed poorly, particularly with L5 and L8. Increasing the power to 27
dBm resulted in a significant increase in tag counts at lower altitudes. The highest tag count
was achieved at 3 m, with 100% of tags scanned. Overall, tag types L6 and L9 resulted in the
most unique tags detected at any power setting and UAV altitude. The performances of the
tag types were due to the orientation of the antennas. The antennas for the loop-lock tags were
oriented sideways, while stake tags were facing up. According to the study of Quino et. al.
(2021), RFID tags that were oriented sideways produced the highest scan count [21].

3.2. Unique Tag Counts per Pass

Since the UAV performed two passes at a given altitude, it was important to know
whether adding another pass improved the scanning performance. Figures 12 and 13
show the net difference (Equation (2)) in the number of tags scanned in the second pass.
Data from September 9 were not included since the “pass’ marker tag was not imple-
mented yet at that time.

Net Difference of Unique ID Tags, Plot W7 @ 27

Net Difference of Unique ID Tags, Plot W7 @ 20 dBm

dBm

Tag Count
Tag Count

Net Difference of Unique ID Tags, Plot W10 @

Tag Count

W 5m

15 dBm
hkn ‘l. II A
[ | | I I

&
%
2

M 5m

[
%,
<>

B 3m

[} &
% Q. %
<> >,

M 3m

0, 0,
2 2
e 4

M 7m

Figure 12. Net difference in the tags scanned after the second pass for plot W7.

Net Difference of Unique ID Tags, Plot W10 @
dBm

Net Difference of Unique ID Tags, Plot W10 @
dBm

Tag Count
Tag Count

8

6

2

: T
| I | | |} [ | [ ]

K K Q Q& & K Q Q & & K Q Q
xS, % U R L T T T T o EVE T %, %, Yo, %

SRR AN SN AN o e o 7 R T % SO A BN
B 3m M 5m W 7m M 3m W 5m W 7m H 3m o 5m o 7m

Figure 13. Net difference in the tags scanned after the second pass for plot W10.
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5250

3500
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For plot W7, 31% of the total passes had a negative difference, which means that the
number of unique tags detected decreased on the second pass or there was a count loss.
Plot W10 had a lower negative difference, at 22%. The data suggested that the first pass
usually yielded a higher unique tag count than the second pass. Although the UAV was
flown consistently, it was possible for it to veer from its flight path due to strong wind
gusts that might have affected the count. Most of the tag-count losses happened at higher
altitudes of 5m and 7 m.

3.3. RFID Tag Count

Data observation from the previous experiments showed that data logged on the mi-
croSD card had more data and tags read than the log generated by the dashboard appli-
cation. The logs from the dashboard application encountered invalid data due to commu-
nication errors. Although the higher power setting was efficient in detecting the tags, the
increased power also allowed it to detect unknown tags. These unknown tags increased
the data processing time. The trends of the total number of tags counted from the first
experiment until the latest are shown in Figure 14. The data reflect the total tags counted
at all UAV altitudes per RFID power setting. The counts exclude the ‘pass’ and ‘height’
marker tags.

RFID Tags Read from MicroSD, Plot W7 RFID Tags Read from MicroSD, Plot W10
6000

4500 = =
=
3 i ‘
‘ S 3000 ‘
= - - u
‘ I
‘ 1500 ‘ ‘
° Q
Q. & & O 1 & & % O 4 % )
S, S, S, (s} 0, 0, (o) S, S, S, (s} (o) 0, 0, S, )
e} o) e} td T L T 2, 2, pe) td L T L el (sl
o e T e 7 e T B e T e T R TR Ty s
M 15dBm 20dBm M 27dBm

M 15dBm [ 20dBm M 27dBm

Figure 14. RFID tag data from microSD card for plots W7 and W10.

Based on the trendlines, it can be observed that the number of RFID tags counted was
steady for the lowest power level at 15 dBm. At 20 dBm and 27 dBm, the tag counts de-
clined, which was true for both plots. At the highest power level for plot W7, the trend
showed that the number of tags read decreased until the final day. This unexpected in-
crease in counts for plot W7 on the final day cannot be explained. For both plots, the trends
suggested that there were no increases in the number of tags counted over the entire ex-
perimental period.

3.4. Plant Canopy Measurements

Figures 15 and 16 show the plants” height and width averages and growth indices in
plots W7 and W10. Plants were measured on September 21, October 19, November 1, No-
vember 27, and December 14. Data from October 19 were not used in the overall average
since they were later found to be in error. Plants in plot W7 (‘Green Giant’ arborvitae)
showed slight growth, while plants in plot W10 ("Sky Pencil” holly) were steady. On De-
cember 14, some of the plants to be measured on plot W7 were no longer present as a
result of being accidentally harvested by the nursery. For that reason, no plant measure-
ments were collected for plants in plot W7 on that date.
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Figure 15. Plant measurement averages and growth indices for plot W7.
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Figure 16. Plant measurement averages and growth indices for plot W10.

As observed, some of the width measurements fluctuated in plot W10, which is also
reflected by the fluctuation in the growth indices. This was attributed to shrinkage in the
container substrate and the measurement method of height and width. The assumption
was that there would be significant growth during the period between September 21 and
December 14. To determine if the plant growth was significant, the plant growth index
(GI) and the elapsed days were correlated with September 21 as day 1, November 1 as day
41, November 27 as day 67, and December 14 as day 84. p-values were calculated as 0.07
and 0.90 for plots W7 and W10, respectively. Both p-values were above 0.05. Thus, the 84-
day period was not statistically significant for plant growth; therefore, there was no sig-
nificant plant growth.

3.5. Tag Scanning Accuracy

Tables 2 and 3 show the average scan count for each tag type in plots W7 and W10.
The table shows that at the highest power setting of 27 dBm and the heights of 3 m and 5
m, the scanning accuracies (Equation (3)) were about 97% in plot W7 and 98% in plot W10.
Although the accuracy was below 100%, the table shows that at the same power setting
and height, most of the tag types had 100% detection (10/10). Since the data were averaged
for all the experiments, some values were affected by the results of the previous experi-
ments, where there were lower values. Table 4 shows the average of the data for plots W7
and W10.

Table 2. Scanning accuracy at different power settings and heights for plot W7.

RFID Pwr UAV Altitude L5 L6 L8 L9 Total  Accuracy (%)
15 dBm 3m 2.25 5.58 3.83 9.08 20.75 52
5m 0.17 417 0.67 8.58 13.58 34
7m 0.00 1.25 0.00 5.58 6.83 17

20 dBm 3m 7.58 8.50 9.17 9.83 35.08 88
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5m 4.58 7.75 6.58 10.67 29.58 74
7m 0.75 342 0.08 8.50 12.75 32
27 dBm 3m 10.00 9.08 10.00  10.00 39.08 98
5m 9.75 9.33 9.83 9.92 38.83 97
7 m 3.50 7.42 3.83 9.58 24.33 61

Table 3. Scanning accuracy at different power settings and heights for plot W10.

RFID Pwr UAV Altitude L5 L6 L8 L9 Total Accuracy (%)
15 dBm 3m 3.81 6.56 4.19 7.75 2231 56
5m 0.56 5.75 0.88 8.13 15.31 39
7m 0.00 2.38 0.00 413 6.50 16
20 dBm 3m 9.06 9.31 9.63 9.31 37.31 93
5m 6.25 8.81 7.00 9.56 31.63 79
7m 0.06 6.25 0.00 7.56 13.88 35
27 dBm 3m 10.00  9.25 9.94 9.31 38.50 96
5m 9.81 9.69 9.88 10.00  39.38 98
7 m 3.63 8.38 2.06 8.63 22.69 56

Table 4. Scanning accuracy averages for plots W7 and W10.

RFID Pwr UAV Altitude L5 L6 L8 L9 Total Accuracy (%)
15 dBm 3m 3.03 6.07 4.01 8.42 21.53 54
5m 0.36 4.96 0.77 8.35 14.45 36
7m 0.00 1.81 0.00 485 6.67 17
20 dBm 3m 8.32 8.91 9.40 9.57 36.20 90
5m 5.42 8.28 679  10.11 30.60 77
7m 0.41 4.83 0.04 8.03 13.31 33
27 dBm 3m 10.00 9.17 9.97 9.66 38.79 97
5m 9.78 9.51 9.85 9.96 39.10 98
7 m 3.56 7.90 2.95 9.10 23.51 59

3.6. Statistical Analysis

Linear regression evaluated whether the increasing plant growth affected the total
number of tags detected. The parameters for this study’s linear regression analysis of in-
terest were the R? and standard error. The R? determines how close the data points are to
the regression line, while standard error measures the average vertical distance between
the points and the regression line. In this experiment, the independent variable was the
plant growth indices (GIs), while the dependent variables were the total number of tags
counted. The plant growth index was linearly associated with the tags counted at RFID
power settings of 15 dBm, 20 dBm, and 27 dBm for all UAV flight altitudes from experi-
ments coinciding with plant measurements on September 21, November 1, November 27,
and December 14 (excluding plot W7). Table 5 shows the R? and p-values for the different
RFID power settings for plots W7 and W10.

Table 5. Regression data for plant height and tags counted.

Plot RFID Power Date Tag Count GI R? p-Value
9/21 2550 207,001.15
15 dBm 11/1 2821 273,159.75  0.31 0.62
W7 11/27 1900 335,375.45
20 dBm 9/21 6157 207,001.15 0.81 0.8

11/1 4144 273,159.75
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1127 2972 335,375.45
9/21 4673 207,001.15

27 dBm 111 4447 273,159.75  0.14 0.75
1127 3076 335,375.45
9/21 2160 175,803.92
11 2102 162,659.61

15 dBm 1127 2671 16265061 07 0.39
12/14 2475 166,968.46
9/21 3499 175,803.92
11 3073 162,659.61

WI0 20 dBm 1127 4729 16265061 07 0.25
12/14 4030 166,968.46
9/21 3739 175,803.92
11 4232 162,659.61

27 dBm 11/27 4986 16265961 012 0.65
12/14 4497 166,968.46

The R? values indicated no large negative correlation as hypothesized. The results
showed a very small positive linear association and no negative linear association between
the variables. This was also supported by the p-values, which were greater than 0.05,
which shows that the relationship between plant growth and tag count was not statisti-
cally significant.

4. Discussion

Before the experiment, the hypothesis was that increasing the RFID power and low-
ering the UAV altitude would provide the highest accuracy in detecting tags and that
plant growth would not affect the count accuracy. Tag types L6 and L9 had the highest
accuracy, at 100% at 27 dBm and a flight altitude of 3 m. Both tags yielded higher overall
accuracy than L5 and L8 in other power settings and altitudes, although L5 and L8 were
slightly better in other experimental periods. The L5 and L8 tags were not detected, espe-
cially at lower power settings and heights above 3 m, even with two passes. At a higher
power setting of 27 dBm and altitudes of 3 m and 5 m, the system had a very high count
accuracy, approaching 100% for both plant plots. The negative net difference in the tags
detected per pass was lower than 50% at 31% and 22% for plots W7 and W10, respectively,
which suggests that a high accuracy level can be sustained by performing only a single
pass of the plot.

Plant height and width had no significant increase in the 84-day span (September 21
to December 14). Although the trend in the number of tags detected decreased for the
RFID power settings of 20 dBm and 27 dBm, the relationship of the variables was estab-
lished statistically. The linear regression results suggested that there were no large posi-
tive or negative linear associations between the total tags counted and plant growth. What
is important to note from the data is that there was no negative value of R? or large nega-
tive linear association for either plot. This finding confirms the hypothesis that plant
growth does not affect the scan count of the tags. Furthermore, this also suggests that the
plant type/species does not have any significant effect on the RFID signal, as the results of
both plots were consistent.

The combination of UAVs and RFID is a novel idea, especially applied to plant inven-
tory, and it is different from image-based systems like cameras, which capture images or
reflected light. RFID, on the other hand, receives data by reflecting power on a modulated
reflector (tag) [25]. Tags that are within the transmission range transmit binary infor-
mation to the scanner. The results from the experiments suggest that the use of UAVs and
RFID can be a viable solution in plant inventorying, as long the right combination of
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factors, such as RFID power and UAV flight level, are met regardless of the type of plant
and its growth stage.

5. Conclusions

Based on the results from this experiment, the type of tag significantly affects the
count accuracy, especially at lower RFID power settings and higher altitudes. The loop-
lock tags, L6 and L9, proved to be very efficient at any power setting and altitude, although
they had different antenna types. L5 and L8 performed well at the highest RFID power of
27 dBm and lower UAV altitudes of 5 m and below. A second pass was unnecessary since
the count accuracy was able to be maintained if the RFID power was set to 27 dBm and
the UAV was flown at an altitude of not more than 5 m. On the other hand, plant growth
did not affect the tag count. This is important since some nursery plants grow at a higher
pace. The more tags read, the better accuracy can be achieved.

Based on the experiments, loop-lock tags for plant inventory in nurseries perform
better than stake tags, and this is likely due to signal strength, which is affected by the tag
orientation, which is sideways or perpendicular to the plant [23]. For best results with
these tags, the RFID power setting should be set to the maximum and the UAV flown
below an altitude of 5 m. With only a single pass needed, this can decrease the flight time
and reduce battery consumption, therefore covering more production area. As the plants
grow, it can be assured that this does not affect the results of the inventory operation.

The next phase of the study will be to integrate the system into the nursery’s database
and develop an online inventory system. Further studies will be conducted on automating
the parts of the procedure to make it robust and practical for operators of this system.
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