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Abstract: When car following is controlled by human drivers (i.e., by their behavior), the traffic
system does not meet stability conditions. In order to ensure the safety and reliability of self-driving
vehicles, an additional hazard warning system should be incorporated into the adaptive control
system in order to prevent any possible unavoidable collisions. The time to contact is a reasonable
indicator of potential collisions. This research examines systems and solutions developed in this field
to determine collision times and uses various alarms in self-driving cars that prevent collisions with
obstacles. In the proposed analysis, we have tried to classify the various techniques and methods,
including image processing, machine learning, deep learning, sensors, and so on, based on the
solutions we have investigated. Challenges, future research directions, and open problems in this
important field are also highlighted in the paper.

Keywords: collision risk; time-to-collision; autonomous vehicles; machine learning

1. Introduction

Autonomous vehicles and driver-assistance systems are becoming a reality with the
rapid development of wireless communication and sensors. As such, many interesting
questions arise. For example, how can sensors be used to control a car? How much can
autonomous vehicles improve traffic conditions, such as reducing collisions, stabilizing
traffic flow, and increasing highway throughput? As autonomous driving systems can take
into account more environmental information than human drivers, they offer attractive
improvements over today’s traffic situation. At least the early versions of self-driving cars
still appear to many as if they were designed for human drivers.

Even with the same control mode, there is still a significant difference between self-
driving vehicles and conventional cars. Drivers are unable to respond to hazards as
quickly as sensors do. The safe space that needs to be maintained between self-driving
cars (proportional to their reaction time) is much smaller than that between conventional
vehicles. In addition, self-driving cars will have a much higher density of traffic than
today’s vehicles.

A decrease in reaction time makes controlling the car more difficult, as does maintain-
ing stability. For autonomous driving, collision detection and avoidance are important parts
of the perception and planning system. The future estimation of crash risk is mainly for
automated driving systems, as well as for driver-assistance systems. It is essential that the
vehicles’ systems understand, identify, and track their surrounding objects and are aware
of collisions. Drivers use some vehicle-related data such as relative velocity information to
calculate their own acceleration relative to the leading car. Obtaining reliable and stable
measurements of relative velocity is therefore key to self-driving cars.

Other than the distance of vehicles, the collision risk depends also upon a number
of different sensors and technologies that are employed [1–3]. For example, technologies
such as Bluetooth low energy (BLE), ZigBee, ultra-wide bandwidth radio (UWB), dedicated
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short-range communication (DSRC), cellular vehicle to everything (C-V2X), and 5G-NR V2X
have been employed in autonomous vehicles (AVs) and may affect the risk of collision [1].
On the other hand, different driving strategies such as defensive, negotiated, competitive,
and cooperative strategies may have effects on the risk of collision. Furthermore, the type
of sensors and software used in AVs such as ultrasonic sensors, radio detection and ranging
(RADAR), mmWave with THz, light detection and ranging (LiDAR), global navigation
satellite systems (GNSS), high-definition (HD) maps, ultrasounds, and cameras have their
own role in the collision risk of the vehicles [3].

The general architecture of autonomous connected vehicles (ACV) has been investi-
gated in [2]. Specifically, it is discussed how new and trending technologies such as multi-
access edge computing (MEC), 5G new radio (5GNR), software-defined networks/network
function virtualization (SDN/NFV), blockchain, network slicing, and federated learning
influence the collision risk of autonomous vehicles [2].

In summary, the total number of papers that are investigated in this survey is 68, and
the percentage covering each publisher is depicted in Figure 1.
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The rest of the paper is organized as follows. In Section 2, we review and categorize the
methods and techniques used in the time-to-collision estimations of vehicles. In Section 3,
we review and categorize the methods and techniques used in the collision risk estimations
of vehicles. Section 4 is about data and methods. Sections 5 and 6 are dedicated to open
research areas and challenges in the field. Finally, in Section 7, some concluding remarks
are presented.

2. Time to Collision

By definition, the time to collision (TTC) indicates how long an observer takes to
make contact with a surface under constant velocity. The research work in this context
can be categorized into three major domains, which are computer vision-based techniques,
artificial intelligence (AI)-based techniques (supervised learning, unsupervised learning,
reinforcement learning), and other miscellaneous techniques that are mainly based on
mathematical formulation and signal processing tools.

2.1. Computer Vision-Based Techniques

A new approach to calculating TTC is presented in [4] using affine scales calculated
from active lines. The results of this study were compared with two recently proposed
criteria: scale-invariant ridge segment (SIRS) and image brightness derivative (IBD). During
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an approximate associative transform of the image flow, the active contour affine scale
(ACAS) provides a better estimate of TTC, while IBD overestimates the collision time, and
SIRS provides a reliable estimate. In some cases, this may not be true. Therefore, ACAS is a
more accurate scale. The only disadvantage of the ACAS method is that the obstacles must
first be separated from the background. ACAS allows for the tracking of multiple ridges
in real time and the flagging of ridges with small TTCs for a more accurate calculation of
TTC. The SIRS would thus be able to detect and initialize potential obstacles and then use
an affine scale to estimate the obstacle with more accuracy. It is possible to improve the
collision time by smoothing over time with a smoothing function such as a Kalman filter
or other methods. It has been found that recursive least squares (RLS) with a forgetting
parameter produces good results. As a result of such filtering, collision time estimation
may be delayed, which may cause navigation problems in real time.

In [5], contact time is estimated through image sequences using a featureless method.
The method does not require the extraction and tracking of features, so its calculations are
more efficient than those based on features. In a mobile robot platform, an error-based
controller with gain timing is coupled with a feature-free estimation algorithm. In order
to maintain a reference time for collisions, the speed of the robot moving is controlled
successfully. Additionally, angular velocities have been incorporated into the feature-free
estimation algorithm. As a result of the Kalman filter, the estimation algorithm and the
control strategy perform better.

Furthermore, the central limit theorem shows that the models are more reliable with
more data, but as shown in this paper, they also accurately predict behavior with limited
data. In the work [6], a new mathematical constraint between contact time, acceleration,
and depth, called τ constraint, was presented. Several experiments were conducted in a
path estimation task using inexpensive and commercially available sensors to verify the
practical effectiveness of the constraint (See Figure 2).
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While achieving 30–50% lower absolute path error than two commonly used state-of-
the-art visual inertial odometry (VIO) methods, this method ran 6.8–27 times faster. Most
of the speed increase is due to the use of only a small part of the image.

In [7], a new technique was presented for parameter fitting of the model equations to
improve and stabilize the collision time estimates. Furthermore, several methods have been
developed to extend its application to arbitrary motions. With the use of a robot equipped
with a webcam in an indoor environment, this approach has been successfully tested.

A machine vision-based approach to relative speed estimation is presented in [8]. The
first step in calculating the relative speed is to estimate where the collision time occurs,
and then multiply the measured distance by the inverse of the collision time (1/TTC). An
Android smartphone is used to run the entire system in real time. A time-varying image
does not provide a good estimation of collision time unless significant filtering is used in
order to improve the accuracy of the estimation. However, it can be used in conjunction
with other measures of relative velocity to provide valuable information.
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The vibration of the camera installed in the car may result in blurry images, which
negatively affects the estimation of timelapse.

An approach for calculating contact time using photometric information is presented
in [9]. In a scene with a moving light source, the observed intensity changes as the light
source moves. An analysis of the intensity change in the camera images was conducted
in this article, and it was revealed that the contact time could be estimated from the light
intensity change. First, a basic method for estimating the contact time of a light source
was derived from changes in image intensity. Additionally, this method does not require
information such as light source radiation, object reflections, and object surface orientations.

A proposed vehicle detection system based on point detection is presented in [10].
Calculating collision time and distance can be accomplished very precisely by calculating
the centers of gravity of nearby spots. Night vision applications are generally affected by
rain or fog on the windshield, which causes light sources such as car headlights to blur and
smear heavily. An additional disadvantage is the asymmetric shape change caused by the
blinking of the leading vehicle.

In [11], the authors used computer vision techniques to estimate the time to collision.

2.2. AI-Based Techniques

A collision time estimation algorithm proposed in [12] was shown to be accurate,
hardware compatible, and potentially implementable on smart video sensor hardware.
Using biological motion energy features and random forests, the algorithm estimates
TTC from dense optical flow. It has been shown that the random forests method is more
accurate at estimating optical flow and consumes fewer computational resources than
the voting method in previous works. Using this algorithm allows for flexible tradeoffs
between estimation accuracy, processing speed, and resource consumption in a scalable
pixel pipeline architecture that is hardware compatible.

The information provided by collision time can be more useful in certain scenarios
than depth information. Current methods of estimating collision times, however, either
make impractical assumptions or cannot be implemented in real time. In [13], a framework
for estimating collision time from a monocular camera input is presented. It computes a
geofence time in just 6.4 milliseconds to detect objects predicted to collide at a given time.
In the process of computing a number of these geofences, it can estimate the collision time
with arbitrary quantization, including a continuous collision time.

As proposed in [14], the integration of events and depth data allows for better collision
avoidance strategies. In simple static scenes, depth sensors are accurate, but they interfere
with fast-moving objects. However, cameras do not work well on texture-free surfaces, since
they lack a certain temporal resolution and dynamic range. The strengths of each sensor
method are balanced by the weaknesses of the other. This article presents an approach to
estimating the impact time for each pixel that overcomes these issues. It was demonstrated
that the resulting time-to-impact (TTI) maps can guide a collision control policy better
than those based on background segmentation. A schematic view of the proposed obstacle
avoidance system in [14] is presented in Figure 3.

As illustrated by human driving ability, this method [15] calculates the collision time
based on the motion of a set of linear features, which can be applied to any background
or vehicle. By preventing complex video searches, detecting vehicles, and estimating
depth, it can provide computational efficiency for real-time processing. Using a single
video camera, spatial–temporal region and motion filtering have improved the accuracy of
motion estimation. It should be noted that this movement in non-flowing directions causes
a quick warning of a possible collision in all directions if it is not handled accordingly. Using
only motion, this method has been tested on videos and in different driving environments.

In [16], the authors used machine learning techniques to estimate the time to collision.
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2.3. Miscellaneous Techniques

According to [17], a different approach is taken, i.e., investigating the collision prob-
ability rate without considering temporal collision measurements as an intermediate or
prerequisite quantity. In order to calculate the probability of colliding in a long duration
of time, the crash probability rate must be integrated over time. Using the theory of sur-
face intersections derived from vector stochastic processes, an upper bound is derived for
collision probability rates. A saturated upper bound is a good approximation of collision
probability rates under certain conditions. Despite being demonstrated on a surface with a
rectangular shape and two dimensions with Gaussian distributions, the methodology may
be used for any subset of surfaces that are smooth piecewise and multidimensional, even if
they do not have a Gaussian distribution.

Monte Carlo simulations are used to obtain the real probability distribution of col-
lision that can be approximated by the bound on the probability ratio derived from the
simulations. Also included is an embedded platform package that is capable of calculat-
ing an estimate for the bounds associated with the rate of collision probability. For the
scenarios considered in this paper, the distributions of collision probability rates obtained
from this approximate formula are nearly similar to those calculated from mathematical
methods. This method can be applied to specify the collision of a sample object with an
extended object which is point-wise. For a collision of two circular-shaped extended objects
or rectangular borders with the same fixed direction aligned to the axis, an extended object
can also collide with a point-like object. The results showed that traditional distributions of
collision time calculations, which are one dimensional, do not correctly describe collision
statistics for two-dimensional environments and in the existence of environmental noise.

This study [18] examines crash safety models and objective definitions in general.
In this paper, the validation issue using crash data is not addressed and indicators are
not compared across different types of road infrastructure, but it takes a first step toward
suggesting improvements for alternative safety analyses by comparing several different
models and analyses.

Study [19] presents a methodological framework for calculating a temporary surrogate
safety index based on sequential preemptive events within nonlinear traffic environments.
The method used in this research provides an appropriate approach to calculating collision
times in mixed nonlinear traffic scenarios with string traffic with a weak line, recognizing
that the collision time index requires the integration of longitudinal and lateral descriptors.

According to a preliminary statistical analysis of car drivers following motorcycles,
three-wheelers, cars, and trucks, collision times follow increasing centerlines and decrease
on a decreasing trend. The collision time value for centerline separation is lower. Accord-
ingly, the level of risk for drivers in the following scenarios varies based on the type of
vehicle in front as well as the position of the vehicles on the road. The proposed method
and recommended threshold values indicate that in the car chase mode, the severity of a
collision is quite different for consecutive collisions. Therefore, in order to evaluate traffic
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safety in such cases, a comprehensive description of the minimum collision time thresholds
should be provided for different side positions.

There are limitations to the work in this article. The probability that drivers have a
lower minimum collision time threshold for car-following cases is assumed to be similar to
the probability that drivers have a higher minimum collision time threshold for tailgating
events. In the study, contrast severity was also estimated using the minimum recommended
thresholds, which cannot be interpreted as an accurate outcome.

According to [20], it is possible to estimate collision times statistically. As a first step,
it explained the mathematical basis for estimating the number of frames left until the robot
hits the object. A color segmentation method is proposed for obstacle detection, and for
object apparent size detection, it was shown that height or width can be used without
using region growth. It is considered to be robust because it relies both on historical data
and similar behavioral data. As a final step, the resulting data and models were analyzed
statistically and compared in a quantitative and visual manner. By removing outlier data,
the robustness of the framework has been investigated to create a more reliable model.

This study [21] proposes a new framework for estimating collision times in omnidirec-
tional images for a flat surface with arbitrary orientation. The introduced method provides
more information about the flat surface. Since gradient-based methods are simple, fast, and
do not require high-level processing, they are a good option for real-time implementation.
The results show that this approach can work effectively in complex real-world scenarios.

An algorithm for estimating TTC in synthetic sequences, stop-motion sequences, and
real video is described and demonstrated [22]. With this method, features are not detected,
tracked, or estimated, and latency is low. The range of operation can be extended to
small collision times through spatial average and subsampling and to large collision times
through temporal average and subsampling.

In [23,24], the authors used signal processing techniques for TTC estimation. In [25,26],
the authors used potential field and cubic polynomials and an open-source software called
CARLA for time-to-collision estimation.

In Table 1, we have classified different TTC approaches into groups of computer vision
techniques, machine learning, deep learning, signal-based, video data-based, and other
methods for consideration. Furthermore, the advantages and disadvantages of different
methods used in the TTC estimation are presented.

In Figure 4, we have summarized the number of papers investigated in each approach
used in TTC. As can be verified, most research work is oriented to computer vision-based
approaches in TTC estimation.

Vehicles 2024, 6, FOR PEER REVIEW 8 
 

 

 

Figure 4. Paper distribution in different TTC approaches. 

3. Collision Risk 

The collision risk techniques evaluate the probability of collision in autonomous ve-

hicles based on their current state and environmental conditions. The research work in 

this context can be categorized into three major domains, which are artificial intelligence 

(AI)-based techniques (supervised learning, unsupervised learning, reinforcement learn-

ing), sensor-based techniques, and other miscellaneous techniques that are mainly based 

on mathematical formulation, signal processing, and simulation tools. 

3.1. AI-Based Techniques 

In this study [27], the effectiveness of predicting driver behavior from real-time vehi-

cle trajectory and time-to-collision data is investigated and evaluated. Calibrating the pa-

rameters of the optimal speed model for the study area based on distance and estimated 

TTC is accomplished using the virtual traffic (VT) lane framework to extract vehicle tra-

jectories, motion classification, and speed estimates from the video. As a result of collision 

time-based model inference, improved deceleration was estimated for vehicles involved 

in car-following episodes and resulted in speed profiles with a calculated instantaneous 

speed error of 4.74 km/h and an instantaneous acceleration error of 19.84% less than the 

baseline error. 

Modeling driving behavior in urban environments must take into account such char-

acteristics as the differences between vehicles moving straight and vehicles turning at in-

tersections. It has been shown that third-order polynomial functions are highly reliable in 

describing observed driving behavior (R2 of 70%), but video inference gives more infor-

mation (including, but not limited to, signal state time, vehicle type, density of traffic, etc.). 

As this study only tracks vehicles crossing intersections, the short length of vehicle 

trailing segments restricts its applicability. It is expected that vehicles following the car in 

the study area will engage in car-following behavior before or after the monitored section. 

This study [28] introduces the C5.0 ensemble learning methodology as well as K-

nearest neighbor, J48, and naive Bayes methods and a gradient boosting machine as an 

inclusive means for learning. As compared to the learner base and elastic network, the 

ensemble model is more accurate in predicting the target class. The outcome of driving is 

more predictable when sampling with replacement is used. Among the variables used to 

feed the models in this study are driver information, road information, and weather con-

ditions. The C5.0 ensemble learning methodology, K-nearest neighbor, J48, naive Bayes, 

and gradient boosting machine are shown to be inclusive of these variables [29–31]. En-

semble models have a higher accuracy than learner bases and elastic networks when it 

comes to predicting the target class. The predictability of driving outcomes is increased 

0

2

4

6

8

10

12

14

N
u
m

b
er

 o
f 

p
ap

er
s

Approach used in TTC estimation

Computer vision ML/DL Signal/video data Others

Figure 4. Paper distribution in different TTC approaches.



Vehicles 2024, 6 163

Table 1. Classification of the methods used in the studies related to TTC.

References Computer
Vision

Machine
Learning

Deep
Learning Signal Video

Data Others Advantage Disadvantage

[4–11]
√

- - - - -

Enhanced automation,
improved accuracy,
increased efficiency,

improved accessibility

Limited context
awareness,

privacy/ethical
concerns, bias and

inaccuracy,
dependence on
infrastructure

[13,14]
√

-
√

- - -

Handling large and
complex data, handling

structured and
unstructured data,

improved performance

Increased complexity,
overfitting
tendencies,

legal/ethical
concerns

[15]
√

-
√

-
√

-

Handling large and
complex data, handling

structured and
unstructured data,

improved performance

Increased complexity,
overfitting
tendencies,

legal/ethical
concerns,

dependency on video
data

[12]
√ √

- - - -

Handling large and
complex data,

automation, improved
performance

Privacy/ethical
concerns,

dependence on
infrastructure

[17,21,25,26] - - - - -
√ Accurate mathematical

modeling, enhanced
prediction accuracy

Context dependent

[16] -
√

- - - -

Handling large and
complex data,

automation, improved
performance

Privacy/ethical
concerns

[19,23,24] - - -
√

- -
Using real-time sensory

data, accuracy in
prediction

Dependency on
sensor/signal type

3. Collision Risk

The collision risk techniques evaluate the probability of collision in autonomous
vehicles based on their current state and environmental conditions. The research work in
this context can be categorized into three major domains, which are artificial intelligence
(AI)-based techniques (supervised learning, unsupervised learning, reinforcement learning),
sensor-based techniques, and other miscellaneous techniques that are mainly based on
mathematical formulation, signal processing, and simulation tools.

3.1. AI-Based Techniques

In this study [27], the effectiveness of predicting driver behavior from real-time ve-
hicle trajectory and time-to-collision data is investigated and evaluated. Calibrating the
parameters of the optimal speed model for the study area based on distance and estimated
TTC is accomplished using the virtual traffic (VT) lane framework to extract vehicle trajec-
tories, motion classification, and speed estimates from the video. As a result of collision
time-based model inference, improved deceleration was estimated for vehicles involved
in car-following episodes and resulted in speed profiles with a calculated instantaneous
speed error of 4.74 km/h and an instantaneous acceleration error of 19.84% less than the
baseline error.

Modeling driving behavior in urban environments must take into account such char-
acteristics as the differences between vehicles moving straight and vehicles turning at
intersections. It has been shown that third-order polynomial functions are highly reliable
in describing observed driving behavior (R2 of 70%), but video inference gives more in-
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formation (including, but not limited to, signal state time, vehicle type, density of traffic,
etc.).

As this study only tracks vehicles crossing intersections, the short length of vehicle
trailing segments restricts its applicability. It is expected that vehicles following the car in
the study area will engage in car-following behavior before or after the monitored section.

This study [28] introduces the C5.0 ensemble learning methodology as well as K-
nearest neighbor, J48, and naive Bayes methods and a gradient boosting machine as an
inclusive means for learning. As compared to the learner base and elastic network, the
ensemble model is more accurate in predicting the target class. The outcome of driving
is more predictable when sampling with replacement is used. Among the variables used
to feed the models in this study are driver information, road information, and weather
conditions. The C5.0 ensemble learning methodology, K-nearest neighbor, J48, naive
Bayes, and gradient boosting machine are shown to be inclusive of these variables [29–31].
Ensemble models have a higher accuracy than learner bases and elastic networks when it
comes to predicting the target class. The predictability of driving outcomes is increased by
sampling with replacement. Variables selected to feed the models include driver, road, and
weather data.

A proactive traffic safety management (PTSM) methodology is needed to deliver
warning information in the vehicle, which is calculated based on estimating the collision risk
in order to avoid accidents. The work in [30] has gathered the interconnection information
between connected vehicles in Korea.

A sample vehicle-to-vehicle (V2V)-based proactive traffic safety control system is
shown in Figure 5 (see [29]).
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Furthermore, this work uses V2V interactions to deliver an optimal threshold in order
to provide warning data to be used in the vehicle. Nearly 2.16 million samples of data
whose time of collision was less than 1.5 s have been gathered for 164 connected vehicles in
2019. The gathered information is in accordance with input and output information for a
model that can predict the total collision risk. In order to propose estimation methods, the
estimation and rolling time frames were calculated from 5 to 15 s (increment of 5 s) and
from 1 to 3 s (increment of 1 s), respectively. Long short-term memory (LSTM) model meta-
parameters were adjusted to 81 cases for unit numbers of hidden layers, optimal epoch
numbers, small initial learning ratio, and batch size. Furthermore, the hyper-parameter
of the K-nearest neighbor (KNN) method was fixed to 81 cases for the distance measure,
weight of distance, and parameter K. Therefore, an accumulated number of 729 parametric
cases were determined for every method. The optimized methods adjusted for meta-
parameters and traveling salesman problems (TSP) predicted collision risk in 3 s with a
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mean absolute percentage error (MAPE) of nearly 8%. The warning data based on the
estimated accident risk were shared between connected vehicles via V2V wireless links and
adopted as early warning data for avoiding collisions.

Determining thresholds using errors of estimation is very vital to delivering efficient
warning data in autonomous vehicles. The best threshold was obtained by calculating
the detection failure rate (DFR), correct detection rate (CDR), and information provision
rate (IPR), which are markers in predicting the reliability of warning data. Accident
risk estimation errors are adjusted from 1% to 20%. Furthermore, threshold levels were
adjusted from 0 to 1. The optimum threshold which has minimal IPR, complete CDR, and
minimal DFR was calculated to be 0.69 when the estimation error is 8%. In addition, this
threshold must be adjusted to be low in order to optimize the risk of missing samples as
the estimation error rises. The proposed discussions proved that the mentioned policy is
adopted to design a PTSM framework to deliver vehicle warnings based on collision risk
estimation in connected vehicles.

At first, the result seems to be good, but more research efforts should be conducted to
increase the validity of the developed policy. First, it is important to enhance the collision
risk estimation models by investigating the connected vehicle behaviors before and after
accidents. The properties of vehicle behavior are a function of the traffic collision impact
area.

In addition, the accident risks of traffic flows may be estimated as a set of data obtained
from the detection apparatus of the vehicle. In this scenario, it is important to leverage
data obtained in a smaller time frame (for example, 10 Hertz) to exactly and instantly
identify dangerous scenarios. Secondly, this work predefined dangerous cases as deliberate
thresholds because the vehicle interaction information deviates from high-risk scenarios.
In this scenario, the preadjusted threshold can cause some defects in the reliable delivery of
warning data. As a bad scenario may be declared in multiple ways based on the accident
time threshold, investigating the validity of warning data must be performed based on some
sensitive analytical data using more advanced research. In the long term, it is recommended
that the crash risk threshold be adjusted by monitoring the joint warning and collision data
in the development phase of proposals.

Different safety metrics must be adopted for predicting the rear crash probability.
Safety evaluation is available by calculating a minimal stop distance, which can be cal-
culated based on the minimum stopping distance difference between the following and
leading vehicles. Moreover, the implementation of different SSMs and collision risk estima-
tion methods is adopted to efficiently represent the uncertain property of full risks.

Finally, the predicted collision risk in this work is a measure transformed by a proba-
bilistic approach using accident time, and the observed collision time disturbance changes
the estimation result. As the value of the threshold for delivering warning data can differ
based on the size of the disturbance, more investigations on the disturbance prediction
data gathering stage must be carried out in the future to enhance the presented strategy.

More studies must be performed on the design and implementation of those models
that are capable of delivering optimized predictive results. Many other research works are
required to enhance the mentioned policy and index to increase the validity of PTSM in
connected vehicle (CV) settings.

The authors proposed a collision risk estimation method using LSTM [30] and K-
nearest neighbor (KNN) models which are optimized based on the interaction information
of vehicles by adjusting meta-parameters and TSPs.

In [31], sensory information, which is collected from self-driving cars, is consumed
to deliver a complete risk evaluation strategy that is able to support all of the collision-
related conditions. A methodology for risk inference is presented from artificial intelligence
models (e.g., random forest and decision trees), which have been trained based on the Lyft
dataset using proper feature engineering, and their estimations are delivered for multiple
time frames in the future. Authors have proposed a machine learning-based method for
describing the risk estimations of their presented models.
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The proposed method can be incorporated into the safety mechanisms associated with
autonomous cars. Furthermore, the method can be considered as a starting point for path
estimation methods for road vehicles with high levels of risk to provide efficient maneuvers.
The obtained models have a high performance (with an R2 score of 92.11 percent in a sample
one-second regression scenario) and can be transferred and explained using more datasets
(for example, the KITTI dataset).

In [32], a simple method to estimate the collision time is proposed to overcome the
data loss challenge created by the small number of accidents in daily traffic. This research
relies only on monocular cameras and uses depth and flow estimation methods based on
deep learning to predict the vehicle speed using a simple and heuristic methodology, as
well as object identification to detect the lead. The vehicle in question uses the approximate
speed, boundary widths, and depth features of the single camera to estimate the collision
time in the vehicle stopping positions, which is considered the moment of possible collision.

The developed algorithm was tested based on the automatic data captured from smart
glasses and spherical cameras. The authors yielded a cross-validation root mean square
error which is near one from the road viewpoint and self-oriented videos.

The advantages of adopting spherical cameras as a desirable alternative to several
older cameras for visual vehicle tracking are also discussed.

In the research [33], a new method for collision risk assessment using deep prediction
models has been presented. In particular, they have developed a special algorithm which is
named Bayesian ConvLSTMs for spatio-temporal analysis of vision-related data, depth-
sensing information, and driving commands to detect possible expected accidents. Unlike
other deep learning methods in robotics, this method uses stochastic beliefs in the neural
network output. These data can be processed for evaluating the forecasting uncertainties.

Many numerical evaluations show the importance of leveraging deep predictive
models (DPM) in the evaluation of accident risks. In particular, the experiments show that
it is feasible and beneficial to process the images of several cameras simultaneously in the
same network architecture for this domain.

In work [34], the scientists try to detect accident risk and parking areas using deep
learning (DL) fed from visual sensory data. A dataset was created in the parking area of
Chungbuk National University to contrast it with a red–green–blue picture. The semantic
segmentation method has been adopted for creating a network and merged with CSPNet
to develop an optimal methodology that can be exploited with enhanced performance in a
realistic vehicular scenario.

Many research efforts were carried out to optimize the activation and cost functions,
in order to deliver optimal learning methods and accurate conditions. For employing the
original pictures as they are, a special encoder with a low cost of computing was built. For
optimizing the network associated with training, automatic mixed precision (AMP) was
adopted to decrease the training time and memory, and also TensorRT was used to gain
higher frames per second (FPS) data associated with the area of accident risk in outdoor
and indoor scenarios.

To test the performance, the automatic RGB picture and the picture delivered from the
NIIIS (National Institute of Intelligent Information Society) were evaluated, and a real car
assessment was performed in the parking lot of Chungbuk University.

In the study [35], a test was conducted for forward accident alarms by a car with some
visual and satellite navigation sensors. The test path was the Xian Rao Cheng Expressway.
Some parameters such as distance between two following cars, speed, and position data
were gathered at one Hertz frequency. A total of 1200 tracks were selected from the vehicle
in vehicle chase mode. A collision time computational framework was developed for
advanced driver-assistance systems (ADAS) and forward accident alarm systems. The
comprehensive collision time model of urban highways comprises three sub-Gaussian
distributions. A collision time of three seconds and speed were selected to be the input
parameters for learning purposes. When the collision time is smaller than 2.97 s, the front
collision warning is shown to the drivers.
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Machine learning (ML) methodology for time-series processing, LSTM, and a deep
belief network (DBN) were selected to characterize collision time. The data from the
three-second segment were adopted to estimate the accident time in the next second.

In the research [36], five parameters of vehicle dynamics, the lateral and longitudinal
movements of the vehicle on the test path, angle of front steering, deflection rate of lateral
acceleration, and longitudinal speed, are evaluated. Vehicle movements in the lateral and
longitudinal directions remain in a valid scope within the boundaries of the test path. The
angle of front steering, yaw rate, and lateral acceleration are fixed to 0 during entering and
before exiting the test path.

They achieved the lowest losses in the duration of two obstacle-prevention maneuvers.
The controller managed to establish a suitable angle of front steering, while the car executed
two obstacle prevention and lane change maneuvers and re-guided the vehicle to the target
track in the middle lane before departing the assessment path. This management system is
capable of creating a suitable angle of throttling alongside the assessment path.

At last, this tested algorithm for car dynamical systems and self-management policies
showed to be an accurate tool for assessing dynamic car maneuvers on assessment paths,
especially in early design stages. A TTC estimation framework using ML methods, which
is presented in [36], has been shown in Figure 6.
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3.2. Sensor-Based Techniques

Jiang et al. [33] proposed a collision risk prediction for vehicles with sensor data fusion
through a machine learning pipeline. They have shown that the combination of multiple
sensors (e.g., LiDAR, RADAR, monocular, and binocular cameras) promotes the perception
and decision-making process of vehicles.

In the paper [37], laser scan data were used for automatic accident prevention. The
mentioned work presents the practical guides related to implementing accident prevention
mechanisms and benefits from traditional work findings related to obstacle prevention
and detection scenarios. The proposed accident prevention mechanism has been designed,
developed, and tested. Choosing the best performance and managing the stimulus in
each situation, this new system considers steering maneuvers (including braking, etc.) to
prevent collisions and find obstacle-free areas.

In the proposed work, a laser scanner with one layer is adopted for detecting obstacles,
and a satellite-based positioning system working on a digital map delivers some important
data that the car should move to avoid a collision/accident. However, this understanding
mechanism is not perfect enough to guarantee that a particular steering maneuver is safe
for other vehicles.

A detection frequency of 10 Hz has been used for the laser scanner. Although this
extent of detection frequency is appropriate for many scenarios, higher values are suggested
in scenarios with high mobility and scenario change levels.

Enhanced methods detect obstacles and calculate collision time. Moreover, the
decision-making methods must be enhanced for use in newer algorithms to consider
complicated driving cases in order to have a proper response in every scenario, which
consists of a mixed steering–braking management strategy.
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At last, the proposed fuzzy logic manager forces more use cases. As an example,
complicated systems that interact with this simple fuzzy logic (FL) controller may only
deploy simple control and speed messages for their response regulations.

The work in [38] simply uses the motion of a linear feature set to calculate the collision
time, which is basically usable in all environments and prevents complex vehicle search
and detection using video data. Selected areas for spatio-temporal motion categorizing
yield dangerous accident alarms and reduce the computing overhead for real-time analysis.
This algorithm is pioneering research that only uses motion information and has been
evaluated for different vehicle videos. Avoiding the detection of the vehicle makes this
method useless for the shape and type of the target vehicle.

In [39], sensor data from autonomous vehicles are used in order to present a complete
risk evaluation which includes all of the different conditions that may lead to a collision in
order to assess the risk associated with it. A method for inferring risk from Lyft data using
machine learning methods (random forests and decision trees) with estimations performed
over multiple time frames is presented. The risk predictions of models can be explained
using a tree-based explanatory technique. Vehicles that are self-driving can incorporate this
directly into their safety systems. Also, it can serve as the initial point for path estimation
methods for those road users with a high level of risk, and also be used to help the vehicle
in navigating the roads safely. It is possible to transfer and explain the models obtained
on other datasets (like the KITTI data) and they are highly effective (with an R2 score of
92.11% for a regression sample of 1 s).

In this work, a novel deep learning (DL) methodology based on direct perception for
self-driving vehicles is introduced. Different from previous work that paid attention to the
potential feature engineering of a given convolutional neural network (CNN), for the first
time, the performance of self-driving cars has been investigated for multiple DL scenarios.

Furthermore, the developed algorithm is not limited by incorrect prejudices about
other cars around the self-driving vehicle. As an example, the framework runs without any
assumptions regarding the speed of cars. Instead, the methodology adopts a more accurate
model with the assumption of more sensor availability that provides the distance between
vehicles surrounding the self-driving car.

The behavior of three popular convolutional neural networks in extracting the features
of the road has been evaluated. The findings show that GoogLeNet is the most exact net-
work for these scenarios. Apart from evaluating the performance of the features, they have
also proposed the use of more features for assessing the self-driving vehicle’s performance.

At last, the proposed features are used to differentiate this methodology in comparison
with traditional ones, and the performance of this system is clearly enhanced compared to
traditional works, which try to navigate the entire path. The cause of this enhancement is
the elimination of overlapping parameters.

Authors in [40] cover various aspects of safety for intelligent components that use
machine learning techniques to integrate artificial intelligence for self-driving. The attention
was on the principal problems for guaranteeing safety in important scenarios that use
artificial intelligence algorithms, especially neural networks. Older safety methods are not
correctly tailored for these systems; hence, it is necessary to develop more comprehensive
tools such as monitoring methods. The presented collision estimation method will deliver
a satisfactory extent of safety for the required systematic operations.

In another approach by [41], gathering a sufficient number of samples, in the context
of object tracking noise, for approximation of collision probability can help reduce such
incidents. In this work, at each time step, the controller type selection relies on opting for
the minimum probability of collision. This method, however, could lead to some aggressive
actions taken by the controller. To increase the safety measures, factors such as analyzing
the distance to the surrounding vehicles, as well as utilizing a probability field to compute
a path around potential collision areas, were suggested.

The versatility of this control system for self-driving cars was highlighted as it was
not tailored to a specific traffic situation or intersection, needing only an environment
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map with prespecified routes on the environment map. However, simulations reveal
potential challenges with the required noise level of this approach, as it solely uses a
global positioning system (GPS) and communication for object tracking; to overcome such
challenges, the use of sensors was recommended.

Centered on predicting the trajectory of each car, a method was introduced in [42]
to assess the risk of collisions, using GPS error data and shape characterization. In this
approach, so-called high-level Kalman filters with a set of precise dynamic models and risk
indicators were utilized to improve the performance of risk estimation, trajectory tracking,
and describing the severity of potential accidents.

In another work outlined in [43], deep neural networks as well as particle filter-
based systems were used to detect and track observable objects in traffic. In this real-time
approach, the distance and relative speed of surrounding vehicles were estimated via basic
principle modeling to assess the expected risks up to ten seconds ahead of time during the
course of driving the car.

In a study highlighted by researchers [44], simulated data emerge as a valuable
resource, especially when the available dataset is not sufficient for constructing a robust
predictive model. Mid-horizon forecasting faces challenges due to the limited sample size
attributed to the complexity of high-dimensional behavioral features essential for learning
forecasting models.

To overcome this hurdle, domain-matching methods leverage simulated data to en-
hance predictions in both synthetic and real-world scenarios. This finding signifies the
potential for enhancing medium-horizon risk prediction systems through offline training
of predictive models using simulated data.

The proposed approach holds the potential for refinement through advanced modeling,
estimation, and forecasting techniques. Leveraging driver models learned from data could
notably enhance transmission performance by more accurately capturing human failure
patterns.

Employing a multilinear approach to importance sampling facilitates the transfer of
real-life collision prediction, enhancing system usability. To improve prediction perfor-
mance, employing domain-matching models that explicitly delineate shared and unique
latent feature spaces proves advantageous. However, the local maximum likelihood estima-
tion approach for inferring behavioral parameters in next-generation simulation (NGSIM)
vehicles exhibits limitations, particularly in the inability to represent individual driving
behaviors and generalize across diverse drivers.

Risk assessment analysis was extensively studied in [45–47]. The risk assessment
of failure in autonomous vehicles due to malfunctions in sensing devices was studied
in [45]. Based on this analysis, sensors such as LiDAR, GPS, RADAR, and wheel encoders
collectively exhibit a probability of failure exceeding 20 percent. The methodology of this
risk assessment was performed via a tree-based analysis of critical events.

In [46], the effectiveness of required braking and safety measures are studied via
conditional random fields utilized to assess various driving style preferences. However,
it is important to note that the study acknowledges a limitation, as it does not benefit
from cloud traffic data. In [47], mitigation functions, such as impact point, as well as the
dependence on numerical–moral aspects, were considered to assess integrated interaction
strategies where regulated comfort safety measures were desirable.

Accordingly, the detection of accidents in traffic flows [48] and identification of dan-
gerous locations on the road using smartphone data [49] were investigated. To detect
accidents, one approach is to use multitask adaptation [48]. In this approach, the adapta-
tion of context relation as well as appearance, compatibility measurements, and motion
between consecutive frames were utilized to detect various accidents and non-involved
scenarios. The results of this method were tested against DADA-2000 and AnAn (A3D)
datasets. In the method proposed by [48], a hybrid thresholding method consisting of
EuroFOT and adaptive speed dependency for high-risk driving scenarios was used to
distinguish between driving styles within a predefined speed range. The knowledge base
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system starts with EuroFOT thresholding and gradually uses the driver speed-dependent
thresholding to improve the accuracy; this eventually delivers the inference to a map that
traffic and safety experts could use to improve the system and mitigate potential hazards.

The authors in [49] have used self-supervised consistency learning for a collision
risk assessment. Aichinger et al. [50] have adopted low-cost smartphone sensor data for
locating crash risk spots in a road network.

In [51], the authors proposed a direct vehicle collision detection algorithm from motion
in driving videos. Meng et al. have proposed a vehicle trajectory prediction method based
on predictive collision risk assessments for autonomous driving in highway scenarios [52].

The authors in [53] used reinforcement learning for predictive trajectory planning of
autonomous vehicles at intersections. In [54], a new integrated collision risk assessment
methodology for autonomous vehicles has been proposed.

The authors in [55] developed an advanced collision risk model for autonomous
vehicles.

3.3. Miscellaneous Techniques

According to a theory of the risk field, the risk assessment index of an undercarriage
process creates risk avoidance based on the field of risk theory. In the work [56], loop
detector data have been merged with accidental data to develop a simulation model to
estimate pre-accident track data. A hazard avoidance index is calculated based on the
trajectory data. A comparison of the indicator’s performance in crash and non-crash modes
is performed to determine its validity. The result is that this indicator can significantly
distinguish between accident states and non-accident states. In comparison with collision
time and deceleration rate to avoid collision (DRAC), the risk aversion indicator is found to
be superior, since it includes more parameters that affect the collision risk, such as space-
related safety and time advance. Additionally, the risk avoidance indicator can be used to
assess the risk faced by the self-driving car during the car chase process. As a final step, the
work proposes a model that is risk aversion index-based and binary for predicting accident
risk. In comparison with other loop detector data-based collision estimation models, its
AUC (area under the ROC curve) value reaches 0.96.

Simulated route data are used in this paper. Considering that the simulation model is
idealized compared to the actual traffic environment, there are some limitations that occur
in the simulation process due to the idealization of the model. It is difficult to accurately
reproduce the pre-crash trajectory when more regular vehicle behavior is compared to the
behavior in the real world. As well, the simulation scene that is discussed in this paper
is all carried out in free-flow mode and does not discuss the more complex traffic flow
environment that is used in the real world.

In [57], analytical solutions for calculating collision state probability (CSP) and collision
event probability (CEP) are presented. Based on comparisons with Monte Carlo simulations,
both solutions provide numerically accurate results. The performance of these simulations
is 100 to 800 times better than that of MC simulations. As a result of this work, it has been
demonstrated that it is possible to calculate, in real time, the risk from a variety of possible
moves in a scene, which can be performed by all traffic participants in the scene. As a result,
the self-driving vehicle planner will not only have valuable information at their disposal,
but they may also have the opportunity to provide risk-based attention control in the future
as well.

Analytical methodologies for deriving CSP and CEP are proposed in the work [57].
Both of the proposed methods have been proven to give accurate results in comparison
with Monte Carlo numerical analysis. In fact, the performance of the methods is between
100 and 800 times superior to its Monte Carlo counterpart. In this study, it is also deduced
that it is possible to calculate, in real time, the risks associated with multiple maneuvers of
the participants in the traffic of the mentioned scenario.
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This fact suggests that effective data for the designers of autonomous driving vehicles
are necessary and also may be used for the attention-based management of collision risks
in future research.

The study [58] introduces the smart data integration apparatus for accident alarm
estimation for avoiding the two imminent challenges of driving risk and inaccurate accident
alarm because of noises in the input signal in the time interval of pre-accident alarm
analysis.

More-than-visual sensing, GPS, and drowsiness of steering are roughly applied to the
additional response time when tuning the presented NHTSA method, along with a strange
fault-tolerant approach to accommodate imprecise input signals. The authors present a
QTBPNN/ANFISA method included in a dual-distributed device to develop accurate and
correct event data logging and alerting. Many experiments were successfully conducted
and showed that the presented algorithm is superior to the two popular accident alarm
methodologies.

In addition, anomaly detection in runtime safety monitoring and AI-based solutions,
usage of historical accident assessment to avoid hazards on the road, and location-specific
motion detection in car camera video were widely studied in the research studies by [59–61],
respectively. However, in [60], root cause analysis of collisions and black spot detection were
performed via statistical distribution analysis and sliding window methods to formulate
preventative control actions; in [61], Bayesian inference of arbitrary motions in the in-car
video feed was used to detect potential dangers on the road.

Hortel et al. have used a formal model for collision risk assessment of AVs [62]. In the
work [63], a potential risk assessment for the safe driving of autonomous vehicles under
occluded vision has been investigated.

Song et al. have proposed a driving and steering collision avoidance system for
autonomous vehicles with model predictive control based on non-convex optimization [64].

In Table 2, we have classified different collision risk estimation approaches into groups
of computer vision techniques, machine learning, deep learning, simulation-based, sensor-
based, video data-based, LiDAR-based, time-series data-based, and other methods for
consideration. Moreover, in Table 2, we have described the advantages/disadvantages of
different collision risk assessment methods.

In Figure 7, we have summarized the number of papers investigated in each approach
deployed in collision risk assessment. As can be verified, AI-based methods have the most
significant attention in collision risk assessments.
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Table 2. Classification of the methods used in the studies related to Collision Risk.

References Computer
Vision ML DL Simulation Sensor Video Data Lidar Time-Series

Data RL Others Advantage Disadvantage

[46,47,56,58,62–64] - - - - - - - - -
√ Accurate mathematical modeling, enhanced

prediction accuracy Context dependent

[27,30–32,34,51]
√

-
√

- -
√

- - - -
Handling large and complex data, handling
structured and unstructured data, improved

performance

Increased complexity, overfitting tendencies,
legal/ethical concerns, dependency on

video data

[29,59] - -
√

- - - - - - -
Handling large and complex data, handling
structured and unstructured data, improved

performance

Increased complexity, overfitting tendencies,
legal/ethical concerns

[57]
√

- -
√

- -
√

- - -

Enhanced automation, improved accuracy,
increased efficiency, improved accessibility,

higher precision, more flexibility due to
simulations

Limited context awareness, privacy/ethical
concerns, bias and inaccuracy, dependence

on infrastructure, bias on LiDAR data

[28,33,49,52–55] -
√

- - - - - - - - Handling large and complex data, automation,
improved performance Privacy/ethical concerns

[37,60]
√

- - - - - - - - - Enhanced automation, improved accuracy,
increased efficiency, improved accessibility

Limited context awareness, privacy/ethical
concerns, bias and inaccuracy, dependence

on infrastructure

[36]
√ √

- - - - -
√ √

-
Handling large and complex data, automation,

improved performance, accurate
mathematical modeling, model-free, online

Privacy/ethical concerns, dependence on
infrastructure

[41] -
√ √

-
√

- - - - -
Handling large and complex data, automation,
improved performance, using exact sensory

data

Privacy/ethical concerns, increased
complexity, overfitting tendencies, bias on

sensor type

[44]
√

-
√

- -
√

-
√

- -
Handling large and complex data, handling
structured and unstructured data, improved

performance, accurate mathematical modeling

Increased complexity, overfitting tendencies,
legal/ethical concerns, dependency on

video data

[38]
√

- - - -
√

- - - - Enhanced automation, improved accuracy,
increased efficiency, improved accessibility

Limited context awareness, privacy/ethical
concerns, bias and inaccuracy, dependence

on infrastructure, bias on video data

[50] -
√

- -
√

- - - - -
Handling large and complex data, automation,
improved performance, using exact sensory

data

Privacy/ethical concerns, bias on sensor
type

[39,40]
√

-
√

-
√

- - - - -
Handling large and complex data, handling
structured and unstructured data, improved

performance, using exact sensory data

Increased complexity, overfitting tendencies,
legal/ethical concerns, bias on sensor type

[35]
√

-
√

- - - -
√

- -
Handling large and complex data, handling
structured and unstructured data, improved

performance, accurate mathematical modeling

Increased complexity, overfitting tendencies,
legal/ethical concerns

[61] - - - - - - -
√

- - Accurate mathematical modeling, improved
estimation accuracy Inefficient in complex scenarios
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Table 2. Cont.

References Computer
Vision ML DL Simulation Sensor Video Data Lidar Time-Series

Data RL Others Advantage Disadvantage

[43] - - - -
√

- - - - - Using exact sensory data, reduced complexity Bias on sensor type, decreased performance

[42] - - - -
√

-
√

- - - Using exact sensory data, reduced complexity,
higher precision Bias on LiDAR data, decreased performance

[45] - -
√ √

- - - - - -

Handling large and complex data, handling
structured and unstructured data, improved

performance, more flexibility due to
simulations

Increased complexity, overfitting tendencies,
legal/ethical concerns

[48] -
√

- - -
√

- - - - Handling large and complex data, automation,
improved performance Privacy/ethical concerns, bias on video data
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4. Data and Methods

In this chapter, we will investigate the data and methods which have been adopted in
the previous two chapters (i.e., TTC estimation and collision risk assessment). Please note
Tables 3 and 4. Refs. [65–134] are about the used datasets in the paper.

Table 3. Data and methods used in TTC.

Reference Data Method

[4] Captured sequence of frames
involving displacement change.

Active Contour Affine Scale (ACAS), with image flow
approximated by an affine

transformation

[5] Captured Sequence of images at a constant vehicle speed. Featureless Based Control with Kalman Filtering and Gain
Scheduling

[6] Captured ten sets of sequence images with five scenes. Acceleration constraint (τ-constraint) and distance constraint
(Φ-constraint) methods

[7] Feature position information of two consecutive sets of image
sequences as well as odometry data. Feature Based Robust TTC Calculation

[8] Captured Video on an Android Smartphone Relative Velocity Estimation via Depth and Motion Sensing

[9] Captured Sequence of Images from a Light Source via a Fixed
Camera

Analyzing Photometric Features via Measuring Changes in
Intensity with Ambient Elimination

[10] Captured radar sensor data labeled by hand Spot detection and paring

[11] Synthetic object data Using visual stimulus degradation

[12] Synthetic and Real Sequence of Images with constant velocity
camera Dense Optical Flow-Based Time-to-Collision

[13] FlyingChairs2 [65] and FlyingThings3D Datasets [66] Binary, Quantized, and
Continuous Estimation

[14] EVReflex Dataset Merged event camera and lidar streams without requiring prior
scene geometry or obstacle knowledge.

[15] KITTI Vision Benchmark [67] Horizontal and Vertical Motion Divergence

[16] Synthetic Event-Based Camera Model using DVS Vertical Descent Control via Estimating Divergence of Optical
Flow

[17] Monte Carlo Simulation
Linking the collision probability rate distribution to TTC

distribution and deriving the upper bound for the collision
distribution.

[18] Video feeds from 1 to 3 merging zones were captured across 20
roundabouts in Quebec, covering a total of 37 distinct sites.

Assessing TTC Indicators and Aggregation Methods using
Constant Velocity, Normal Adaptation, and Motion Pattern

Prediction Methods for Surrogate Safety Analysis.

[19]
video feeds from five Indian cities with varied lane setups,

straight road sections away from intersections, in clear weather
conditions and visibility.

Use urban road trajectory data to create temporal safety
indicators in non-lane-based traffic

[20] Captured video of 210 frames on a moving monocular vision
robot

Estimate TTC using the so-called Tau-margin by the ratio of
change of apparent size of obstacles via color segmentation

[21] Real and Synthetic Images by Pov-ray Software [68] Spatial and Temporal Gradient-based methods

[22] Synthetic Video Feed and Stop-Motion Sequence Featureless Direct Method via Brightness Derivative Based on
Two Consecutive Frames as a MontiVision Filter

[23] Synthetic Data Using AirSim [69] Simulator, and Aerial Drones Multi-object Deep Feature Detection via Pixel-Level Object
Segmentation

[24] UDACITY Sensor Fusion Dataset [70] Detector Descriptor TTC Detection

[25] MATLAB/Simulink Simulation Time To Collision Lane Change via Potential Field and Cubic
Polynomial

[26] PointCloud2 Data via CARLA Simulator [71] Bypass Object Detection with Line Intersection via Laser-Scan
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Table 4. Data and methods used in collision risk assessment.

Reference Data Method

[27] UA-Detrac Dataset: Traffic Video Feed Data with Over 1.2 million
Bounding Boxes [72]

Data-Driven Optimal Velocity Model via Deep-SORT Tracker,
Classification by VT-Lane Framework, and Kalman Filtering

[28] VTTI Dataset [73] Ensemble Model of C5.0, K-Nearest Neighbor, J48
Classification, Naive Bayes, and Gradient Boosting Machine

[29] Vehicle Interaction Data Proactive V2V-based Warning System via Long Short-Term
Memory (LSTM) Risk Prediction

[31] Lyft Level-5 [73], KITTI Vision [67] Benchmark, and Waymo [110]
datasets

Planar 2D Collision Machine Learning Model via
Decision-Trees and Random-Forests

[32] Self-Collected Video Sequence Similar to KITTI Vision
Benchmark [67]

Monocular Vision Deep Learning via Optical Flow Modeling,
Depth Estimation, Object Detection, Ego-vehicle Speed
Estimation, Lead Vehicle Identification, and Car Stop

Collision Timing

[33] NuScenes Dataset [106]
Multi-sensor Fusion to Extract Motion Features and Predict

Trajectories, via Minimum Future Spacing (MFS) and
Extended Kalman Filter (EKF)

[34] Synthetic Data via Robotics Simulator CoppeliaSim (V-REP) [75] Bayesian Convolutional Long Short-Term Memory (LSTM)

[35]

Around View Monitor (AVM) Images with Four 190 Wide-Angle
Cameras Based on the Chungbuk National University Parking Lot,

and National Institute of Intelligent Information Society (NIA)
Dataset

Bird-Eye View Area
Detection and Semantic Segmentation via CSPHarDNet,

CSPDenseNet, and HarDNet

[36] Car-Following On-board Diagnosis (OBD) Dataset Collected from
Xi’an Rao Cheng Expressway for Three Days

Forward Collision Detection in Advanced Driver-Assistance
Systems (ADAS) via Long Short-Term Memory (LSTM) and

Deep Belief Network (DBN)

[37] Single-Layer Laser-Scanner Data with 10 Hz Frequency Automatic Collision Avoidance System via Obstacle
Detection and Fuzzy-Logic Control

[38]
Forward Facing Camera Data Based on TASI 110-Car Naturalistic

Driving Study [76], Caltech Pedestrian, ETH, TUD-Brussels, Daimler,
and INRIA Datasets

Motion Divergence Detection by Analyzing Horizontal and
Vertical Trace Expansion form Cluster of Line Segments

[39] TORCS (The Open Racing Car Simulator)
Direct Perception Deep Learning via GoogLeNet

Autonomous Driving (GLAD) and ConvNet based on
AlexNet

[40] Event Data Recording via GPS and Vision Sensing, and
Vehicle-to-Vehicle Communication

Neural Network (QT-BPNN) and Adaptive Network-Based
Fuzzy Inference System (ANFIS), with Distributed

Dual-Platform DaVinci+XScale_NAV270

[41] Synthetic Data Using Automated Test Trajectory Generation
(ATTG) Bayesian Deep Learning (BDL), and Reinforcement Learning

[42] LIDAR, Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), GPS,
and IMU Readings

Robust System to Estimate the Likelihood of Collisions,
Validated by Controlling the Ego Velocity of Vehicle with

Velocity Planning
Control (VPC)

[43] Two La Route Automatise (LaRA) vehicles exchanging their positions
and velocities, and GPS Data

Trajectory Prediction and Kalman Filtering via Geometric
and Dynamic Approaches

[44] KITTI Dataset [67]

FasterRCNN-101 for Object Detection, Particle-based Object
Tracking and Distance Estimation Based on First Principles,

and Risk Assessment Based on Inverse Time-to-Collision
(TTC), using Monocular Vision Input Feed.

[45] Next-Generation Simulation (NGSIM) Dataset [77] Generate High-risk Scenes Using a Bayesian Network Model.

[46]

California Department of Motor Vehicles Autonomous Vehicle Testing
Records [78–82], Virginia

Department of Transportation (DOT) [83], the New York State DOT
Traffic Crash Reports [84], NASA Risk Assessment Data [85]

Fault Tree Analysis: Bayesian Belief Network for LIDAR and
Camera Failure, Chi-square distribution for Radar Failure,
Extended Markov Bayesian Network for Software Failure,
Kalman filter for Wheel Encoder Failure, Least Squares for

GPS Failure, Generic quorum-system evaluator for Database
System Failure, In IEEE 802.11b Network and CAP for

Communication Failure, Markov Chain Model for Integrated
Platform Failure, Human Reliability Analysis (THERP,
CREAM, and NARA) for Human Command Error, and
Artificial Neural Networks on Clean Speech for System

Failure for Human Command Detection
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Table 4. Cont.

Reference Data Method

[47] CARLA Simulator
Risk Assessment Based Decision-Making to Avoid Collisions

with Likelihood Analysis via Conditional Random Field
(CRF)

[48] Captured Video Feed Bayesian Framework and Decision Trees

[49] AnAn Accident Detection (A3D) [111], and DADA-2000 [86] Datasets
Appearance, Motion, and Context Consistency Learning via

Self-Supervised Consistency Traffic Accident Detection
(SSC-TAD) Learning

[50] Collected 200 Hours of Smartphone GPS and Video Data Quantile Regression (QR) Modeling, EuroFOT Thresholding,
and Spacial Clustering

[51] Collected 30 Frames-per-second (FPS) Video Data Analyzing Horizontal and Vertical Motion Divergence
without Object Detection and Depth Sensing

[52] NGSIM US101 [77], and highD [87] Datasets

Long Short-term Memory (LSTM) Encoder-Decoder for
Sequence Generation, Convolutional Social Pooling (CSP) for

Extracting Local Spatial vehicle interactions, and Graph
Attention Network (GAN) for Distant Spatial Vehicle

Interactions

[53] Lyft Level-5 Dataset [74]

Reinforcement Learning: Partially Observable Markov
Decision Process (POMDP) for Sequential Decision-making,
Bayesian Gaussian Mixture Models for Learning Patterns of
Trajectory, and Gibbs Sampling for Validating Simulations

[54] Athens Dataset [88] Dynamic Bayesian Networks (DBN)

[55] UK [89], and Athens [88] Datasets Network-level Collision Prediction (NLCP), and Dynamic
Bayesian Networks (DBN)

[56] NGSIM [77], and California’s Caltrans PeMS System Loop Detector
[90] Datasets Collision Risk Assessment Indicator by Risk Repulsion

[57] Monte Carlo Simulation Collision state probability (CSP), and Collision event
probability (CEP)

[58] ISO 3888 Test Track [91] Dynamical Autonomous Intelligent Vehicles (AIV) Modeling
and Fuzzy Logic Control

[59] Automotive Data and Time Triggered Framework (ADTF) [92]

Risk-based Criticality Measurement: General Integral
Criticality Measurement, Integration of Severity Prediction

Functions, Environmental Risk Parameters, and
Multi-dimensional Risk Mdoels

[60] SLAM System [93] Run-time Safety Monitoring Framework via Lane Detection,
and Object Detection

[61] Hungarian Road Network from the Hungarian Central Statistics
Department (HCSD)

Historical Accident Data Risk Assessment Based on
Thresholding and Distribution Analysis via Sliding Window

[62] CARLA Simulator [71] Formal Conformance Test Generation, and Statistical
Analysis on Traces

[63] Dynamic Simulation Occluded Vision Analysis Based on Dynamic Bayesian
Network (DBN) Inference

[64] Constant Turn-Rate and
Acceleration (CTRA)

Micro-genetic Algorithm, and Model Predictive Control
(MPC)

[65] Vehicle-to-Everything (V2X) Data Directed Acyclic Graph
(DAG) Blockchains

[66]

LIBRE [99], Foggy Cityscape [100], CADCD [101], Berkley DeepDrive [102],
Mapillary [103], EuroCity[104], Oxford RobotCar[105],

nuScenes [106], D2-City [107], DDD17 [108], Argoverse [109],
Waymo Open [110], A3D [111], Snowy Driving [112],

ApolloScape [113], SYNTHIA [114], P.F.B [115], ALSD [116],
ACDC [117], NCLT [118], 4Seasons [119], Raincouver[120],

WildDash [121], KAIST multispectral [122],
DENSE [123], A2D2 [124], SoilingNet [125], Radiate [126],
EU [127], HSI-Drive [128], WADS [129], and Boreas [130]

Datasets; as well as, CARLA [71], LG SVL [94],
dSPACE [95], CarSim [96], TASS PreScan [97],
AirSim [69], and PTV Vissim [98] Simulation

Environments

Assessing Effects of Weather on Automated
Driving Systems (ADS) Perception and Sensing
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Table 4. Cont.

Reference Data Method

[67] BLE AoA Dataset [131,132]

Analyze Indoor Localization Systems: Wireless
Fidelity (Wi-Fi),

Ultra-Wide Bandwidth Radio (UWB), Inertial
Measurement Units(IMU), Bluetooth Low Energy

(BLE),

[68] Long Range Wide Area Network
(LoRaWAN) [133,134] Vehicle Geolocalization

5. Open Areas

Research [4] indicates that optimizing collision time involves applying smoothing
techniques over time, such as the Kalman filter. Implementing recursive least squares
(RLS) with a forgetting parameter yields satisfactory outcomes. Although such filtering
methods enhance accuracy, they might introduce delays in collision time estimation, posing
challenges in real-time navigation. In pursuit of a scalable approach, a pixel pipeline
architecture incorporates collision time estimation algorithms compatible with hardware.
This setup allows for flexible adjustments between estimation accuracy, processing speed,
and resource utilization. Additionally, some researchers such as those in [5] aim to expand
and evaluate a smart video sensor in forthcoming studies.

In study [6], a comprehensive collision avoidance strategy is introduced. In this
system, the collision decision-making process was performed using point estimators or
their time integrals. Based on another recent study highlighted in [7], the results of aerial
robot landing control and navigation can be applied to miniature robots solely by vision
sensors, expanding the applicability of the findings. Addressing the transferability of
safety indicators, ref. [9] emphasizes the importance of comparing results across datasets
of various road infrastructure types, extending beyond roundabouts to include highways,
intersections, collector roads, and more. This approach enhances the broader applicability
of safety indicators.

The use of the central limit theorem is discussed in relation to model reliability in [12].
Despite the potential for increased reliability with a larger dataset, ref. [12] demonstrates
that results with smaller datasets can be as efficient and reliable. However, augmenting
the dataset has the potential to yield more acceptable results. Building upon the work
presented in [14], future directions for extension are considered. One possibility is the
expansion of the study to encompass general movement along the X and Y axes, indicating
the potential for broader applications and insights in the research domain.

In research cited as [18], it was discovered that vibrations affecting the car-mounted
camera led to significant image blurring, which negatively impacted the accuracy of
collision time estimation. To counteract this issue, the smartphone gyroscope sensor was
used to measure camera rotational speed. This offers a solution to mitigate image movement
during collision time calculation.

Following the insights from study [20], upcoming investigations would concentrate
on employing alternating lights as a potential solution for addressing pairing issues, as
well as increasing imaging resolution to enhance accuracy. Moreover, to formulate a predic-
tive model for traffic flow instability, the approach outlined in [27] suggested analyzing
the index distribution before the accident. In addition, ref. [28] highlighted the need to
encompass longer arterial segments and assess the applicability of the proposed model in
calibrating specific driving behaviors, i.e., the potential to act as an external driver model
for microscopic simulations.

According to research [29], enhancing prediction accuracy in accidents and near-
accident situations may be achievable by considering a comprehensive set of factors,
including driver and vehicle information as well as driver time-series datasets in various
environmental conditions. This holistic approach could contribute to more robust predictive
models. Continuing on the same line, further exploration in [32] aims to investigate whether
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analyzing the temporal and spatial distribution of CEP can serve as additional planning
input. In the context of decision making, ref. [34] suggests the need for improvement to
consider complex driving styles and situations to ensure steering and braking control are
integrated into the solutions and the decision-making process for a more comprehensive
and responsive approach to autonomous vehicle control.

Researchers in [37] express the intention to incorporate additional parameters, such as
driver error tolerance, into their computational model to proactively avoid accidents. In
addition, the research reviewed in [38] highlights the need for investigating and applying
better utilization of existing proprioceptive data for enhanced autonomous vehicle perfor-
mance. Some studies, for example [39], suggest exploring special parking areas, such as
women-only or lots for the disabled, to address the gaps in assessing the risk of collisions
in parking lots. They proposed conducting research to improve performance and develop
algorithms for collision risk identification and precise distance measurement using camera
and LiDAR technologies.

In the pursuit of deeper evaluations of the dynamic behavior of autonomous vehi-
cles [41], the recommendation is to integrate dynamic systems into the car model, including
brake systems, steering, and suspension. The call for implementing different independent
control strategies and comparing their performance across various benchmark vehicle test
tracks emphasizes the importance of practical assessments to evaluate the performance of
autonomous vehicle control systems.

In ref. [44], the researchers suggested the upcoming endeavors would focus on embed-
ded real-time system design, delving deeper into the subsystems introduced in the paper
and investigating interactions between multiple vehicles. This suggests a commitment
to practical application and a more comprehensive understanding of system interactions.
According to [45], future research plans would be dedicated to exploring more complex
behaviors including but not limited to left or right turns at intersections across the track
and similar intricate traffic scenarios.

The authors of the abovementioned real-time object tracking approach [46] identified
the limitations of the design for investigation and debugging in future work, including
the environment itself and the dependence on specific parameters for state and speed
estimation. While the absence of consideration for traffic mass information in the method
derivation described in [47] was highlighted as an area for future improvement and de-
velopment, the authors of [50] mentioned a more robust dynamic mapping strategy for
weight selection in the objective function and prediction of crash severity to evaluate the
overall performance as the main areas for future improvement.

For future research in [51], the aim is to employ online anomaly detection to enhance
the framework’s dynamic safety and expand to create safety profiles in the design time
phase. In [52], the future direction involves expanding the scope with methods such as
sliding windows in two dimensions or other relevant data mining procedures to implement
alternative black spot search approaches.

The authors of [53] proposed further modifications to risk classification with more
accurate assessments of real-world datasets to elevate the model’s applicability in complex
situations such as curved case scenarios. As highlighted in [55], the forthcoming focus is to
scale up the applications of their presented method to bigger dataset cases and longer-term
exploratory datasets to handle more realistic scenarios.

Furthermore, blockchain and mmWave with THz are going to be employed for V2X
communications. Blockchain technology may be capable of securing V2X data, as well as
enabling other useful V2X services such as payments [135]. On the other hand, mmWave
with Thz is going to replace LiDAR for inclement weather [136].

For safety considerations, multiple sensors and technologies will be employed. Differ-
ent technologies like UWB, BLE, and long-range wide-area networks (LoRAWANs) will
be used for geolocalizing vehicles usually in indoor areas. This exact localization results
in identifying the exact location of the vehicles in such areas and so reduces the risk of
collision enormously [137,138].
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In Table 5, the main open area fields with their related references are listed.

Table 5. Categorizing the main open area fields.

Open Area Field Related References

Real-time navigation [4,5]

Using novel statistical methods [6,7,12,27,28,50]

Generalization [9,14,41,44,45,53,55]

Using new sensors [18,20]

Enhancing robustness [29,32,34]

Parameter engineering [37–39,46,47]

Safety considerations [51,137,138]

Deploying novel technology (blockchain and mmWave, etc.) [52,135,136]

6. Challenges

The development of a fully autonomous vehicle introduces several challenges. Man-
aging numerous variables simultaneously within driving performance is critical, as even a
single error could lead to a catastrophic accident. Typically, human intervention guides
basic system-level movements and decisions. Despite substantial advancements in process-
ing speed, sensor quality, and camera technology, these systems still harbor weaknesses
that hinder their widespread public release and universal adoption. The rest of this section
discusses several aspects of the challenges in autonomous vehicle design, i.e., calculations,
system design, implementation, generalization, validation, and safety considerations.

6.1. Calculations

One of the main challenges of deep learning methods, also as outlined in [39], lies in the
requirement for substantial data and time for network training, contributing to prolonged
training periods and increased costs in autonomous vehicle design. To address this issue, a
common strategy is to integrate reinforcement learning with supervised learning, aiming
to reduce training time and enhance the final output.

However, the necessity for extensive data collection remains a formidable obstacle in
training autonomous vehicles to navigate diverse real-world scenarios. Collaborative data
sharing among companies could expedite the transition from experimental to commercial
systems, yet due to market competition, data-sharing reluctance persists. Increasing the
volume of available data in autonomous system design is beneficial for handling more
complex conditions, but it introduces the challenge of data diversity.

When training data are abundant, there is a risk of overfitting the model if diversity
is not considered. This could lead to a situation where the system performs well only on
the trained data, which highlights the importance of data variety in minimizing overfitting
issues. Thus as datasets grow, attention to diverse data types becomes crucial to avoid
overfitting problems [27,29,32–35,39].

The computational complexity in autonomous systems is primarily influenced by
the states and decisions agents need to make. As systems must continuously make deci-
sions, the increase in dimensions leads to exponential growth in computational complexity,
termed dimensionality perturbation. In high-dimensional cases, this significantly impacts
solution complexity. Discretization can also be useful, but it may compromise system
performance. Alternate approaches involve employing multiple learning agents, utiliz-
ing evolutionary strategies for parallelization, or removing unnecessary data from input
and training datasets. The challenge extends to the deployment phase, where the high
computational load of artificial neural networks poses hurdles.

This challenge affects both network development/training and the on-vehicle comput-
ing system. Deep learning algorithms demand high computing power, leading to increased
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power consumption, a critical consideration in system design. The interplay between com-
putational demands, power consumption, and system design underscores the complexities
faced in the development and deployment of autonomous systems [39].

6.2. System Design

One significant challenge associated with deep learning revolves around the intricate
task of selecting the neural network architecture. There are no established guidelines
for determining an optimal neural network structure tailored to a specific solution. If
the network is too small, both in terms of size and layer count, it results in suboptimal
system performance. On the other hand, employing too many neurons poses the risk of
overfitting the training data, and the surge in computational complexity further complicates
matters [2].

Beyond architecture, various parameters, such as the learning rates, training procedure,
determination of batch sizes, and objective function, significantly influence any agent’s
performance and convergence. The process of selecting these parameters lacks well-defined
methods, often resorting to trial and error due to the intricate architecture of artificial neural
networks. This involves tuning a wide range of hyper-parameter values and optimizing
each based on performance, a process hindered by the computational demands of training
sessions [27,29,32–35].

To address this challenge, ongoing research explores alternative methods for parame-
ter selection, including automatic approaches that seek optimal values within a specific
spectrum or through model-based methods. Different techniques, such as grid search
methods, coordinate reduction, network search, random search, and neural architecture
search, are being investigated to streamline this process.

Coordinate reduction, for instance, involves keeping all hyper-parameters fixed except
one, allowing for the systematic determination of the optimal value for each parameter indi-
vidually. Another approach, network search, relies on sheer computing power to explore all
possible states without employing specialized intelligence to enhance efficiency [44,51,59].

However, this method’s computational cost escalated significantly when dealing with
a large number of neural network models, making it practical only when models can
be trained swiftly. In contrast, random search offers a faster alternative to grid search
by randomly sampling within the specified parameter interval. Despite its efficiency, a
drawback lies in the incomplete coverage of the parameter space, leading to closely situated
sample points.

This limitation can be mitigated by employing pseudo-random sequences. Recent
advancements in neural architecture search methods consider hardware efficiency by ana-
lyzing hardware feedback on the learning signal. This innovative approach has resulted
in the development of neural network architectures optimized for specific hardware plat-
forms, showcasing a tangible performance advantage. Importantly, these methods hold the
potential to extend their applicability to discover efficient network architectures tailored
for automotive hardware platforms, aligning with the growing emphasis on specialized
solutions in the field of autonomous systems.

Another challenge is that current continuous driving control systems often rely on
smaller networks and datasets. As datasets grow, the potential for employing deeper
architectures emerges, offering the promise of reduced bias and variance in training and
consequently more robust control policies. The quest for specialized network architectures
for autonomous driving, exemplified by models like conditional imitation learning, rep-
resents a focal point for future research endeavors in this domain. Ultimately, the goal is
to design architectures tailored to the unique demands of autonomous vehicles, thereby
advancing the field of self-driving technology.

6.3. Implementation

In the implementation of reinforcement learning systems, setting appropriate goals
poses a distinct challenge. One notable advantage of reinforcement learning lies in the



Vehicles 2024, 6 181

absence of a need to implicitly define the agent’s behavior, a characteristic found in rule-
based systems. Instead, only the reward function, often more straightforwardly defined
than the objective function, and the control function for braking, steering, and more must be
specified in a way to maximize the long-term cumulative reward. Consequently, accurately
capturing the desired behavior of the agent within this reward function is crucial [36];
otherwise, unexpected and undesirable behavior may manifest. To address this, the concept
of reward shaping is introduced, wherein intermediate rewards are utilized to guide the
agent toward the desired behavior, deviating from the binary rewards typically used for
success or failure.

In scenarios where agents control both lateral and longitudinal conditions, a further
challenge arises in defining a reward function when the agent is required to execute
multiple actions, such as braking, steering, and acceleration. Agents rely on feedback from
the reward function to enhance their performance. However, complications arise when
multiple actions are involved, making it unclear which action led to a specific reward. One
solution is to utilize a hybrid reward architecture, where the system employs a decomposed
reward function for various scenarios [36].

Ensuring the integrity of the reward function in reinforcement learning systems is
paramount for system developers, as misuse can lead to unforeseen and undesirable
behavior by the agents, commonly referred to as a bonus hack. This phenomenon, known as
reward hacking, occurs when the agent discovers unanticipated ways to exploit the reward
function for substantial rewards, contrary to the intended goals. To counteract reward
hacking, adversarial reward functions are introduced, resembling generative adversarial
networks, wherein the reward function becomes a factor itself. This allows the agent to
explore the environment and fortify its strength for reward hacking.

An alternative approach is employing a look-ahead model that evaluates rewards
based on state predictions. Implementing reward-limiting strategies offers a straightfor-
ward solution by imposing a maximum value on the reward function, curbing the potential
for unexpected high-reward scenarios. Additionally, employing multiple reward functions
proves advantageous, as the complexity of hacking multiple rewards is typically higher
than manipulating a single reward. In addressing the challenges of goal setting and reward
function manipulation, an alternative strategy involves leveraging inverse reinforcement
learning to extract the reward function from specialized task representations.

6.4. Generalization

Addressing diverse environments poses a significant challenge for learned control
systems, particularly in achieving scalability. A driving strategy effective in an urban
setting may not be optimal on a highway, given the distinct traffic patterns and safety
considerations. Similar challenges arise with changing weather conditions and seasons.
The neural network’s ability to apply knowledge from prior experiences to navigate entirely
new environments is termed generalization. However, the challenge lies in ensuring that
even if the system demonstrates effective generalization in one new environment, it can
extend this capability to a range of potential environments.

Due to the intricate operating conditions of vehicles, comprehensive testing is im-
practical, making it challenging to build and validate deep learning systems that can
generalize across diverse situations. As autonomous vehicles must adapt to varied us-
age environments, overcoming this challenge is crucial for the real-world deployment of
deep learning-based autonomous vehicles. To prevent poor generalization in deep neural
networks, it is essential to stop training before overfitting occurs [27,29,32–35,39,44,51,59].
Overfitting happens when the model fits the training data so closely that it loses its ability
to generalize to new data. Determining the optimal stopping point to avoid overfitting
remains an unsolved problem. However, employing three different datasets—training,
validation, and test sets—provides a strategy for assessing generalizability.

The validation set helps mitigate overfitting by monitoring errors. If a decline in
accuracy in the validation set occurs during training iterations, indicating an increase in
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network error, training should be stopped to prevent overfitting. This approach ensures
that changes reducing error in the training set are aligned with a decrease in error in the
validation set, preserving the network’s ability to generalize effectively.

Beyond preventing overfitting, a validation set serves as a means to compare various
network architectures, such as networks with differing hidden layer numbers. Conse-
quently, an additional independent set, termed the test set, becomes imperative to assess
the performance of networks without biases. This test suite rigorously evaluates the final
network’s capabilities without influencing network or architecture selection.

To improve testing accuracy while sometimes increasing training errors, regularization
techniques are employed. A range of regularization techniques exists, including L1 and
L2 regularization, which add extra values to the model’s objective function, compelling
the network to favor smaller weights. This minimizes internal noise impact, allowing the
network to learn broader trends across the dataset. Weight truncation, another method,
involves imposing constraints directly on network weights, demonstrating improvements
in model robustness. Dropout, a widely used approach, randomly removes neurons
during training, updating only the remaining weights. This dynamic process prevents
intricate neuron adaptations, aiding each neuron in focusing on task-relevant features, thus
minimizing overfitting tendencies.

6.5. Validation

Ensuring the accuracy of system performance and security verification is crucial,
yet real-world experiments come with considerable time and financial expenses. Con-
sequently, large-scale vehicle studies often rely on collaborations between government
research projects and manufacturers, mitigating costs and complexities. Simulation studies
emerge as cost-effective, faster, and more flexible alternatives, serving as an initial step
to assess performance and safety. Simulations offer the unique advantage of replicating
scenarios challenging to recreate in reality, like accidents, and have become a dominant
method owing to the enhanced accuracy and speed of simulation tools [45,57].

However, despite simulations’ benefits, verifying and validating model errors during
the simulation process remains critical. Inaccuracies in modeling intricate mechanical inter-
actions, such as joints and friction, can significantly impact real-world system performance.
Over-reliance on simulated environments without proper adaptation to the real world
presents challenges in effectively transferring policies learned within simulations. For
systems intended for real-world use, a combination of field testing and simulation-based
training is imperative.

While simulation aids in the convergence of reinforcement learning algorithms due to
the multitude of required experiments, ensuring successful policy transfer from simulator
to reality is vital. Recent research in robotic arms demonstrates promising policy transfer
from simulators to real-world scenarios. Validating the model and simulated environment
alone may not be sufficient for self-driving vehicles. Emphasis should also be placed
on validating the quality of training data. Ensuring datasets accurately represent the
intended operational environments and encompass potential scenarios is crucial. Biased
datasets favoring specific actions, such as leaning towards turning to a specific direction, or
scenarios, e.g., daytime driving, might introduce detrimental biases into the learning model,
prompting the need for robust dataset validation to detect biases or harmful patterns that
could lead to undesirable behavior in learned policies [45].

6.6. Safety Considerations

Safety measures in autonomous vehicles are very critical, and any malfunction may
lead to severe consequences. As neural networks grow more intricate, understanding
their solutions becomes increasingly complex, often leading to a “black box problem”.
While these systems may perform well in a validation environment, testing them across all
real-world scenarios remains impractical [8,27,29,31,41,59,60].
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Without a clear grasp of the decision-making process within these systems, ensuring
safe decisions in new environments becomes challenging, especially in online learning
methods where policies evolve dynamically, potentially transitioning from safe to unsafe
procedures over time. In autonomous vehicle systems, reacting safely to unpredictable
behaviors of other vehicles or pedestrians is crucial. Incorporating unsafe driving behaviors
of other vehicles in the training data can equip the vehicle controller to handle such
situations. Enhancing reliability and safety involves methods like damage memory, storing
rare negative events for continual training reinforcement, and ensuring safe behaviors.

During initial reinforcement learning training, ensuring safety is crucial. Especially
during initiation phases, when agents take heuristic-based learning approaches in environ-
ments involving road users or pedestrians, inappropriate actions due to exploration can
lead to catastrophic outcomes [31].

In the pursuit of solutions, several approaches are explored. One involves using in
real-life (IRL)-like slots to showcase safe behavior examples, serving as a reference point
for baseline safety. Simulated exploration within controlled environments aids in detect-
ing potential issues, yet its scalability for real-time systems is limited, posing challenges.
Similar safety constraints apply to system testing and evaluation, necessitating exhaustive
precautions until the proper and secure operation is assured. Deep neural networks ex-
hibit vulnerabilities to physical adversarial samples, posing significant implications for
real-world applications [59,60].

The subtle alterations in hostile samples, imperceptible to the human eye, could make
it difficult to defend against such attacks. These weaknesses raise security concerns across
various technologies leveraging deep reinforcement learning. While defenses are proposed,
advanced attacks can circumvent these measures, showcasing the persistent challenges in
safeguarding against adversarial attacks in deep learning applications.

7. Conclusions

This research delves into time to collision and collision risk management in au-
tonomous vehicles, exploring strategies like predicting collision times and implementing
alarms to prevent obstacles. The analysis aims to categorize diverse techniques, encom-
passing image processing, machine learning, deep learning, and sensors, among others, to
address collision risks. Additionally, the paper outlines challenge areas (including safety
considerations, validation, generalization, implementation, system design, and calculations)
and potential future research directions within this critical domain.

The references collectively highlight various novel methods and their comparative
performance in estimating time-to-collision (TTC) and obstacle avoidance accuracy. Ref. [4]
demonstrates ACAS’s superiority over SIRS and IBD in TTC estimation, highlighting
the specific strengths of each method. The proposed method in [5] outperforms optic
flow-based techniques in speed and accuracy. Similarly, ref. [6] showcases significant accu-
racy and speed improvements compared to visual-inertial odometry methods. Different
methods presented in refs. [7–14] demonstrate enhancements in performance, stability
conditions for control systems, robustness without specific requirements, improved de-
tection rates, and resolution of individual modality failures during obstacle avoidance.
Ref. [15] indicates high accuracy and precision for the proposed method. However, limita-
tions exist, such as the simulator in [16] not meeting stringent safety standards for space
missions despite promising outputs. Additionally, ref. [17] emphasizes the need for more
comprehensive collision avoidance systems beyond classical TTC distributions, especially
in two-dimensional geometries with process noise.

The discussed references highlight various methodologies and technologies in the
domain of autonomous vehicles and collision risk assessment. Ref. [18] emphasizes consis-
tent measurement methodologies, while [19] employs multiple minimum TTC criteria for
traffic safety assessment. Ref. [20] focuses on color segmentation for obstacle identification,
and [21] utilizes gradient-based methods for simplicity and speed in real-world scenarios.
Refs. [22,23] detail methods with minimal latency and adaptability to maritime and traf-
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fic monitoring contexts, respectively. Ref. [24] ranks TTC estimation methods, favoring
camera-derived distance calculations. Ref. [25] introduces TTCA-LC for safer lane changes,
ref. [27] emphasizes diverse behaviors at intersections, and [28] showcases an ensemble
model for accuracy using driver, roadway, and weather data. Methods in [29,31–33] present
crash risk prediction, high-performance risk assessments, video evaluation, and multi-
sensor fusion algorithms for collision forecasting, respectively. Refs. [34–39] discuss deep
predictive models, deep learning algorithms, TTC models, collision avoidance systems,
and fault tolerance in detection methods.

Refs. [40–46] cover advanced collision warning systems, crash prediction networks,
collision probability estimation, risk assessment via GPS-based representations, and fault
tree analysis for autonomous vehicle failure. The collection of references covers a wide
spectrum of methodologies and technologies pertinent to collision risk assessment and
autonomous vehicle safety. These references explore diverse approaches such as risk
assessment modules using conditional random fields [47], Bayesian rules for risk iden-
tification [48], and self-supervised consistency learning in dashcam videos [49]. Other
methods involve adapting thresholds based on speed-related information [50], filtering
motion traces for time-to-collision accuracy [51], and predicting collision risks between
autonomous and other vehicles based on trajectories [52].

Additionally, the references discuss reinforcement learning-based trajectory plan-
ning [53], machine learning classifiers for collision prediction [54], and incorporating
simulation models for conflict-based autonomous vehicle risk assessment [55]. Methods
for predicting unstable traffic flow [56], analytic solutions for computing collision indi-
cators [57], and nested approaches for assessing autonomous vehicle behaviors [58] are
also presented. Some references focus on the ethical and numerical aspects of risk eval-
uation [59], dynamic safety enhancements using anomaly detection techniques [60], and
alternative techniques for self-driven vehicles [61]. The use of formal verification tools for
perception components in AVs [62], challenges in adverse weather conditions [63], and
comprehensive control approaches for collision avoidance [64] are explored as well. Further
areas of exploration involve the necessity for robust V2X blockchains [135], challenges
related to LiDAR safety and imaging costs [136], methods for localization adaptability [137],
as well as geolocalization approaches discussed in [138].
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5G NR Fifth-Generation New Radio
ACAS Active Contour Affine Scale
ADAS Advanced Driver-Assistance Systems
ACV Autonomous Connected Vehicle
AI Artificial Intelligence
AMP Automatic Mixed Precision
AUC Area Under the ROC Curve
AV Autonomous Vehicle
BLE Bluetooth Low Energy
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CDR Correct Detection Rate
CEP Collision Event Probability
CSP Collision State Probability
C-V2X Cellular Vehicle to Everything
CV Connected Vehicle
DBN Deep Belief Network
DFR Detection Failure Rate
DL Deep Learning
DRAC Deceleration Rate to Avoid Collision
DSRC Dedicated Short-Range Communication
FL Fuzzy Logic
FPS Frames Per Second
GNSS Global Navigation Satellite System
GPS Global Positioning System
HD High Definition
IBD Image Brightness Derivative
IPR Information Provision Rate
KNN K-Nearest Neighbor
LiDAR Light Detection And Ranging
LSTM Long Short-Term Memory
MAPE Mean Absolute Percentage Error
MEC Multi-Access Edge Computing
ML Machine Learning
NGSIM Next-Generation Simulation
NFV Network Function Virtualization
PTSM Proactive Traffic Safety Management
RADAR Radio Detection And Ranging
RGB Red–Green–Blue
ROC Receiver Operating Characteristic
RL Reinforcement Learning
SDN Software-Defined Networks
SIRS Scale-Invariant Ridge Segment
TSP Traveling Salesman Problems
TTC Time-To-Collision
TTI Time-To-Impact
V2V Vehicle-to-Vehicle
VIO Visual Inertial Odometry
VT Virtual Traffic
UWB Ultra-Wide Bandwidth

References
1. Ahangar, M.N.; Ahmed, Q.Z.; Khan, F.A.; Hafeez, M. A Survey of Autonomous Vehicles: Enabling Communication Technologies

and Challenges. Sensors 2021, 21, 706. [CrossRef]
2. Hakak, S.; Gadekallu, T.R.; Reddy, K.R.; Swarna, M.; Ramu, P.; Parimala, M.; De Alwis, C.; Liyanage, M. Autonomous vehicles in

5G and beyond: A survey. Veh. Commun. 2023, 39, 100551. [CrossRef]
3. Chen, L.; Li, Y.; Huang, C.; Xing, Y.; Tian, D.; Li, L.; Hu, Z.; Teng, S.; Lv, C.; Wang, J.; et al. Milestones in Autonomous Driving and

Intelligent Vehicles—Part I: Control, Computing System Design, Communication, HD Map, Testing, and Human Behaviors. IEEE
Trans. Syst. Man Cybern. Syst. 2023, 53, 5831–5847. [CrossRef]

4. Alenya, G.; Negre, A.; Crowley, J.L. A comparison of three methods for measure of time to contact. IEEE/RSJ Int. Conf. Intell.
Robot. Syst. IROS 2009, 2009, 4565–4570. [CrossRef]

5. Zhang, H.; Zhao, J. Bio-inspired vision based robot control using featureless estimations of time-to-contact. Bioinspir. Biomim.
2017, 12, 025001. [CrossRef]

6. Burner, L.; Sanket, N.J.; Fermuller, C.; Aloimonos, Y. Fast Active Monocular Distance Estimation from Time-to-Contact. 2022.
Available online: http://arxiv.org/abs/2203.07530 (accessed on 20 December 2023).

7. Sagrebin, M.; Pauli, J. Improved time-to-contact estimation by using information from image sequences. Inform. Aktuell 2009,
2009, 26–32.

8. Wang, L.; Horn, B.K.P. Time-To-Contact control for safety and reliability of self-driving cars. Int. Smart Cities Conf. ISC2 2017, 3,
16–19. [CrossRef]

https://doi.org/10.3390/s21030706
https://doi.org/10.1016/j.vehcom.2022.100551
https://doi.org/10.1109/TSMC.2023.3276218
https://doi.org/10.1109/IROS.2009.5354024
https://doi.org/10.1088/1748-3190/aa53c4
http://arxiv.org/abs/2203.07530
https://doi.org/10.1109/ISC2.2017.8090789


Vehicles 2024, 6 186

9. Watanabe, Y.; Sakaue, F.; Sato, J. Time-to-contact from image intensity. In Proceedings of the 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 4176–4183. [CrossRef]

10. Gormer, S.; Muller, D.; Hold, S.; Meuter, M.; Kummert, A. Vehicle recognition and TTC estimation at night based on spotlight
pairing. In Proceedings of the 2009 12th International IEEE Conference on Intelligent Transportation Systems, St. Louis, MO,
USA, 4–7 October 2009; pp. 196–201. [CrossRef]

11. Hecht, H.; Brendel, E.; Wessels, M.; Bernhard, C. Estimating time-to-contact when vision is impaired. Sci. Rep. 2021, 11, 21213.
[CrossRef]

12. Shi, C.; Dong, Z.; Pundlik, S.; Luo, G. A hardware-friendly optical flow-based time-to-collision estimation algorithm. Sensors 2019,
19, 807. [CrossRef] [PubMed]

13. Badki, A.; Gallo, O.; Kautz, J.; Sen, P. Binary TTC:A temporal geofence for autonomous navigation. Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit. 2021, 2021, 12941–12950. [CrossRef]

14. Walters, C.; Hadfield, S. EVReflex: Dense Time-to-Impact Prediction for Event-based Obstacle Avoidance. IEEE Int. Conf. Intell.
Robot. Syst. 2021, 2021, 1304–1309. [CrossRef]

15. Kilicarslan, M.; Zheng, J.Y. Predict Vehicle Collision by TTC from Motion Using a Single Video Camera. IEEE Trans. Intell. Transp.
Syst. 2019, 20, 522–533. [CrossRef]

16. Sikorski, O.; Izzo, D.; Meoni, G. Event-based spacecraft landing using time-to-contact. In Proceedings of the 2021 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville, TN, USA, 19–25 June 2021; pp. 1941–1950.
[CrossRef]

17. Altendorfer, R.; Wilkmann, C. A new approach to estimate the collision probability for automotive applications. Automatica 2021,
127, 109497. [CrossRef]

18. St-Aubin, P.; Saunier, N.; Miranda-Moreno, L. Comparison of Various Time-to-Collision Prediction and Aggregation Methods for
Surrogate Safety Analysis. Transp. Res. Board 94th Annu. Meet. 2015, 1, 1–21.

19. Das, S.; Maurya, A.K. Defining Time-to-Collision Thresholds by the Type of Lead Vehicle in Non-Lane-Based Traffic Environments.
IEEE Trans. Intell. Transp. Syst. 2020, 21, 4972–4982. [CrossRef]

20. Sanchez Garcia, A.J.; Rios Figueroa, H.V.; Hernandez, A.M.; Cortes Verdin, M.K.; Vega, G.C. Estimation of time-to-contact from
Tau-margin and statistical analysis of behavior. In Proceedings of the 2016 International Conference on Systems, Signals and
Image Processing (IWSSIP), Bratislava, Slovakia, 23–25 May 2016; pp. 1–6. [CrossRef]

21. Benamar, F.Z.; El Fkihi, S.; Demonceaux, C.; Mouad-dib, E.; Aboutajdine, D. Gradient-Based time to contact on paracatadioptric
camera. In Proceedings of the IEEE International Conference on Image Processing, ICIP’2013, Melbourne, Australia, 15–18
September 2013.

22. Horn, B.K.P.; Fang, Y.; Masaki, I. Time to contact relative to a planar surface. IEEE Intell. Veh. Symp. Proc. 2007, 2007, 68–74.
[CrossRef]

23. Tottrup, D.; Skovgaard, S.L.; Sejerson, J.F.; Figueiredo, R.P. Real-Time Method for Time-to-Collision Estimation from Aerial
Images. J. Imaging 2022, 8, 62. [CrossRef]

24. Ozbek, M.; Celebi, A.T. Performance Evaluation of Camera-Based Time to Collision Calculation with Different Detectors &
Descriptors. Eur. J. Sci. Technol. 2021, 32, 59–67.

25. Lin, P.; Javanmardi, E.; Tao, Y.; Chauhan, V.; Nakazato, J.; Tsukada, M. Time-to-Collision-Aware Lane-Change Strategy Based on
Potential Field and Cubic Polynomial for Autonomous Vehicles. arXiv 2023. [CrossRef]

26. Beyrle, M. Time To Collision Calculation for an Autonomous Model Vehicle with CARLA; Technical Reports in Computing Science;
University of Applied Sciences: Kempten, Germany, 2020.

27. Abdelhalim, A.; Abbas, M. A Real-Time Safety-Based Optimal Velocity Model. IEEE Open J. Intell. Transp. Syst. 2022, 3, 165–175.
[CrossRef]

28. Bugusa, Y.; Patil, S. An improved accident crash risk prediction model based on driving outcomes using ensemble of prediction
algorithms. Int. J. Sci. Technol. Res. 2019, 8, 603–611.

29. Jo, Y.; Jang, J.; Ko, J.; Oh, C. An In-Vehicle Warning Information Provision Strategy for V2V-Based Proactive Traffic Safety
Management. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19387–19398. [CrossRef]

30. Staudemeyer, R.C.; Morris, E.R. A tutorial into Long Short-Term Memory Recurrent Neural Networks. Ralf C. Staudemeye 2019,
2019, 1–42.

31. Nahata, R.; Omeiza, D.; Howard, R.; Kunze, L. Assessing and Explaining Collision Risk in Dynamic Environments for Au-
tonomous Driving Safety. IEEE Conf. Intell. Transp. Syst. Proc. ITSC 2021, 2021, 223–230. [CrossRef]

32. Rill, R.A.; Farago, K.B. Collision Avoidance Using Deep Learning Based Monocular Vision. SN Comput. Sci. 2021, 2, 1–10.
[CrossRef]

33. Jiang, Y.; Hu, J.; Liu, H. Collision Risk Prediction for Vehicles with Sensor Data Fusion through a Machine Learning Pipeline. In
Proceedings of the International Conference on Transportation and Development, Seattle, WA, USA, 31 May–3 June 2022.

34. Strickland, M.; Fainekos, G.; Ben-Amor, H. Deep predictive models for collision risk assessment in autonomous driving. In
Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25
May 2018; pp. 4685–4692. [CrossRef]

35. Lee, S.; Lee, D.; Kee, S.C. Deep-Learning-Based Parking Area and Collision Risk Area Detection Using AVM in Autonomous
Parking Situation. Sensors 2022, 22, 1986. [CrossRef]

https://doi.org/10.1109/CVPR.2015.7299045
https://doi.org/10.1109/ITSC.2009.5309848
https://doi.org/10.1038/s41598-021-00331-5
https://doi.org/10.3390/s19040807
https://www.ncbi.nlm.nih.gov/pubmed/30781489
https://doi.org/10.1109/CVPR46437.2021.01275
https://doi.org/10.1109/IROS51168.2021.9636327
https://doi.org/10.1109/TITS.2018.2819827
https://doi.org/10.1109/CVPRW53098.2021.00222
https://doi.org/10.1016/j.automatica.2021.109497
https://doi.org/10.1109/TITS.2019.2946001
https://doi.org/10.1109/IWSSIP.2016.7502702
https://doi.org/10.1109/ivs.2007.4290093
https://doi.org/10.3390/jimaging8030062
https://doi.org/10.48550/arXiv.2306.06981
https://doi.org/10.1109/OJITS.2022.3147744
https://doi.org/10.1109/TITS.2022.3156923
https://doi.org/10.1109/ITSC48978.2021.9564966
https://doi.org/10.1007/s42979-021-00759-6
https://doi.org/10.1109/ICRA.2018.8461160
https://doi.org/10.3390/s22051986


Vehicles 2024, 6 187

36. Guo, L.; Jia, Y.; Hu, X.; Dong, F. Forwarding Collision Assessment with the Localization Information Using the Machine Learning
Method. J. Adv. Transp. 2022, 2022, 9530793. [CrossRef]

37. Jimenez, F.; Naranjo, J.E.; Gomez, O. Autonomous collision avoidance system based on accurate knowledge of the vehicle
surroundings. IET Intell. Transp. Syst. 2015, 9, 105–117. [CrossRef]

38. Kilicarslan, M.; Zheng, J.Y. Bridge motion to collision alarming using driving video. Proc. Int. Conf. Pattern Recognit. 2016, 2016,
1870–1875. [CrossRef]

39. Al-Qizwini, M.; Barjasteh, I.; Al-Qassab, H.; Radha, H. Deep learning algorithm for autonomous driving using GoogLeNet. In
Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 89–96. [CrossRef]

40. Chang, B.R.; Tsai, H.F.; Young, C.P. Intelligent data fusion system for predicting vehicle collision warning using vision/GPS
sensing. Expert Syst. Appl. 2010, 37, 2439–2450. [CrossRef]

41. Nair, S.; Shafaei, S.; Kugele, S.; Osman, M.H.; Knoll, A. Monitoring safety of autonomous vehicles with crash prediction network.
CEUR Workshop Proc. 2019, 2301.

42. Annell, S.; Gratner, A.; Svensson, L. Probabilistic collision estimation system for autonomous vehicles. In Proceedings of the 2016
IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016;
pp. 473–478. [CrossRef]

43. Ammoun, S.; Nashashibi, F. Real time trajectory prediction for collision risk estimation between vehicles. In Proceedings of the
2009 IEEE 5th International Conference on Intelligent Computer Communication and Processing, Cluj-Napoca, Romania, 27–29
August 2009; pp. 417–422. [CrossRef]

44. Phillips, D.J.; Aragon, J.C.; Roychowdhury, A.; Madigan, R.; Chintakindi, S.; Kochenderfer, M.J. Real-time Prediction of
Automotive Collision Risk from Monocular Video. 2019. Available online: http://arxiv.org/abs/1902.01293 (accessed on 20
December 2023).

45. Wulfe, B.; Hartong-Redden, R.; Chintakindi, S.; Kodali, A.; Choi, S.C.T.; Kochenderfer, M.J. Real-time prediction of intermediate-
horizon automotive collision risk. Proc. Int. Jt. Conf. Auton. Agents Multiagent Syst. AAMAS 2018, 2, 1087–1096.

46. Bhavsar, P.; Das, P.; Paugh, M.; Dey, K.; Chowdhury, M. Risk analysis of autonomous vehicles in mixed traffic streams. Transp.
Res. Rec. 2017, 2625, 51–61. [CrossRef]

47. Li, G. Risk assessment based collision avoidance decision-making for autonomous vehicles in multi-scenarios. Transp. Res. Part C.
Emerg. Technol. 2021, 122, 102820. [CrossRef]

48. Kilicarslan, M.; Zheng, J.Y. Towards collision alarming based on visual motion. In Proceedings of the 2012 15th International IEEE
Conference on Intelligent Transportation Systems, Anchorage, AK, USA, 16–19 September 2012; pp. 654–659. [CrossRef]

49. Fang, J.; Qiao, J.; Bai, J.; Yu, H.; Xue, J. Traffic Accident Detection via Self-Supervised Consistency Learning in Driving Scenarios.
IEEE Trans. Intell. Transp. Syst. 2022, 23, 9601–9614. [CrossRef]

50. Aichinger, C.; Nitsche, P.; Stutz, R.; Harnisch, M. Using Low-cost Smartphone Sensor Data for Locating Crash Risk Spots in a
Road Network. Transp. Res. Procedia 2016, 14, 2015–2024. [CrossRef]

51. Kilicarslan, M.; Zheng, J.Y. Direct vehicle collision detection from motion in driving video. In Proceedings of the 2017 IEEE
Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1558–1564. [CrossRef]

52. Meng, D.; Xiao, W.; Zhang, L.; Zhang, Z.; Liu, Z. Vehicle Trajectory Prediction based Predictive Collision Risk Assessment for
Autonomous Driving in Highway Scenarios. arXiv 2023, arXiv:2304.05610.

53. Zhang, E.; Zhang, R.; Masoud, N. Predictive trajectory planning for autonomous vehicles at intersections using reinforcement
learning. Trans. Research Part C Emerg. Tech. 2023, 149, 104063. [CrossRef]

54. Katrakazas, C.; Quddus, M.; Chen, W.-H. A new integrated collision risk assessment methodology for autonomous vehicles.
Accid. Anal. Prev. 2019, 127, 61–79. [CrossRef]

55. Katrakazas, C. Developing an Advanced Collision Risk Model for Autonomous Vehicles. Ph.D. Dissertation, Loughborough
University Research Repository, Loughborough, UK, 2017.

56. Wu, B.; Yan, Y.; Ni, D.; Li, L. A longitudinal car-following risk assessment model based on risk field theory for autonomous
vehicles. Int. J. Transp. Sci. Technol. 2021, 10, 60–68. [CrossRef]

57. Philipp, A.; Goehring, D. Analytic collision risk calculation for autonomous vehicle navigation. Proc. IEEE Int. Conf. Robot. Autom.
2019, 2019, 1744–1750. [CrossRef]

58. Sabry, Y.; Aly, M.; Oraby, W.; El-demerdash, S. Fuzzy Control of Autonomous Intelligent Vehicles for Collision Avoidance Using
Integrated Dynamics. SAE Int. J. Passeng. Cars Mech. Syst. 2018, 11, 5–21. [CrossRef]

59. Hruschka, C.M.; Topfer, D.; Zug, S. Risk Assessment for Integral Safety in Automated Driving. In Proceedings of the 2019 2nd
International Conference on Intelligent Autonomous Systems (ICoIAS), Singapore, 28 February–2 March 2019; pp. 102–109.
[CrossRef]

60. Osman, M.H.; Kugele, S.; Shafaei, S. Run-Time Safety Monitoring Framework for AI-Based Systems: Automated Driving Cases.
Proc. Asia-Pac. Softw. Eng. Conf. APSEC 2019, 2019, 442–449. [CrossRef]

61. Szenasi, S.; Kertesz, G.; Felde, I.; Nadai, L. Statistical accident analysis supporting the control of autonomous vehicles. J. Comput.
Methods Sci. Eng. 2021, 21, 85–97. [CrossRef]

62. Hortel, J.-B.; Ledent, P.; Marsso, L.; Laugier, C.; Mateescu, R.; Paigwar, A.; Renzaglia, A.; Serwe, W. Verifying Collision Risk
Estimation using Autonomous Driving Scenarios Derived from a Formal Model. J. Intell. Robot. Syst. 2023, 107, 59. [CrossRef]

https://doi.org/10.1155/2022/9530793
https://doi.org/10.1049/iet-its.2013.0118
https://doi.org/10.1109/ICPR.2016.7899909
https://doi.org/10.1109/IVS.2017.7995703
https://doi.org/10.1016/j.eswa.2009.07.036
https://doi.org/10.1109/ITSC.2016.7795597
https://doi.org/10.1109/ICCP.2009.5284727
http://arxiv.org/abs/1902.01293
https://doi.org/10.3141/2625-06
https://doi.org/10.1016/j.trc.2020.102820
https://doi.org/10.1109/ITSC.2012.6338835
https://doi.org/10.1109/TITS.2022.3157254
https://doi.org/10.1016/j.trpro.2016.05.169
https://doi.org/10.1109/IVS.2017.7995931
https://doi.org/10.1016/j.trc.2023.104063
https://doi.org/10.1016/j.aap.2019.01.029
https://doi.org/10.1016/j.ijtst.2020.05.005
https://doi.org/10.1109/ICRA.2019.8793264
https://doi.org/10.4271/06-11-01-0001
https://doi.org/10.1109/ICoIAS.2019.00025
https://doi.org/10.1109/APSEC48747.2019.00066
https://doi.org/10.3233/JCM-204186
https://doi.org/10.1007/s10846-023-01808-3


Vehicles 2024, 6 188

63. Wang, D.; Fu, W.; Song, Q.; Zhou, J. Potential risk assessment for safe driving of autonomous vehicles, under occluded vision. Sci.
Rep. 2022, 12, 4891. [CrossRef]

64. Song, Y.; Huh, K. Driving and steering collision avoidance system of autonomous vehicle with model predictive control based on
non-convex optimization. Adv. Mech. Eng. 2021, 13, 16878140211027669. [CrossRef]

65. Dosovitskiy, A.; Fischer, P.; Ilg, E.; Hausser, P.; Hazirbas, C.; Golkov, V.; Van Der Smagt, P.; Cremers, D.; Brox, T. FlowNet: Learning
optical flow with convolutional networks. IEEE Int. Conf. Comput. Vis. (ICCV) 2015, 2015, 2758–2766.

66. Mayer, N.; Ilg, E.; Hausser, P.; Fischer, P.; Cremers, D.; Dosovitskiy, A.; Brox, T. A large dataset to train convolutional networks for
disparity, optical flow, and scene flow estimation. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

67. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? The KITTI vision benchmark suite. In Proceedings of the
2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.

68. Persistence of Vision Pty, Ltd. Persistence of Vision Raytracer [Computer Software]. 2004. Available online: http://www.povray.
org/download/ (accessed on 20 December 2023).

69. Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In Field
and Service Robotics; Springer: Berlin/Heidelberg, Germany, 2018; pp. 621–635.

70. Available online: https://github.com/fanweng/Udacity-Sensor-Fusion-Nanodegree (accessed on 20 December 2023).
71. CARLA. CAR Learning to Act. Available online: https://carla.org/ (accessed on 20 December 2023).
72. Wen, L.; Du, D.; Cai, Z.; Lei, Z.; Chang, M.-C.; Qi, H.; Lim, J.; Yang, M.-H.; Lyu, S. UA-DETRAC: A new benchmark and protocol

for multi-object detection and tracking. Comput. Vis. Image Understand. 2020, 193, 102907. [CrossRef]
73. Real-World Use of Automated Driving Systems and their Safety Consequences: A Naturalistic Driving Data Analysis [Supporting

Datasets]. 2020. Available online: https://vtechworks.lib.vt.edu/items/22442930-c5be-40c4-af7d-4c2f1ea8d416 (accessed on 20
December 2023).

74. Houston, J.; Zuidhof, G.; Bergamini, L.; Ye, Y.; Jain, A.; Omari, S.; Iglovikov, V.; Ondruska, P. One thousand and one hours:
Self-driving motion prediction dataset. arXiv 2020, arXiv:2006.14480.

75. Rohmer, M.F.E.; Singh, S.P.N. V-rep: A versatile and scalable robot simulation framework. In Proceedings of the 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013.

76. Tian, R.; Li, L.; Yang, K.; Chien, S.; Chen, Y.; Sherony, R. Estimation of the vehicle-pedestrian encounter/conflict risk on the road
based on TASI 110-car naturalistic driving data collection. IEEE Intell. Veh. Symp. 2014, 2014, 623–629.

77. Alexiadis, V.; Colyar, J.; Halkias, J.; Hranac, R.; McHale, G. The next generation simulation program. Institute of Transportation
Engineers. ITE J. 2004, 74, 22.

78. Google. Autonomous Vehicles Annual Disengagement Report. In California Department of Autonomous Vehicles; Department of
Motor Vehicles (DMV): Sacramento, CA, USA, 2016.

79. Delphi. Autonomous Vehicles Annual Disengagement Report. In California Department of Autonomous Vehicles; Department of
Motor Vehicles (DMV): Sacramento, CA, USA, 2016.

80. Nissan. Autonomous Vehicles Annual Disengagement Report. In California Department of Autonomous Vehicles; Department of
Motor Vehicles (DMV): Sacramento, CA, USA, 2016.

81. Mercedes-Benz. Autonomous Vehicles Annual Disengagement Report. In California Department of Autonomous Vehicles; Depart-
ment of Motor Vehicles (DMV): Sacramento, CA, USA, 2016.

82. Volkswagen. Autonomous Vehicles Annual Disengagement Report. In California Department of Autonomous Vehicles; Department
of Motor Vehicles (DMV): Sacramento, CA, USA, 2016.

83. Virginia Traffic Crash Facts 2014. Virginia Highway Safety Office, Virginia Department of Motor Vehicles; Department of Motor
Vehicles (DMV): Richmond, VA, USA, 2015.

84. Summary of Motor Vehicle Crashes: 2014 Statewide Statistical Summary. In New York State Department of Motor Vehicles;
Department of Motor Vehicles (DMV): New York City, NY, USA, 2015.

85. Dezfuli, H.; Benjamin, C.A.; Everett, G.; Maggio, M.; Stamatelatos, R. NASA Risk Management Handbook; Publication NASA/SP-
2011-3422; NASA: Greenbelt, Maryland, 2011.

86. DADA-2000: Can Driving Accidents be Predicted by Driver Attention? Analyzed by A Benchmark. Available online: https:
//arxiv.org/abs/1904.12634 (accessed on 20 December 2023).

87. Krajewski, R.; Bock, J.; Kloeker, L.; Eckstein, L. The highD dataset: A drone dataset of naturalistic vehicle trajectories on German
highways for validation of highly autonomous driving systems. In Proceedings of the 2018 21st International Conference on
Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 2118–2125.

88. Theofilatos, A. An Advanced Multi-Faceted Statistical Analysis of Accident Probability and Severity Exploiting High Resolution
Traffic and Weather. Ph.D. Thesis, National Technical University of Athens, Athens, Greece, 2015.

89. Fagnant, D.J.; Kockelman, K. Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations.
Transp. Res. PartA. 2015, 77, 167–181. [CrossRef]

90. Clark, F.; Zhang, M. Caltrans PEMS highway sensor average flows by occupancy [Dataset]. Dryad 2018. [CrossRef]
91. BS ISO 3888-2; British Standard. Passenger Cars-Test Track for a Severe Lane Change Maneuver-Part 2: Obstacle Avoidance. ISO:

Geneva, Switzerland, 2002.
92. Schabenberger, R. ADTF: Framework for driver assistance and safety systems. VDI BERICHTE 2007, 2007, 701–710.

https://doi.org/10.1038/s41598-022-09100-4
https://doi.org/10.1177/16878140211027669
http://www.povray.org/download/
http://www.povray.org/download/
https://github.com/fanweng/Udacity-Sensor-Fusion-Nanodegree
https://carla.org/
https://doi.org/10.1016/j.cviu.2020.102907
https://vtechworks.lib.vt.edu/items/22442930-c5be-40c4-af7d-4c2f1ea8d416
https://arxiv.org/abs/1904.12634
https://arxiv.org/abs/1904.12634
https://doi.org/10.1016/j.tra.2015.04.003
https://doi.org/10.25338/B8QC7F


Vehicles 2024, 6 189

93. Li, D.; Shi, X.; Long, Q.; Liu, S.; Yang, W.; Wang, F.; Wei, Q.; Qiao, F. DXSLAM: A Robust and Efficient Visual SLAM System with Deep
Features; IEEE: Las Vegas, NV, USA, 2020.

94. Rong, G.; Shin, B.H.; Tabatabaee, H.; Lu, Q.; Lemke, S.; Možeiko, M.; Boise, E.; Uhm, G.; Gerow, M.; Mehta, S.; et al. Lgsvl
simulator: A high fidelity simulator for autonomous driving. In Proceedings of the 2020 IEEE 23rd International Conference on
Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020; pp. 1–6.

95. dSpace. Over-the-Air Simulation of Echoes for Automotive Radar Sensors. Available online: https://www.dspace.com/en/ltd/
home/news/engineersinsights/over-the-air-simulation.cfm (accessed on 20 December 2023).

96. Mechanical Simulation Corporation. Unreal Engine Marketplace Showcase. Available online: https://www.carsim.com/
publications/newsletter/2021_03_17.php (accessed on 20 December 2023).

97. TASS International. Prescan Overview. Available online: https://tass.plm.automation.siemens.com/prescan-overview (accessed
on 20 December 2023).

98. PTV Group. Virtual Testing of Autonomous Vehicles with PTV Vissim. Available online: https://www.ptvgroup.com/en/
solutions/products/ptv-vissim/areas-of-application/autonomous-vehicles-and-newmobility/ (accessed on 20 December 2023).

99. Carballo, A.; Lambert, J.; Monrroy, A.; Wong, D.; Narksri, P.; Kitsukawa, Y.; Takeuchi, E.; Kato, S.; Takeda, K. In Proceedings of the
LIBRE: The Multiple 3d Lidar Dataset, Intelligent Vehicles Symposium (IV); Las Vegas, NV, USA, 19 October–13 November 2020, IEEE:
Toulouse, France, 2020; pp. 1094–1101.

100. Sakaridis, C.; Dai, D.; Van Gool, L. Semantic foggy scene understanding with synthetic data. Int. J. Comput. 2018, 126, 973–992.
[CrossRef]

101. Pitropov, M.; Garcia, D.E.; Rebello, J.; Smart, M.; Wang, C.; Czarnecki, K.; Waslander, S. Canadian adverse driving conditions
dataset. Int. J. Robot. Res. 2021, 40, 681–690. [CrossRef]

102. Yu, F.; Chen, H.; Wang, X.; Xian, W.; Chen, Y.; Liu, F.; Madhavan, V.; Darrell, T. Bdd100k: A diverse driving dataset for
heterogeneous multitask learning. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Seattle,
WA, USA, 13–19 June 2020; IEEE/CVF: Toulouse, France, 2020; pp. 2636–2645.

103. Neuhold, G.; Ollmann, T.; RotaBulo, S.; Kontschieder, P. Themapillaryvistas dataset for semantic understanding of street scenes.
In Proceedings of the International Conference on Computer Vision, ICCV; Venice, Italy, 22–29 October 2017, IEEE: Toulouse, France,
2017; pp. 4990–4999.

104. Braun, M.; Krebs, S.; Flohr, F.; Gavrila, D.M. Eurocity persons: A novel benchmark for person detection in traffic scenes. IEEE
Trans. Pattern Anal. Mach. Intell. 2019, 41, 1844–1861. [CrossRef] [PubMed]

105. Maddern, W.; Pascoe, G.; Linegar, C.; Newman, P. 1 year, 1000 km: The Oxford robot car dataset. Int. J.Robot.Res. 2017, 36, 3–15.
[CrossRef]

106. Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. Nuscenes:
Amultimodal dataset for autonomous driving. In Proceedings of the Conference on Computer Vision and Pattern Recognition,
Seattle, WA, USA, 13–19 June 2020; IEEE/CVF: Toulouse, France, 2020; pp. 11621–11631.

107. Che, Z.; Li, G.; Li, T.; Jiang, B.; Shi, X.; Zhang, X.; Lu, Y.; Wu, G.; Liu, Y.; Ye, J. D2-city: A large-scale dashcam video dataset of
diverse traffic scenarios. arXiv 2019, arXiv:1904.01975.

108. Binas, J.; Neil, D.; Liu, S.-C.; Delbruck, T. DDD17: End-to-endDAVISdriving dataset. arXiv 2017, arXiv:1711.01458.
109. Chang, M.-F.; Lambert, J.; Sangkloy, P.; Singh, J.; Bak, S.; Hartnett, A.; Wang, D.; Carr, P.; Lucey, S.; Ramanan, D.; et al. Argoverse:

3d tracking and forecasting with rich maps. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 8748–8757.

110. Sun, P.; Kretzschmar, H.; Dotiwalla, X.; Chouard, A.; Patnaik, V.; Tsui, P.; Guo, J.; Zhou, Y.; Chai, Y.; Caine, B.; et al. Scalability in
perception for autonomous driving: Waymo open dataset. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 2446–2454.

111. Pham, Q.-H.; Sevestre, P.; Pahwa, R.S.; Zhan, H.; Pang, C.H.; Chen, Y.; Mustafa, A.; Chandrasekhar, V.; Lin, J. A*3D dataset:
Towards autonomous driving in challenging environments. In Proceedings of the 2020 IEEE International Conference on Robotics
and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 2267–2273.

112. Lei, Y.; Emaru, T.; Ravankar, A.A.; Kobayashi, Y.; Wang, S. Semantic Image Segmentation Snow Driving Scenarios. In Proceedings
of the 2020 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, China, 13–16 October 2020;
pp. 1094–1100.

113. Huang, X.; Wang, P.; Cheng, X.; Zhou, D.; Geng, Q.; Yang, R. Theapolloscape open dataset for autonomous driving and its
application. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42, 2702–2719. [CrossRef]

114. Ros, G.; Sellart, L.; Materzynska, J.; Vazquez, D.; Lopez, A.M. The synthia dataset: A large collection of synthetic images for
semantic segmentation of urban scenes. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 3234–3243.

115. Richter, S.R.; Hayder, Z.; Koltun, V. Playing for benchmarks. In Proceedings of the International Conferenceon Computer Vision,
ICCV, Venice, Italy, 22–29 October 2017; IEEE: Toulouse, France, 2017; pp. 2213–2222.

116. Liu, D.; Cui, Y.; Cao, Z.; Chen, Y. A large-scale simulation dataset: Boost the detection accuracy for special weather conditions. In
Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8.

117. Sakaridis, C.; Dai, D.; VanGool, L. ACDC: The adverse conditions dataset with correspondences for semantic driving scene
understanding. arXiv 2021, arXiv:2104.13395.

https://www.dspace.com/en/ltd/home/news/engineersinsights/over-the-air-simulation.cfm
https://www.dspace.com/en/ltd/home/news/engineersinsights/over-the-air-simulation.cfm
https://www.carsim.com/publications/newsletter/2021_03_17.php
https://www.carsim.com/publications/newsletter/2021_03_17.php
https://tass.plm.automation.siemens.com/prescan-overview
https://www.ptvgroup.com/en/solutions/products/ptv-vissim/areas-of-application/autonomous-vehicles-and-newmobility/
https://www.ptvgroup.com/en/solutions/products/ptv-vissim/areas-of-application/autonomous-vehicles-and-newmobility/
https://doi.org/10.1007/s11263-018-1072-8
https://doi.org/10.1177/0278364920979368
https://doi.org/10.1109/TPAMI.2019.2897684
https://www.ncbi.nlm.nih.gov/pubmed/30735986
https://doi.org/10.1177/0278364916679498
https://doi.org/10.1109/TPAMI.2019.2926463


Vehicles 2024, 6 190

118. Carlevaris-Bianco, N.; Ushani, A.K.; Eustice, R.M. University of Michigan North Campus long-term vision and lidar dataset. Int.
J. Robot. Res. 2016, 35, 1023–1035. [CrossRef]

119. Wenzel, P.; Wang, R.; Yang, N.; Cheng, Q.; Khan, Q.; von Stumberg, L.; Zeller, N.; Cremers, D. 4Seasons: Across-season dataset for
multi-weather SLAMin autonomous driving. In Proceedings of the DAGM German Conference on Pattern Recognition GPCR, Deutsche
Arbeitsgemeinschaft für Mustererkennung (DAGM); Dortmund, Germany, 10–13 September 2021, DAGM: Bonn, Germany, 2021;
pp. 404–417.

120. Tung, F.; Chen, J.; Meng, L.; Little, J.J. The raincouver scene parsing Benchmark for self-driving adverse weather and at night.
Robot. Autom. Lett. (RA-L) 2017, 2, 2188–2193. [CrossRef]

121. Zendel, O.; Honauer, K.; Murschitz, M.; Steininger, D.; Dominguez, G.F. Wildash-creating hazard-aware benchmarks. In
Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; ECCV: Prague, Czech,
2018; pp. 402–416.

122. Choi, Y.; Kim, N.; Hwang, S.; Park, K.; Yoon, J.S.; An, K.; Kweon, I.S. KAIST multi-spectral day/night dataset for autonomous
and assisted driving. IEEE Trans. Intell. Transp. Syst. 2018, 19, 934–948. [CrossRef]

123. Bijelic, M.; Gruber, T.; Mannan, F.; Kraus, F.; Ritter, W.; Dietmayer, K.; Heide, F. Seeing through fog without seeing fog: Deep
multimodal sensor fusion in unseen adverse weather. In Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; IEEE: Toulouse, France, 2020; pp. 11682–11692.

124. Geyer, J.; Kassahun, Y.; Mahmudi, M.; Ricou, X.; Durgesh, R.; Chung, A.S.; Hauswald, L.; Pham, V.H.; Mühlegg, M.; Dorn, S.; et al.
A2D2:Audi autonomous driving dataset. arXiv 2020, arXiv:2004.06320.
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