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Abstract: The study aims to improve the technique of motion planning for all-wheel drive (AWD)
autonomous vehicles (AVs) by including torque vectoring (TV) models and extended physical
constraints. Four schemes for realizing the TV drive were considered: with braking internal wheels,
using a rear-axle sport differential (SD), with braking front internal wheel and rear-axle SD, and
with SDs on both axles. The mathematical model combines 2.5D vehicle dynamics model and a
simplified drivetrain model with the self-locking central differential. The inverse approach implies
optimizing the distribution of kinematic parameters by imposing a set of constraints. The optimization
procedure uses the sequential quadratic programming (SQP) technique for the nonlinear constrained
minimization. The Gaussian N-point quadrature scheme provides numerical integration. The
distribution of control parameters (torque, braking moments, SDs’ friction moment) is performed by
evaluating linear and nonlinear algebraic equations inside of optimization. The technique proposed
demonstrates an essential difference between forecasts built with a pure kinematic model and
those considering the vehicle’s drive/control features. Therefore, this approach contributes to the
predictive accuracy and widening model properties by increasing the number of references, including
for actuators and mechanisms.
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1. Introduction

Usually, planning and tracking stages are separated as hierarchical components; how-
ever, a complex approach is also possible [1]. The planning quality reduces the time cost
needed for optimizing the control at the tracking stage, as well as minimizes the probability
of AV’s unstable motion modes. The variant of decomposing path and speed planning is
caused by the need to decrease the number of space-time variations during optimization
when the number of constraints increases. Thus, in studies such as [2], first, a visible
foresighted trajectory was generated, and the speed plan was then optimized with respect
to space. Afterward, the optimal control problem was formulated in the space instead of
the time domain.

Models. The problem of smoothed speed arose as a need for high-quality control
preventing the appearance of sudden loads and unstable transients. Some studies as [3]
attempted to compose speed plans based on cubic polynomials in such a way as to ensure
the continuity of accelerations at the transition nodes under conditions of minimizing the
jerk. However, the function inflections did not occur directly in the nodes, which led to
some excesses of the preset limits followed by the need for complicating the model to
compensate for this fluctuation effect. This approach allows obtaining continuous speed
values at any point, considering the initial and final values.

The range of models used to represent the AV at the planning stage is quite wide
and depends on the control objective. Kinematic models are the simplest and meet the
requirements of maximum performance. The bicycle model [4] is traditional and has proven
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itself well when using model predictive control (MPC). The best quality corresponds to the
state-space kinematic models with the control actions such as jerk and the steered wheels’
angles [5].

Dynamic models can be both complex and simple to control a single aspect. For
example, in [6] a longitudinal dynamic model is identified to tune a low-level speed-
tracking controller. In [7] a simplified constrained model uses a second-order integrator to
match the feasible AV dynamic behavior. This also includes speed planning to automatically
adjust the vehicle’s capabilities relative to the road conditions. The yaw, roll, and pitch of
AV body’s DOFs, each wheel’s dynamics based on slip ratios, and Pacejka’s combined slip
tire model are computed. The comparison of kinematic and dynamic models concerning
experimental data [4] shows different statistics of forecast errors, including the effect of
discretization error accumulation. In [8], a search-based method solves the problem with
nonlinear and unstable dynamics.

Objective functions determine the planning and control strategies. Most studies
proceed from the control strategy regarding minimizing the motion time while keeping
the vehicle within roadway boundaries [9]. Thus, in [10], the time-optimal trajectory
around a racetrack is obtained by solving a minimum lap time problem (MLTP) for a racing
vehicle. In [11], the path planning strategy includes preventing rear-end collisions during
overtaking while minimizing traveling time.

Controllers. Different types of controllers are used for both planning and tracking.
The class of controllers based on MPC can be considered the most used that allows obtain-
ing high-quality forecasts due to a combination of hard and soft constraints [5]. Another
popular class is the LQR-type controllers. For increasing performance and overcoming
physical limitations, a technique can be represented by the augmented Lagrangian frame-
work [6], which refers to iterative LQR (ILQR) and Constrained Iterative LQR (CILQR),
respectively. In [12], the sliding mode control (SMC) calculates the total driving force for
longitudinal control. In [7], the reference path is followed by low-level tracking using PID
controllers. In [13], a learning-based Interaction Point Model (IPM) describes the inter-
action between agents. In [9], the Nonlinear Model Predictive Control (NMPC) strategy
was aimed at controlling a small-scale car model for autonomous racing competitions.
Study [6] presented a hierarchical framework with neural physics-driven models to enable
the online planning and tracking of minimum-time maneuvers. A lateral speed prediction
model for high-level motion planning was considered with economic nonlinear model
predictive control (E-NMPC). In [1], a linear parameter-varying (LPV) MPC was deployed
for AV trajectory tracking and compared with the linear MPC. The outcomes satisfy the
processing rate and high-precision criteria, including safely avoiding obstacles. In [14],
the path-following control strategy was based on the linear quadratic regulator (LQR) to
compare the performance of models. In [12], the MPC controller was used to calculate the
steering wheel angle and the total yaw moment for lateral control, and the sliding mode
control (SMC) was used to calculate the total driving force for longitudinal control.

ADAS. Note that the problem of speed planning is typical not only for AVs but also for
ADAS systems. In [5], it was proposed to form a speed profile for functioning the adaptive
cruise control (ACC) based on MPC. The study [15] considered a preview servo-loop speed
control algorithm to achieve smooth, accurate, and computationally inexpensive speed
tracking for connected automated vehicles (CAVs). A classic PID with an optimal controller
was implemented in an automated vehicle platform for lowering speed-tracking errors,
mitigating operations, and smoothing brake/throttle activations. The paper [11] proposed
a system for speed planning using MPC to estimate the vehicle overtake safety while
controlling the maneuver for a dynamic vehicle model.

Paper [16] presented an AV’s trajectory planning and speed control algorithm for
static traffic agent avoidance in multi-vehicle urban environments. Decision-making and
motion planning frameworks were presented considering both the preceding static and
surrounding vehicles. Paper [17] considers hierarchical architecture for decision making,
motion planning, and control for an autonomous racing vehicle. The supervisor determined
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whether the subject vehicle should stay behind the preceding vehicle or start overtaking. A
high-level trajectory planner generated the desired path and velocity profile in a receding
horizon mode. A low-fidelity kinematic vehicle model was utilized for planning, and a
low-level trajectory tracker based on MPC and dynamic vehicle model generated the lateral
and longitudinal control inputs.

Some studies implemented the use of four-wheel models with increased degrees of
freedom, refined tire models, actuators, etc. Thus, in [14], the question of tire dynamics’
influence on vehicle dynamics’ control was raised. The influence of tire nonlinearity on
path offset was revealed. In [12], the longitudinal and lateral motion control for the four-
wheel independent drive intelligent vehicle was designed: the upper layer was the motion
controller, and the lower layer was the control distributor. In [8], complex dynamics in a
predictive manner were applied to achieve optimal robot behavior in dynamic scenarios.
In paper [18], a new real-time motion planning technique for an autonomous mobile robot
is proposed considering actuator capacities’ limits and tire-ground adhesion constraints.

Actuators. Study [9] includes a simple drivetrain model in the optimization problem
to limit the lateral and longitudinal forces acting on a car. An Autonomous Emergency
Braking Pedestrian (AEB-P) was introduced in [19] to prevent collisions between vehicles
and pedestrians. The emergency brake planner generates vehicle deceleration followed
by tracking the trajectory, where the PI-controller was adapted to provide the optimum
braking force. In [15], the brake/throttle control laws were introduced in five parts: three
feedback controls of system states and two feedforward items previewing road slope and
target speed. Study [20] proposes a clothoid-curve-based trajectory tracking control method
to solve the problem of tracking errors caused by the discontinuous curvature of the control
curve calculated by simple algorithms. The parameters of clothoid reference curves are tied
to the vehicle’s safe motion constraints.

Despite the intensive studies on motion planning, in our opinion, there still are some
issues that can be conditionally divided into three parts: vehicle model, restrictions, and
planning techniques.

Vehicle model. Note that most studies in the field of AV motion planning are focused
on generating reference curves using relatively simple (often kinematic bicycle) models.
However, the motion planner’s high performance does not yet mean high forecast quality.
The most important indicators are the prognosis feasibility and ensuring good accuracy
in reflecting features of a specific vehicle design. Considering the intensive use of control
systems in modern vehicles (for example, traction distribution), it is often not enough
to obtain the trajectory and kinematic parameters’ references. Moreover, the desirable
parameters themselves may significantly depend on the technologies used in a real vehicle.
For example, the distribution of drive torques between the same axle’s wheels can be carried
out through a symmetrical differential, through a sport differential (torque vectoring), and
by activating the inner wheels’ brakes. All three options will cause different axle drive
power, different traction and lateral forces, the tire–road adhesion degree, and, as a result,
affect differently on forming the yaw moment. In a classic uncontrolled AWD drivetrain,
a wheel with the worst adhesion conditions limits the traction potential. And vice versa,
in transmissions design with individual wheel control, the maximum realization of total
adhesion potential is possible. In the case of using a standard vehicle model, there will be
no difference between these two variants when speed is the planning object. If an extended
model is used, including the drive type and redistribution of vertical reactions, then, as
shown in our previous articles, the difference between predictions of kinematic parameters
may be significant especially for cases with low tire adhesion. Thus, this study’s target
consists of composing an inverse vehicle dynamic model that allows estimating physical
factors based on the kinematic parameters.

A set of constraints is a critical factor in reflecting the realism of forecasting and the
optimization procedure’s performance. On the one hand, increasing the number of restric-
tions complicates the mathematical optimization model; on the other hand, narrowing the
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boundaries of AV motion parameters contributes to diminishing solution iterations and
time costs.

When using a conventional kinematic model, constraints are also basically kinematic
(linear and angular velocities, linear and angular accelerations, jerk, etc.), which does
not always correspond to natural physical limits. For example, many researchers use a
constant upper acceleration limit without relating it to the throttle response properties
(speed–acceleration) for a specific vehicle design. At the same time, the traction potential
decreases with speeding even for the case of electric drive, which especially should be
considered for a medium-speed range.

The physical limitations are the most important but require an extended vehicle model.
First, these restrictions are responsible for preventing motion instability, critical modes
of vehicle-road interaction, and are associated with the design solutions for distributing
the power by wheels. Controlling the tires’ adhesion limits is the most important aspect,
requiring predicting both a redistribution of normal reactions and torques on wheels. In
turn, the torque depends on the drive design and control. In addition, pure kinematic
models do not allow direct operation with longitudinal and lateral slip. Nevertheless, it
is possible to indirectly estimate tires’ slip angles and lateral deformations followed by
including them in the constraints.

Safety restrictions. Most often, this includes speed limits when approaching moving
and static obstacles. Within this planning technique, we suppose that a trajectory consid-
ering obstacles and speed mode has already been built. Therefore, in the framework of
this study, we assume that the AV uses a safe space for realizing a maneuver. As a safety
measure, the body roll angle caused by lateral inertia forces is applied. Restricting the
maximum roll angle, limitations on lateral acceleration are automatically imposed.

Thus, in advance, we proceed from the fact that growth in the number of restrictions
positively affects the rapidity and quality of forecasting the AV motion.

Planning technique. Here, the most important requirements concern ensuring the
smoothness and unambiguousness of predicted functions. The most common approach
implies using polynomials that describe the change in speed concerning time along a
trajectory section. However, this does not always lead to a qualitative consistency between
the speed and curvature derivatives involved in the formation of kinematic parameters
such as jerk and angular acceleration. That is, there may be disruptions in the piecewise
representation of these functions. This, in turn, does not contribute to the possibility
of using inverse dynamics to determine the force factors acting on the vehicle. In this
regard, our method consists of using an inverse approach, when instead of speed its
second derivative is directly modeled by smooth functions. In this case, the continuity and
smoothness of the vehicle’s linear and angular accelerations will be guaranteed.

Figure 1 shows a general approach scheme reflecting the modeling stages and the
parameters used. The SQP optimization ensures iterative process, within which kine-
matic, dynamic, and physical parameters are evaluated to form optimization criteria and
constraints. To model vehicle kinematics, the inverse method is used, allowing the rep-
resentation of the longitudinal speed function via finite elements. The external data are
the preset boundary values of the kinematic parameters, initial conditions, and the pre-
calculated trajectory model. The SQP-loop at each iteration generates a vector of nodal
parameters for the longitudinal speed’s second derivative. A simple and smooth form
of the speed function is obtained by double numerical integration. After evaluating ac-
celerations, the distribution of normal reactions over the wheels can be found. Using the
AWD transmission model, vehicle steerability and nonlinear tire models, and algorithms
for controlling traction distributing actuators, the inverse dynamics problem is solved,
followed by determining the needed longitudinal and lateral forces and estimating degrees
of longitudinal and total tire adhesion use. Knowing the lateral forces and accelerations
allows estimating the equivalent sideslip angles, tire lateral deformations, and the body roll
angle, including them in a set of nonlinear constraints. As a result, the optimization output
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contains kinematic, dynamic, and physical parameters, as well as the necessary control
for actuators.
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2. Existing 2.5D Vehicle Dynamics Model
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2.2. Trajectory-Based Vehicle Kinematics

Assuming the maneuver trajectory is preoptimized, we outline the main points of
the ideal vehicle kinematics providing better controllability and motion stability. At the
same time, the main task consists of linking the kinematic parameters with the trajectory’s
geometric ones, ensuring the continuity of their derivatives (Figure 2a).

Mass center speed V is directed by the trajectory tangent and may be expressed
as follows →

V = Vζ
→
u ζ + Vµ

→
u µ = Vx

→
u x + Vy

→
u y (1)

where
→
u ζ ,

→
u µ, Vζ , Vµ = unit vectors and speed components of the vehicle local coordinate

system ζµ;
→
u x,

→
u y, Vx, Vy = unit vectors and speed components of the fixed (global)

coordinate system xy.
The absolute speed V may be decomposed with projections Vx and Vζ tied through

the tangent angle α and central slip angle β. Then,

V =
ds
dt

=
ds
dx

dx
dt

=
Vx

cos(α)
=

Vζ

cos(β)
, Vx = Vζ

cos(α)
cos(β)

(2)

The first and second derivatives of Vζ may be found as follows

dVζ

dt
=

dVζ

dx
dx
dt

=
dVζ

dx
Vx,

d2Vζ

dt2 =
d2Vζ

dx2 V2
x +

dVζ

dx
dVx

dx
Vx (3)

The derivative of Vx concerning the x-coordinate is

dVx

dx
=

(
dVζ

dx
+ Vζ

(
dβ

dx
tan(β)− dα

dx
tan(α)

))
cos(α)
cos(β)

(4)

Lateral Speed Vµ is geometrically tied with the longitudinal speed Vζ by the central
slip angle β

Vµ = V
ζ
tan(β) (5)

Its time derivative

dVµ

dt
=

dVµ

dx
dx
dt

=
dVµ

dx
Vx,

dVµ

dx
=

dVζ

dx
tan(β) + Vζ

dβ

dx
sec2(β) (6)

Yaw Rate is the yaw angle ϕ = α – β derivative in the current global coordinates. Thus,

ω =
dϕ

dt
=

dϕ

dx
dx
dt

=
dϕ

dx
Vx,

dω

dx
=

d
dx

(
dϕ

dx
Vx

)
=

d2ϕ

dx2 Vx +
dVx

dx
dϕ

dx
(7)
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Angular acceleration ε is derived from the yaw rate ω concerning time

ε =
dω

dt
=

dω

dx
dx
dt

=
dω

dx
Vx =

d2ϕ

dx2 V2
x +

dVx

dx
ω (8)

Accelerations in the local vehicle coordinate system ζµ are

→
a =

d
→
V

dt
=

(
aζ

aµ

)T
(→

u ζ
→
u µ

)
,

(
aζ

aµ

)
=

(
dVζ/dt
dVµ/dt

)
+ ω

(
−Vµ

Vζ

)
(9)

Jerks in the vehicle coordinate system are

→
j =

d
→
a

dt
=

(
jζ
jµ

)T
(→

u ζ
→
u µ

)
=

 d2Vζ

dt2 −
(

2 dVµ

dt + Vζ ω
)

ω − εVµ

d2Vµ

dt2 +
(

2 dVζ

dt − Vµω
)

ω + εVζ

T(→
u ζ
→
u µ

)
(10)

Velocities and accelerations at the wheels’ centers are needed for assessing the forces
acting in the tire–road contacts. Let us introduce designations

U =

(
0 1
−1 0

)
, UU = −

(
1 0
0 1

)
= −E2, rj =

(
rjζ
rjµ

)
, v =

(
Vζ

Vµ

)
, vj =

(
vζ j
vµj

)
,

H(·) =
(

cos(·) sin(·)
−sin(·) cos(·)

)
,

(→
u ζ j
→
u µj

)
= H

(
θj
)(→

u ζ
→
u µ

)
,

(→
u ζ
→
u µ

)
= HT(θj

)(→
u ζ j
→
u µj

) (11)

where E2 = identity matrix of dimension 2 × 2, rj = vector of j-th wheel center’s coordinates
in the AV local coordinate system, vj = vector of j-th wheel center’s velocities in the wheel

local coordinate system, H = rotational matrix, θj = angle of j-th wheel turn, and
→
u ζ j,

→
u µj = unit vectors of the j-th wheel local coordinate system.

Speed and Acceleration vectors in the center of j-th wheel’s local coordinates

vj =

(
vζ j
vµj

)
= H

(
θj
)(

v + ωUTrj

)
, aj =

(
aζ j
aµj

)
= H

(
θj
)(

a +
(

εUT − ω2E2

)
rj

)
(12)

Rotation angles of steered wheels can be determined as Ackerman’s angles subject to
that the trajectory curvature K is much less than the maximum possible. Thus,

θ1 = arccot
(

cos(β)

KB12
− B13

2B12

)
, θ3 = arccot

(
cos(β)

KB12
+

B13

2B12

)
(13)

2.3. Vehicle Dynamics
2.3.1. Body Pseudo-Roll

To enhance the influence of transversal forces on vehicle safety and redistributing
vertical reactions, the body roll phenomenon may also be used. It can be estimated using
the simplest scheme, as depicted in Figure 2b. Assuming that the vehicle body mass center
can deviate on the angle ψ relative to a roll center, the dynamics equation for the balance of
moments is derived as follows

→
Mψ =

→
r ψ ×

(→
Pµ + mb

→
g
)
=

→
r ψ ×

(→
a µ +

→
g
)

mb (14)

where mb = mass of the vehicle body, rψ = roll lever, g = gravity acceleration constant.
Performing a cross product, obtain

Mψ
→
u ψ = rψ

→
u r ×

(→
u µaµ −→

u zg
)

mb = rψ

(
aµcos(ψ)+g

B12

Br
sin(ψ)

)
mb

→
u ψ (15)
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where
→
u ψ,

→
u r = unitary vectors along the roll axis and roll lever, respectively,

Br =
√

B2
12 + (h24 − h13)

2

At the same time, the moment modulus is proportional to the angle ψ and the angular
stiffness coefficient kψ

Mψ = kψψ (16)

Equating the modules of Equations (15) and (16), we obtain for the angle ψ

ψ =
mbrψ

kψ

(
aµcos(ψ) + g

B12

Br
sin(ψ)

)
(17)

Supposing the angle ψ to be small, the expression of Equation (17) may be reduced
to the linear form. If the constant part is denoted as pψ, then the roll angle will be a linear
function of the lateral acceleration

ψ = pψaµ, pψ = 1/

(
kψ

mbrψ
− g

B12

Br

)
(18)

The roll lever rψ (Figure 2c) can be estimated based on dependencies [21]

rψ = hg
B12

Br
− (h24c + h13b)/Br ≈ hg − (bh13 + ch24)/B12 (19)

where h13, h24 = ordinates of the roll centers of the front and rear suspensions, respectively
(double wishbone suspensions are usually slightly below the wheel-center axis).

The angular stiffness of suspensions can be defined as follows

kψ = ks13 + ks24, ks13 =
1
2

B2
13ks f , ks24 =

1
2

B2
24ksr (20)

ksf, ksr = reduced stiffness of independent front and rear suspensions, respectively.
The suspension stiffness can be estimated from the lowest natural frequency of free

oscillations. Then,
ks f ,r = 4π2ms f ,r f 2

s f ,r (21)

msf,r = sprung masses distributed on every single front and rear suspensions, respec-
tively, fsf,r = natural oscillation frequencies of sprung masses (for modern cars fs = 0.6. . .1.3 Hz).

2.3.2. Redistribution of Vertical Reactions

The distribution of vertical reactions is the basic factor determining the wheel’s poten-
tial in transmitting longitudinal and transversal forces. The nature of the longitudinal and
transverse accelerations generated during optimization should be such as to provide an
approximate constancy of adhesive properties without violating the imposed restrictions.
Considering (Figure 2a), the balance of moments in the vehicle’s longitudinal plane can be
derived as follows(

lxcos(γ) + hge
(

sin(γ) +
aζ

g

))
mg + ePadha +

(
e e

)
Mµ − RzaB12 = 02 (22)

where γ = angle of road slope, and

Rza =

(
Rz f
Rzr

)
, Mµ =

(
Mµ f
Mµr

)
, lx =

(
b
c

)
, e =

(
−1
1

)
, B12 = b + c (23)
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Provided that for most of the moving time γ ≈ 0, Equation (22) may be reduced to(
lx + hge

aζ

g

)
mg + ePadha +

(
e e

)
Mµ − RzaB12 = 02 (24)

Wheel rolling resistance moments Mr can be partially estimated by omitting kinematic
losses (no sliding) and seeing only power losses. However, this requires a normal load
value on each wheel. To simplify, we may consider the moments from conditionally paired
front and rear wheels. Then,

Mr f (r) = Rz f (r)rw f (r) fr f (r) (25)

where rwf(r) = dynamic radius of front (rear) wheel, frf(r) = coefficient of front (rear) rolling
resistance.

Using the steered wheels’ average turning angle θf(r), we obtain

Mµ f (r) = Mr f (r)cos
(

θ f (r)

)
(26)

Then, the rolling resistance moments can be derived in terms of vertical reactions

Mµ =

(
Rz f rw f fr f cos

(
θ f

)
Rzrrwr frrcos(θr)

)
=

(
rw f fr f cos

(
θ f

)
0

0 rwr frrcos(θr)

)(
Rz f
Rzr

)
= mµRza (27)

Thus, Equation (23) may be rewritten in the form

Rza =
(

B12E2 −
(
e e

)
mµ

)−1
((

lx + hge
aζ

g

)
mg + ePadha

)
(28)

Assuming that the increments of normal reactions on the right and left sides are equal
due to the vehicle symmetry relative to the longitudinal plane, we obtain the vector of
dynamic reactions caused by the longitudinal acceleration

Rzζ =


∆Rzζ1
∆Rzζ2

∆Rzζ3
∆Rzζ4

 =
1
2


1 0
0 1
1 0
0 1

(Rz f
Rzr

)
, Rzζ =

1
2

(
E2
E2

)
Rza (29)

The distribution of vertical reactions along the sides, considering Figure 2d, may
be derived from the equations of moments’ equilibrium relative to each wheel’s contact
center. Designate

µw = 1
2


B13
B24

−B13
−B24

, e =


1
1

1
1

, Rzµ =


∆Rzµ1
∆Rzµ2
∆Rzµ3
∆Rzµ4

, µ = eµT
w, Y =

(
µ − µT), Mζ = e

(
Mζr + Mζl

)
(30)

where Mζr, Mζl = overturning moment from the right and left vehicle sides.
Since the tire deformations in the lateral direction are omitted at this stage, only

the rolling resistance of moment components is taken as the wheel overturning moment.
Considering them along the axes, we obtain

Mζ f (r) = Mr f (r)sin
(

θ f (r)

)
, Mζ = e

(
Mr f sin

(
θ f

)
+ Mrrsin(θr)

)
= eMr f sin

(
θ f

)
(31)

Since the model assumes a pseudo-roll, which causes some displacement of the mass
center (Figure 2b), the gravity effect can be clarified with the moment mb·g·rψ·sin(ψ) ≈
mb·g·rψ·ψ, where the pseudo-roll angle can be preliminarily estimated from the lateral
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acceleration. The matrix equation of the moment balance relative to the centers of the
wheels’ contacts is represented as follows

YRzµ + maµhg + Mζ + mbgrψψ = 0 (32)

The matrix Y is singular because of the vehicle symmetry. Therefore, the pseudo
inverse matrix Y+ is used for redistributing vertical reactions caused by the lateral accelera-
tion. Then,

Rzµ = −Y+(maµhg + mbgrψψ + Mζ

)
(33)

Thus, the vector of vertical reactions is a combination of both distributions

Rz = Rzζ + Rzµ (34)

2.3.3. Pseudo-Tires’ Slip Angles

Since a kinematic model is used for speed planning, which does not imply the tire’s
side elasticity and sideslip, the motion trajectory may acquire a certain excessively ideal
character. For partial leveling of this drawback, it is possible to estimate in the first
approximation the values of tires’ lateral sideslips and deformations stipulated by the
speed Vζ and acceleration aµ. Since the lateral accelerations and speeds at the wheels’
centers are known by Equation (12), it is possible to evaluate the lateral forces required for
stable motion. To do this, briefly consider the main factors affecting the lateral sideslip.

When the slip angel δ changes from zero to some value b (segment 0b, Figure 3a),
which is different for various tires, normal loads, and tire–road friction coefficients, the
dependence Fµ = f (δ) is almost linear,

Fµ = kδδ (35)

This segment corresponds to Fµ, at which the slippage is small.
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Figure 3. Highlights of nonlinear tire slip: (a) effect of sideslip on side force, (b) effect of vertical load
on slip coefficient, (c) slip inverse determination by the side force response.

The segment bc corresponds to the Fµ values, at which the slip occurs on a significant
part of the tire’s contact area, and the more intensively the larger δ is. At point c, the force
Fµ reaches its maximum value according to the adhesion condition, and in segment cd, it is
determined by the equality Fµmax = Rz φµmax, where φµmax is the coefficient of transverse
adhesion. Conditionally, in segment 0c, the wheel lateral movement caused by the force Fµ

is called the sideslip, and in segment cd it is called the pure slip. The angle value δc, at which
sliding begins, depends on the tire structure, normal load, coefficient φµmax, and other
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factors. Usually, for a dry road surface δc = 12–20◦. In terms of kinematics, it does not matter
for what reason the velocity vector deviation from the rotation plane occurs; therefore, the
angle δ is formed by the components of the wheel’s longitudinal and transverse speeds
over the entire range 0d.

The vehicle steerability is largely defined by the dependence kδ = f (Rz) (Figure 3b).
For passenger vehicles, kδ has a maximum value kδmax when the force Rzopt is close to
that corresponding to the vehicle’s gross weight Rz0. The coefficient kδ value depends on
the coefficient φµmax. In segment 0b, the coefficient kδ is practically independent of the
coefficient φµmax. However, the smaller φµmax, the smaller the angle δ value corresponding
to the point d. On a dry road surface with a force Rz corresponding to standards for a given
tire, it can be taken equal to δb ≈ 3–4◦. Formula (35) is also valid for the section bc, at which
kδ = f (δ) or kδ = f (Fµ) (Figure 3c). In this segment, the smaller φµmax, the smaller the values
of kδ.

During the vehicle motion, the change in value and direction of the wheel’s longitudi-
nal force Rζ affects the dependence Fµ = f (δ). With an increase in Rζ/Rz, to obtain the same
angles δ in the traction mode, a smaller force Fµ is needed. In the braking mode, at small
Rζ/Rz, its increase leads to a slight growth in the force Fµ, and at larger Rζ/Rz—the Fµ

decreases. If Rζ/Rz is small, then the effect of longitudinal forces Fµ = f (δ) is insignificant.
The longitudinal forces exert the greatest influence at values of the Rζ forces that are close
in value to the maximum adhesion.

Slippage starts when Rmax = Rz φmax. In this case, the adhesion coefficient φmax depends
on the slip direction of the contact patch relative to the road surface, which coincides with
the direction of the reaction R. When sliding in the rotation plane, the adhesion coefficient
is φζ , and in the transverse direction φµ.

With the onset of lateral slip, slippage in the wheel’s rotation plane also occurs. The
ratio between the speeds of the lateral and longitudinal slips is the same as between the
lateral and longitudinal reactions.

Antonov D. A. [21] proposed considering the influence of various factors on the
coefficient kδ by multiplying kδmax with several correction factors. With the wheel’s straight-
line steady rolling on an even, nondeformable road surface

kδ = kδmaxqφqzqζ qp (36)

where kδmax = the driven wheel’s slip resistance coefficient on the dependence Fµ = f (δ) linear
section at the maximum values of the dependences kδ = f (Rz) or kδ = f (pa). qφ = correction
factor considering the slip resistance dependence on the angle δ while moving on roads
with different φ (non-linear dependence Fµ = f (δ)), qz = correction factor considering the
effect of normal load deviation from the optimum one, qζ = correction factor considering
the influence of longitudinal forces on kδ, and qp = correction factor considering the effect
of the tire’s air pressure pa deviation from the optimal pressure (supposedly neglected and
equals 1).

The coefficients can be calculated from the following dependences

qφ =
arctan

(
λφ(δ − δ0)

)
λφ(δ − δ0)

, λφ =
πkδ0

2φµRz
(37)

where kδ0 = the slip resistance factor at a given value of Rz in a linear section Fµ = f (δ),
and δ0 = the slip angle corresponding to the transition from a linear section to a nonlinear
section (regarding b). Usually, δ0 = 0.025–0.035 rad.

qz = 0.4λ3
z − 1.8λ2

z + 2.4λz, λz =
Rz

Rzopt
≈ Rz

Rz0
(38)

qζ =

√
1 −

(
Rζ/Rζmax

)2

1 + 0.375φζ
, φζ =

Rζ

Rz
, Rζmax = Rz φζmax (39)
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The dependence Fµ = f (δ) corresponds to the steady-state wheel rolling when Fµ = const
and the trajectory of the wheel’s center is a straight line. In most cases, this dependence can
also be used to study controlled motion at Fµ = f (t).

As mentioned, the linear segment of the tire’s lateral force characteristic continues to
the slip angle of about δb ≈ 3–4◦ under a static load and dry surface at the wheel’s driven
mode, providing the maximum potential of φµ. Since a decrease in φµ leads to a reduction
in kδ0, the angle δb also drops. Assuming a linear dependence, the initial angle δ0 of the
linear zone can be calculated as

δ0 ≈ 0.4Rz
φµ

kδ0
≤ δb (40)

Thus, the lateral force, considering the load, adhesion, and traction use, can be ex-
pressed as a dependence on the slip angle as

Fµ = f (δ) = −
{

kδ0δ, 0 ≤ |δ| ≤ δ0
kδ0qφδ, |δ| > δ0

, kµ0 = kδmaxqzqζqp (41)

This nonlinear characteristic will be used for determining the wheels’ side reactions.

2.3.4. Pseudo-Tires’ Lateral Deformations

The tire lateral deformation also directly affects the wheel slip angle and the trajectory
offset relative to the rigid wheel option. At the same time, to ensure motion stability, it is
expedient to provide the following condition:

m1

kµ01
=

m2

kµ02
(42)

where kµ01,2 = the lateral stiffness coefficient at static deformation [22] (generally depends
on deformation and tire pressure) and m1, m2 = gross masses distributed on every single
front and rear suspension, correspondingly.

Then, for each wheel, the lateral deformation can be defined as

∆µ = −∆Fµ/kµ (43)

In the process of tire vertical deformation, the height of its profile changes and, ac-
cordingly, the lateral stiffness change too. Usually, the lateral stiffness factor is specified for
quasi-static deformation at nominal wheel load. If a shear model is used to estimate the
lateral deformation, then the lateral stiffness in the first approximation can be represented
as follows

kµ =
GS
hz

, kµ0 =
GS
hz0

, hz = rw − Dr

2
, rw = rw0 − ∆r (44)

where GS = the so-called rigidity of the cross-sectional area (supposed to be constant),
rw0 = tire’s free radius, ∆r = tire’s radial deformation, hz0 = tire’s profile height under static
load, hz = tire’s profile dynamic height, and Dr = the diameter of wheel’s rim.

Then
kµ = kµ0

hz0

hz
= kµ0

rw0 − ∆r0 − Dr/2
rw0 − ∆r − Dr/2

(45)

∆r0 = tire’s radial static deformation.
Obviously, at zero dynamic deformation, the lateral stiffness is equal to the initial

kµ0 one. As the deformation ∆r decreases, it leads to a decrease in lateral stiffness, and
vice versa.
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2.3.5. Evaluation of Lateral Reactions

Let us define the wheel’s traction force. Generally, the balance equation of rotational
dynamics for the j-th wheel is [21]

Rζ j = Tj/rwj − Rzj frj − Iwjaζ j/rej/rwj (46)

where for the j-th wheel: Tj = drive torque, rwj = dynamic radius, rej = effective radius,
frj = rolling resistance, and Iwj = inertia of rotating masses tied and reduced to a wheel.

The rolling resistance at each wheel can be calculated from the dependence [23]

frj = qsy1 + qsy3
∣∣vζ j

∣∣+ qsy4
(
vζ j/vm

)4 (47)

vζ j = longitudinal speed in j-th wheel local coordinate system, vm = speed at which
the empirical measurements were made, and qsy1, qsy3, qsy4 = coefficients [23].

The dynamic radius is evaluated by expressions [23]

rwj = rw0 − ∆rj, ∆rj = Rzj/C f zj, C f zj =
Fzj0

rw0

√
q2

f z1 + 4q2
f z2 (48)

where ∆rj = radial deformation of the j-th wheel, Cfzj = the j-th tire’s radial stiffness,
Fzj0 = static load on the j-th wheel, and qfz1, qfz2 = coefficients [23].

Centrifugal increment of the j-th wheel radius [23]

drj = qv1rw0

(
ωwjrw0

vm

)2
(49)

The effective radius of the j-th wheel [22]

rej = rw0 + drj −
Fzj0

C f z

(
Dre f arctan

(
Bre f ∆rj

C f z

Fzj0

)
+ Fre f drj

C f z

Fzj0

)
(50)

where Bref, Dref, Fref = coefficients [23].
Denote vectors

Tw =


T1

T2
T3
T4

, Iw =


Iw1
Iw2
Iw3
Iw4

, fr =


fr1

fr2
fr3
fr4

, awζ =


aζ1

aζ2
aζ3
aζ4

, re =


re1
re2
re3
re4

, rw =


rw1
rw2
rw3
rw4

 (51)

Then, for all wheels based on Equation (46), we can write

Rζ = irwTw − i f rRz − irwireDIwawζ = irwTw − irwN (52)

where

irw = diag(rw)
−1, i f r = diag(fr), ire = diag(re)

−1, DIw = diag(Iw),

N =
(

i−1
rw i f rRz + ireDIwawζ

)
Now, let us consider the balance of dynamics. Since the transmission torque T deter-

mines the traction forces Rζj on the wheels, and the lateral reactions Rµ are unknown, we
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need five equations. The first three equations express the balances of forces and moments
relative to the vehicle axes. Denote

kζ =

 c1
s1

ζ1s1 − µ1c1

1
0

−µ2

c3
s3

ζ3s3 − µ3c3

1
0

−µ4

, ka = diag

m
m
I

,

kµ =

 −s1
c1

ζ1c1 + µ1s1

0
1
ζ2

−s3
c3

ζ3c3 + µ3s3

0
1
ζ4

, a =

aζ

aµ

ε

, kad = −

1
0
0

 (53)

where m = vehicle gross mass, I = vehicle inertia relative to the mass center, and ζj, µj = co-
ordinates of the j-th wheel center in the vehicle coordinate system.

Then, the plane dynamics equations can be represented in the vector-matrix form

kζRζ + kµRµ + kadPad = kaa (54)

where Pad = aerodynamic drag force.
Due to the lack of equations, it is necessary to consider the redistribution of the lateral

reactions between the same axle’s wheels. Considering Equation (41), we can introduce
the ratios

Rµ1

Rµ3
=

f (δ1)

f (δ3)
= kµ13(δ1, δ3),

Rµ2

Rµ4
=

f (δ2)

f (δ4)
= kµ24(δ2, δ4) (55)

Either
Rµ1 − Rµ3kµ13(δ1, δ3) = 0, Rµ2 − Rµ2kµ24(δ2, δ4) = 0 (56)

Denote

Rµ =


Rµ1
Rµ2
Rµ3
Rµ4

, δ =


δ1
δ2
δ3
δ4

, kRµ =

(
1
0

0
1

−kµ13
0

0
−kµ24

)
, and kRµRµ = 02 (57)

Note that the coefficients of lateral forces’ ratios depend nonlinearly on the distribution
of vertical loads, traction forces, and slip angles.

2.4. Variants for Organizing Distributed Traction
2.4.1. Variants of Wheel Torque Control

As a part of the objective of distributing the torque in the transmission of an all-wheel
drive autonomous vehicle, four options can be implemented (Figure 4). Let us assume that
the vehicle is equipped with a self-locking center differential (Audi Quattro), which does
not require electronic control and distributes torques in a certain ratio depending on the
output shafts’ resistances. Let us assume that at some motion moment, the longitudinal and
lateral accelerations are positive, which causes a redistribution of vertical reactions to the
rear axle and right side. We also make an important suggestion that the maximum friction
coefficient φmax is the same for all wheels, that is, an unstable movement mode of any
wheel occurs when the geometric sum of the longitudinal and lateral adhesion coefficients
approaches the limit. Within the motion planning, we do not consider here the cases of
control when the maximum possible adhesions on all wheels are different.

Let us consider the structural elements of transmissions in Figure 4 in more detail. The
scheme in Figure 4a shows a variant of all-wheel drive with two symmetrical inter-wheel
differentials, where the carriers’ drive torques are conditionally divided in half between
the wheels’ semi-axles. In this scheme, to create an additional yaw moment stabilizing the
vehicle steerability, it is necessary to slightly brake the wheels being in the worst adhesion
conditions, that is, internal in this case. Due to the braking torques Bfl, Brl, it is possible to
increase the drive moments of the axles and realize greater traction on the outer wheels.
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Figure 4. Variants of wheel torque control individually: (a) using the same vehicle side’s brakes
(Case A), (b) by driving the rear wheels through a sport differential (Case B), (c) by combining a rear
sport differential and a front wheel’s brake (Case C), (d) by combining two sport differentials (Case D).

The scheme in Figure 4b shows the case of using a sport differential (Tork Vectoring).
Here, the front wheels are driven through a symmetrical differential, and the yaw moment
is provided by redistributing the rear axle’s torques with a controlled (sport) differential.
Since, for the case described, the outer rear wheel has more traction potential, by activating
the hydraulic clutch larger torque is transferred to the wheel moving with the higher
angular speed. At the same time, the torque on the inner wheel’s shaft is reduced. The
difference in traction forces on the rear axle wheels produces a needed yaw moment.

The option in Figure 4c combines the rear axle’s sport differential and the front inner
wheel’s brake activation. The variant in Figure 4d implements the full torque vectoring by
using two inter-axle sport differentials. Structurally, this option is the most complex and ex-
pensive; however, obviously, it allows obtaining the best efficiency in torque redistribution.

2.4.2. Distribution Devices

Let us consider the transmission mechanisms ensuring the torque redistribution along
with their dynamic and kinematic models.

Inter-axle (center) differential. Figure 5a shows the Audi Quattro self-locking differential
belonging to the limited-sip (LSD) class. The different contact radii Rf, Rr of the output
shafts’ crown gears (Figure 5b) give the initial asymmetry to the differential mechanism
(DM) design. This leads to distributing the gearing torques with a ratio equal to 40/60 [24].
In normal conditions (both output shafts rotate with the same angular speed), the rear
axle’s driving shaft transmits about 60% of the total torque, and the front axle −40%,
correspondingly. Each crown gear has a friction clutch connecting it with the differential’s
carrier. The relative sliding of friction elements generates moments that are redistributed
according to the mechanism’s kinematic state. Thus, the output shaft’s torque may be
reduced or increased. The clutch packs may be installed with precompression, stipulating
the static friction torque by the pressing washers. With a decrease of one shaft’s resistance,
its angular speed becomes greater than the carrier’s angular speed. The excessive power
flow from an outrunning shaft returns to the carrier by the friction moment and increases
the lagging shaft’s torque. A feature of this DM is the dynamic redistribution of friction
moments due to the axial component of the gearing reaction. The greater the satellite’s
force (Figure 5c), the greater the compression, and in turn, the greater the moment that can
be passed by friction clutches.
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The general kinematic relations for the asymmetric DM depicted in Figure 5, using the
well-known Willis formula, may be reflected as follows

ωD =
ω f + g f rωr

1 + g f r
(58)

where ωD, ωf, and ωr = angular velocities of the differential carrier, front, and rear output
shafts, respectively; and gfr = Rr/Rf = 60⁄40 = 3⁄2—algebraic ratio from the front drive axle to
the rear drive axle.

The front and rear axles’ driving shafts’ angular speeds ωf, ωr can be estimated based
on the symmetrical DM’s kinematic properties. Assuming that all wheels are rotating in
approximately the same mode relative to the tires’ longitudinal slip, we can calculate with
sufficient accuracy

ω f = i f
ω f l + ω f r

2
=

i f

2

(
vζ1

re1
+

vζ3

re3

)
, ωr = i f

ωrl + ωrr

2
=

i f

2

(
vζ2

re2
+

vζ4

re4

)
(59)

where ωfl, ωfr = angular speeds of the front left and right wheels, respectively, ωrl, ωrr = an-
gular speeds of the rear left and right wheels, respectively, if = final gear ratio, vζ j = longitu-
dinal speed of the j-th wheel center in the wheel’s local coordinate system, and rej = wheel’s
effective radius, j = [1, . . ., 4].

Thus, if during curvilinear motion, each wheel follows its trajectory without critical
longitudinal slip, then, consequently, a certain ratio of output moments is established in the
inter-axle (center) differential. This ratio is determined by the difference in angular speeds
ωD, ωf, ωr. Note that the friction discs operate in an oily environment, which contributes
to a smooth redistribution of output torques without the effects of sticking, and jamming,
which are typical for cases close to dry friction. That is, to describe the frictional interaction,
we may use an expression such as

µFk = µktanh(ck(ωD − ωk)), (60)

where µFk = actual friction coefficient between friction pairs, µk = modulus of maximum
friction coefficient, ck = intensity factor, k = f (front), and r (rear).

For each k = f, r shaft’s clutch, the dynamic friction torque Fkd is modeled as follows

Fdk = nsPNknFkRFkµFk = nsPNkRk
RFk
Rk

nFkµFk (61)

where ns = number of satellites, PNk = axial gearing force, nFk = number of friction couples,
Rk = average radius of side gear, and RFk = average friction radius.
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Since the axial component PN of the gearing contact reaction, P depends neither on
the direction of the shaft rotation nor on the direction of the tangential component PT, the
friction moment’s dynamic part is written as follows

Fdk = nsRk|PTk|tan(α)
RFk
Rk

nFkµFk = |Mk|ηk, k = f , r (62)

where PTk = tangential gearing force, α = gearing angle, Mk = side gear torque, and ηk = fric-
tion factor.

Mk = nsRkPTk, ηk = tan(α)
RFk
Rk

nFkµFk (63)

This DM also allows precompressing the friction clutches, which provides a static
friction moment

Fsk = PN0kRFknFkµFk (64)

where PN0k = preliminary established axial compression force.
The preset friction moment can also be expressed in terms of the equivalent moment

Mk0 on the side gears.

Fsk =
PN0kRk
tan(α)

tan(α)
RFk
Rk

nFkµFk =
PN0kRk
tan(α)

ηk = M0kηk, k = f , r (65)

Consider the distribution of moments without inertial forces for simplification. Let us
introduce vector and matrix denotations

T =

(
Tf
Tr

)
, M =

(
M f
Mr

)
, Fd =

(
Fd f
Fdr

)
, Fs =

(
Fs f
Fsr

)
, M0 =

(
M0 f
M0 f

)
, tD =

(
0.4
0.6

)
,

E2 =

(
1 0
0 1

)
, η =

(
η f 0
0 ηr

)
, tM =

(
tD tD

) (66)

where vector tD is associated with initial torque redistribution.
The torques on the output shafts

T = M + Fd + Fs = (E2 + η)M + ηM0 (67)

On the other hand, the drive torques on the side gears can be expressed in terms of
the moment on the differential carrier TD

M = tDTD − tMFd − tMFs = tDTD − tMηM − tMηM0 (68)

Whence

(E2 + tMη)M = tDTD − tMηM0, M = (E2 + tMη)−1(tDTD − tMηM0) (69)

Substituting M in Equation (68), obtain

T = (E2 + η)(E2 + tMη)−1(tDTD − tMηM0) + ηM0 (70)

Denote
tE f = (E2 + η)(E2 + tMη)−1 (71)

Thus, if the kinematic distribution of the wheels’ angular speeds is given, the relations
between the output shafts’ torques and the differential carrier’s torque

T = tE f tDTD +
(

E2 − tE f tM

)
ηM0 (72)

Note that the sensitivity of the moment distribution depends on the coefficient ck.
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Inter-wheel Sport DM must ensure transmitting a larger torque to an outrunning axle,
which causes additional cornering (yaw moment). Such a solution can be obtained using
the design scheme and functioning of Audi Sport Differential shown in Figure 6.
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Figure 6. Scheme of Audi Sport Differential.

The drive is carried out over the final gear pinion 1. The ring gear is rigidly connected
to the differential carrier 2. Satellites 3, rotating around the axis fixed in the differential
carrier, interact with side gears that drive the output axles 4 and 5 by the slots. The
differential corps (carrier) has gear rims on the end sides for driving by internal gearing
the coupling halves 6 and 7, in which rotational axes are, respectively, shifted relative
to the carrier rotational axis. Using the frictional packs, the half-clutches 6 and 7 can
drive the half-clutches 8 and 9, respectively, which are connected by internal gearing to
the output shafts 4 and 5. Toroidal hydraulic cylinders 10 and 11 are installed from each
side to act on the clutch packs using the pressure p10 and p11. Thus, by activating the
required hydraulic cylinder, part of the carrier torque may be passed to the needed semi-
axle using the frictional adhesion between the half-couplings over the two-step internal
gearing (i28 = 0.8752, i26 = 1.2258, i84 = 0.714).

Since the Sport DM is formed based on a symmetrical one, it is possible to relate the
moments on the output semi-axes Tl, Tr with the moment Td on the DM carrier and the
moment ∆Tlr of the friction clutch.(

Tl
Tr

)
= td

(
Td

∆Tlr

)
, td =

1
2

(
1 −1
1 1

)
,
(

Td
∆Tlr

)
= ts

(
Tl
Tr

)
, ts =

(
1 1
−1 1

)
(73)

Thus, the required friction clutch’s moment is equal to the difference of driving torques
on the wheels’ semi-axles. Knowing the difference in the output shafts’ angular speeds, it
is possible to calculate the required effect of the clutch drive.

2.4.3. Drivetrain Dynamics

Now, let us define the distribution and realization of traction forces on the wheels,
considering the transmission type (Figure 4).

Since the drive of all wheels is realized by the same transmission, the drive torques
can be linked to each other depending on the drive type. Let us consider options for
using drives with torque vectoring (TV) between axles and wheels (Figure 4). Obviously,
maximum vehicle controllability and stability are ensured when all the driving wheels
work at the approximately same adhesion conditions. If we assume that each wheel realizes
the same potential of longitudinal adhesion, then, consequently, all wheels will have a close
potential of adhesion in the lateral direction. Let us search for distributing the transmission
torques based on this ground.

Rewrite Equation (52) in the form regarding moments.

Tj = Rzj φζ jrwj + Nj, Nj = Rzj frjrwj + Iwjaζ j/rej (74)
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where j = [1, 3] for the front axle, and j = [2, 4] for the rear axle.
Then, the ratios kf, kr of the moments on the front and rear axles’ wheels

Rz1 φζ1rw1

Rz3 φζ3rw3
=

T1 − N1

T3 − N3
= k f ,

Rz2 φζ2rw2

Rz4 φζ4rw4
=

T2 − N2

T4 − N4
= kr (75)

As mentioned, we are trying to reach such a distribution of moments at which the
adhesion potentials are the same and do not depend on the wheels’ loads. Then, optimally,
φζ 1 = φζ 3 = φζf, which, after reduction, leads to equations

Rz1rw1

Rz3rw3
= k f , T1 − k f T3 = N1 − k f N3 (76)

Similarly, for the rear axle, based on the same principle that φζ 2 = φζ 4 = φζr,

Rz2rw2

Rz4rw4
= kr, T2 − krT4 = N2 − kr N4 (77)

Note that with known distributions of speed and vertical reactions, the components
Nj, as well as the coefficients kf, kr, can be obtained in advance.

Note that the wheels’ drive torques T1, T3 are generally not equivalent to the drive
torques of the output shafts of the symmetrical differential Tfl = Tfr, nor are the torques T2,
T4 with respect to the torques Trl = Trr.

Now, let us form a vector of driving moments for the cases using different DMs.
Case A. Front and rear symmetrical differentials share the torques Tf, Tr equally

between the wheels’ semi-axles, i.e., Tfl = Tfr, Trl = Trr. The correction is fulfilled by
activating the brake mechanisms, which stipulates the braking moments’ vector B. Then,
the wheels’ torques will be related to semi-axle torques as follows

Tw = tpTa − B = tptTi f T − B (78)

where tT is responsible for distributing the torque between the drive semi-axles, and tp is
the matrix for permuting the Ta vector’s elements

Tw =


T1
T2
T3
T4

, Ta =


Tf l
Tf r
Trl
Trr

, tp =


1
0
0
0

0
0
1
0

0
1
0
0

0
0
0
1

, (79)

tT =
1
2


1 0
1 0
0 1
0 1

, B =


B1
B2
B3
B4

, T =

(
Tf
Tr

)

At the same time, such a control vector B must be provided that satisfies the require-
ments of redistributing the moments from Equations (76) and (77) and minimizing the
control in general. 

T1 − k f T3 =
(

Tf l − B1

)
− k f

(
Tf r − B3

)
T2 − krT4 = (Trl − B2)− kr(Trr − B4)

B1B3 = 0, B1 ≥ 0, B3 ≥ 0
B2B4 = 0, B2 ≥ 0, B4 ≥ 0

(80)

Wheel torques in Equation (80) may be replaced according to Equations (76) and (77).{
N1 − k f N3 =

(
Tf l − B1

)
− k f

(
Tf r − B3

)
N2 − kr N4 = (Trl − B2)− kr(Trr − B4)

(81)
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Then, the combination of additional linear and nonlinear conditions for braking
torques will have the form

tABB = tA
(
tpTa − N

)
= tA

(
tptTi f T − N

)
(82)

where

tA =


−1
0
0
0

0
−1
0
0

k f
0
0
0

0
kr
0
0

, tB = diag


0
0
B1
B2

, tAB = tA + tB (83)

Note that we are only interested in positive values of the braking torques.
Substituting the expression from Equation (72) to Equation (78), we obtain

Tw = tptTi f

(
tE f tDTD +

(
E2 − tE f tM

)
ηM0

)
− B (84)

Denote
kTD = irwtptTtE f tDi f , kM0 = irwtptT

(
E2 − tE f tM

)
ηi f (85)

Substituting coefficients in Equation (52) yields

Rζ = irwTw − irwN = kTDTD + kM0M0 − irwN − irwB (86)

Let us transform additional conditions

tABB = tAtptTi f

(
tE f tDTD +

(
E2 − tE f tM

)
ηM0

)
− tAN (87)

Denote
kBT = tAtptTtE f tDi f , kBM = tAtptT

(
E2 − tE f tM

)
ηi f (88)

Substituting the expression from Equation (88) to Equation (87), we obtain additional
conditions compactly

tABB = kBTTD + kBMM0 − tAN (89)

Thus, five unknowns are formed, such as torque TD and braking torques B.
Case B. The front symmetrical differential divides the torque Tf equally between the

semi-axles without further correction, i.e., Tfl = Tfr = T1 = T3. The rear sport differential
redistributes the drive torque Tr according to Equation (73). Then, the drive moments on
the wheels will be related as follows

T f =

(
Tf l
Tf r

)
= E2×1

i f

2
Tf , E2×1 =

(
1
1

)
, Tr =

(
Trl
Trr

)
= td

(
Tri f
∆Tr

)
(90)

Then, the vector of moments on the wheels’ drive shafts

Ta =

(
T f
Tr

)
=

( 1
2 E2×1 02×2
02×1 td

)
︸ ︷︷ ︸

t f r

i f Tf
i f Tr
∆Tr

 = t f rTt, (91)

where the matrix tfr = responsible for proportions of the distribution of moments, and

Tt =

i f Tf
i f Tr
∆Tr

 =

(
i f T

Trr − Trl

)
=

(
i f T

(1 − kr)Trr−N2 + kr N4

)
(92)
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Using Equation (92) and expanding Tt by components, we obtain

Ta = t f r

(
tTi f T + taTa + tNN

)
(93)

where, considering E2 to be a 2 × 2 identity matrix,

tT =

(
E2

01×2

)
, ta =

0
0
0

0
0
0

0
0
0

0
0

1 − kr

, tN =

0
0
0

0
0
−1

0
0
0

0
0
kr

, N =


N1
N2
N3
N4


Thus, the vector of semi-axles’ moments is expressed as

Ta =
(

E4 − t f rta

)−1
t f r

(
tTi f T + tNN

)
= tet f r

(
tTi f T + tNN

)
(94)

Denote
te =

(
E4 − t f rta

)−1
(95)

where vector tp ensures permuting the wheels’ numbering order, E4 = 4 × 4 identity matrix.
Then, the vector of wheels’ moments

Tw = tpTa = tptet f r

(
tTi f T + tNN

)
(96)

Substituting instead of T its expression from Equation (72) for the inter-axle differential
drive, we obtain

Tw = tptet f r

(
tTi f

(
tE f tDTD +

(
E2 − tE f tM

)
ηM0

)
+ tNN

)
= tptet f rtTtE f tDi f TD + tptet f rtT

(
E2 − tE f tM

)
ηi f M0 + tptet f rtNN

(97)

Considering Equations (52) and (97), traction forces on the wheels can be calculated
as follows

Rζ = irwTw − irwN = irwtptet f rtTtE f tDi f TD

+irwtptet f rtT

(
E2 − tE f tM

)
ηi f M0 + irw

(
tptet f rtN − E4

)
N

(98)

Denote

kTD = irwtptet f rtTtE f tDi f , kM0 = irwtptet f rtT

(
E2 − tE f tM

)
ηi f ,

kN = irw

(
tptet f rtN − E4

) (99)

Then, in the compact form

Rζ = kTDTD + kM0M0 + kNN (100)

Case C. The front symmetrical differential divides the moment Tf equally between the
semi-axles, i.e., Tfl = Tfr. The correction is made by activating the front brake mechanisms
with braking torques B1, B3. The rear sport differential redistributes the drive torque Tr
according to Equation (73). Then, the drive moments across the semi-axles will be related
as follows

Tw = tpTa − tbB = tptet f r

(
tTi f T + tNN

)
− tbB (101)

Ta = tet f r

(
tTi f T + tNN

)
(102)
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By analogy with Equation (80)
T1 − k f T3 =

(
Tf l − B1

)
− k f

(
Tf r − B3

)
B1B3 = 0, B1 ≥ 0, B3 ≥ 0

B2 = B4 = 0
, B =

(
B1
B3

)
, tb =


1 0
0 0
0 1
0 0

 (103)

Wheel moments in Equation (103) can be replaced according to Equation (76)

N1 − k f N3 =
(

Tf l − B1

)
− k f

(
Tf r − B3

)
(104)

Then, the combination of additional linear and nonlinear conditions for braking
moments will have the form

tABtbB = tAtpTa − tAN = tAtptet f r

(
tTi f T + tNN

)
− tAN (105)

where

tA =

(
−1
0

0
0

k f
0

0
0

)
, tB =

(
0
0

0
0

0
B1

0
0

)
, tAB = tA + tB (106)

Substituting the expression from Equation (72) to Equation (101), we obtain

Tw = tptet f r

(
tTi f

(
tE f tDTD +

(
E2 − tE f tM

)
ηM0

)
+ tNN

)
− tbB (107)

Denote

irwTw = irwtptet f rtTtE f tDi f TD + irwtptet f rtT

(
E2 − tE f tM

)
ηi f M0

+irwtptet f rtNN − irwtbB,

kTD = irwtptet f rtTtE f tDi f , kM0 = irwtptet f rtT

(
E2 − tE f tM

)
ηi f ,

kN = irw

(
tptet f rtNN − E4

)
, kB = irwtb

(108)

Substituting the coefficients in Equation (52), we have

Rζ = irwTw − irwN = kTDTD + kM0M0 + kNN − kBB (109)

Denote

kBT = tAtptet f rtTtE f tDi f , kBM = tAtptet f rtT

(
E2 − tE f tM

)
ηi f ,

kBN = tA

(
tptet f rtN − E4

) (110)

Then, the additional conditions

tABtbB = kBTTD + kBMM0 + kBNN (111)

Case (d). In this scheme, the front and rear sport differentials redistribute the drive
torques Tf, Tr following Equation (73). Then, the drive moments along all the semi-axles
will be related as follows

Ta =

(
T f
Tr

)
= t f rTt, t f r =

(
td 02×2

02×2 td

)
, Tt =


i f T f
∆Tf
i f Tr
∆Tr

 (112)
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where

Tt =


i f T f

Tf r − Tf l
i f Tr

Trr − Trl

 =


i f T f(

1 − k f

)
Tf r − N1 + k f N3

i f Tr
(1 − kr)Trr−N2 + kr N4

 (113)

Using Equation (113) and expanding Tt by components, we obtain

Ta = t f r

(
tTi f T + taTa + tNN

)
(114)

where

tT =


1 0
0 0
0 1
0 0

, ta =


0 0 0 0
0 1 − k f 0 0
0 0 0 0
0 0 0 1 − kr

, tN =


0 0 0 0
−1 0 k f 0
0 0 0 0
0 −1 0 kr


The subsequent technique corresponds to Equations (94)–(100).
Now, for drive variants in Figure 4, let us form systems of dynamics equations with

additional conditions based on Section 2.2. Thus, each variant will have its own set
of equations describing the traction dynamics and braking effect. Nevertheless, some
equations describing the lateral forces will be common for all the schemes.

Case A. The system is nonlinear; therefore, we reformulate the equations of dynamics
from Equation (54), substituting the vector Rζ from Equation (86).

Eq1 = kµRµ − kζirwB + kζkTDTD + kζkM0M0 − kζirwN − kaa + kadPad = 03 (115)

The additional conditions for braking torques in the nonlinear form

Eq2 = tABB − kBTTD − kBMM0 + tAN = 04 (116)

Conditions for nonlinear tire’s lateral reactions based on Equation (41)

Eq3 = kRµRµ = 02, Eq4 = Rµ − f (δ) = 04 (117)

Then, the system of nonlinear equations and vector of variables are

Eq =


Eq1
Eq2
Eq3
Eq4

 =


03
04
02
04

 = 013, x =


Rµ

B
TD
δ

 (118)

Cases B and D. These variants are distinguished by the generality of expressions and
the absence of braking moments as unknowns. The equation of dynamics in the nonlinear
form, given Equations (54) and (100).

Eq1 = kζkTDTD + kζkM0M0 + kζkNN + kµRµ + kadPad − kaa = 03 (119)

In addition, we use Equation (117). Then, the system of nonlinear equations and vector
of variables are

Eq =

Eq1
Eq3
Eq4

 =

03
02
04

 = 09, x =

Rµ

TD
δ

 (120)
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Case C. The system is also nonlinear, therefore, we reformulate the equations of
dynamic Equation (109), substituting the vector Rζ from Equation (54)

kµRµ − kζkBB + kζkTDTD + kζkM0M0 + kζkNN − kaa + kadPad = 03 (121)

Also, rewrite Equation (111) in the form

tABtbB − kBTTD − kBMM0 − kBNN = 02 (122)

Then, the system of equations for unknown lateral reactions, front wheels’ braking
moments and drive torque have a form similar to Equation (118). Note that the solution of
nonlinear systems can be performed using the MATLAB lsqnonlin function.

3. Optimization
3.1. Generalized Approach to Speed Model

We proceed from the fact that some trajectory for the AV along a distance D has
already been built. This question was extensively reflected in our previous studies. Using
the general approach, let us compose models for obtaining the speed in finite elements (FE).
The distance D may be divided on n FEs, each i-th of which is represented by the length
Li and parameter ξ ∈ [0, 1]. Thus, the current linear space is x = ξLi. The basis functions
Fξ are the form functions corresponding to the nodal degree of freedoms (DOFs) Qv. The
number of nodal DOFs depends on the degree p of Lagrangian polynomial: d = (p + 1)/2.
Then, any function y(x) within i-th FE may be expressed as follows:

li =
(

L0
i · · · Ld

i
)
, Li = diag

(
li li

)
, yi(x) = yi(Qvi, Li, ξ) = QT

viLiFξ (123)

We will use the second speed derivative as the basic model to reduce the polynomial
extent p, the quantity of nodal unknowns, and speed up computations. Then, it can
be written

d2Vζi

dx2 = QT
viLiFξ ,

d3Vζi

dx3 = QT
vi

(
Li
Li

)
dFξ

dξ
(124)

where nodal and FE parameters are

qv(i) =

(
d2Vζ

dx2

∣∣∣∣
i

d3Vζ

dx3

∣∣∣∣
i

)T
, Qvi =

(
qv(i)

qv(i+1)

)
(125)

Thus, d = 2 and we need the cubic Lagrangian polynomial to provide the smooth
conjugating functions between all the segments. The first derivative of the longitudinal
speed within i-th segment can be derived from the first integral

dVζi

dx
=
∫ d2Vζi

dx2 dx +
dVζi

dx

∣∣∣∣
0

(126)

where dVζi/dx(0) = integration constant defined from initial conditions.
The antiderivative is determined as∫ d2Vζi

dx2 dx =
∫

QT
viLiFξ dx = QT

viLi

∫
Fξ Lidξ = QT

viLiLi

∫
Fξdξ (127)

The longitudinal speed Vζi in the i-th segment is found by repeating integration of
Equation (126)

Vζi =
x d2Vζi

dx2 dx2 +
dVζi

dx

∣∣∣∣
0
x + Vζi0 (128)

where Vζi0 = integration constant corresponding to the initial speed for i-th segment.
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Components of Equation (128) are found as follows

x d2Vζi

dx2 dx2 = QT
viLiL2

i

x
Fξ dξ2,

dVζi

dx

∣∣∣∣
0
x = Li

dVζi

dx

∣∣∣∣
0
ξ (129)

3.2. Optimization Technique

Minimization of an objective function S has the quadratic form and, considering
nonlinear constraints, uses the SQP method. It can be written as

min
q

S(q) subject to


ceq(q) = 0
Aeqq = beq

qL ≤ q ≤ qU

, q =

 q1
...

qn+1

, qi =

qd(i−1)+1
...

qd(i−1)+d

 (130)

where q = vector of nodal parameters; ceq(q) = vector function of nonlinear equality
constraints; Aeq, beq = matrix and vector of linear equality constraints, respectively; qL,
qU = lower and upper limits; and i ∈ [1, n] = segment number.

The objective function may be a sum of integrals across all FEs. The integrals can be
solved numerically using an N-point Gaussian quadrature scheme. Then, any integrand
zi(x), replacing x = ξL, within an interval [xi−1, xi] can be evaluated as follows∫ xi

xi−1

zi(x)dx = Li

∫ 1

0
zi(Qvi, Li, ξ)dξ ≈ Li∑N

k=1 wkzi(ξ(ϑk))det(J(ϑk)) (131)

where wk = integration weight in the k-th point; ϑk = k-th point in the master–element
coordinate system; J = Jacobian; k ∈ [1, N]; and N = number of integration points.

For one-dimensional FE

ξ(ϑk) =
(ξ1 − ξ0)

2
(ϑk + 1) + ξ0 =

1
2
(ϑk + 1), det(J) =

ξ1 − ξ0

2
=

1
2

(132)

Using vector designations,

ϑ =

 ϑ1
...

ϑN

, w =

w1
...

wN

, ξ =

 ξ1
...

ξN


T

, zi =

 zi,1
...

zi,N


T

(133)

we obtain a short expression for calculating the integral of Equation (71) along all n segments

∑n
i=1 Li

∫ 1

0
zi(ξ)dξ ≈ 1

2∑n
i=1 Liziw =

1
2

Lszw (134)

where Ls = vector of segment lengths; z = matrix of integrand values of n × N size; and

Ls =

L1
...

Ln


T

, z =

z1
...

zn

 =

z1,1 . . . z1,N
...

. . .
...

zn,1 . . . zn,N

 (135)

Here, we use N = 6-point scheme enough for quality and performance.
Now, let us choose optimization criteria.
Longitudinal Speed Deviation relative to a preset upper-level VζU value along the

path s.

Iv =
∫ s

0

(
VζU − Vζ

)2ds =
∫ D

0

(
VζU − Vζ

)2s′xdx = ∑n
i=1 Li

∫ 1

0
zvi(ξ)dξ (136)



Vehicles 2024, 6 216

Denoting the integrand zvi(ξ), using a set of FE speed parameters Qvi from the model
of Equation (124), a preset of the trajectory (curvature’s derivative) parameters Qti, and the
approach of Equation (134), we have

zvi(ξ) =
(
VζU − Vζ(Qvi, Li, ξ)

)2s′x(Qti, Li, ξ),
zvi = zvi

(
Qti, Qvi, Li, ξ

(
ϑT)), Iv ≈ 1

2 Lszvw
(137)

where the trajectory scale factor is

s′x =

√
1 + (dy/dx)2 (138)

Third Derivative of Longitudinal Speed

Id3v =
∫ s

0

(
d3Vζ

dx3

)2

ds =
∫ D

0

(
d3Vζ

dx3

)2

s′xdx = ∑n
i=1 Li

∫ 1

0
zd3vi(ξ)dξ (139)

Denoting the integrand zd3vi(ξ) and considering the approach above, we obtain

zd3vi(ξ) =

(
d3Vζ

dx3 (Qvi, Li, ξ)

)2
s′x(Qti, Li, ξ),

zd3vi = zd3vi
(
Qti, Qvi, Li, ξ

(
ϑT)), Id3v ≈ 1

2 Lszd3vw
(140)

Fourth Derivative of Longitudinal Speed

Id4v =
∫ s

0

(
d4Vζ

dx4

)2

ds =
∫ D

0

(
d4Vζ

dx4

)2

s′xdx = ∑n
i=1 Li

∫ 1

0
zd4vi(ξ)dξ (141)

Denoting the integrand zd4vi(ξ) and by analogy with the previous, we obtain

zd4vi(ξ) =

(
d4Vζ

dx4 (Qvi, Li, ξ)

)2
s′x(Qti, Li, ξ),

zd4vi = zd4vi
(
Qti, Qvi, Li, ξ

(
ϑT)), Id4v ≈ 1

2 Lszd4vw
(142)

The speed’s objective function Sv is derived as the sum of the weighted criteria. Then,
the following must be satisfied

Sv = Sv(qv) = WT
v Iv(qv) → min (143)

where qv = vector of speed’s second derivative’s nodal parameters (DOFs); Iv = vector of
objective criteria integrals; and Wv = vector of weight factors.

Wv =

 Wv
Wd3v
Wd4v

, Iv = Iv(qv) =

 Iv(qt, qv)
Id3v(qt, qv)
Id4v(qt, qv)

 (144)

where Wv, Wd3v, Wd4v = weight coefficients for quadratic velocity deviations and its third
and fourth derivatives, respectively; and qt = vector of curvature’s (trajectory’s) derivative
nodal parameters (DOFs).

4. Constraints

General Integral Approach to Nonlinear Equality Constraints. Since the kinematic,
dynamic, and physical vehicle motion parameters have been formed, let us consider the
integral technique of composing equality constraints. Suppose that smooth piecewise
polynomial functions describe all the parameters based on the nodal DOFs of the speed
and curvature derivatives. Since the numerical integration based on the Gaussian scheme
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is applied for optimization, the same scheme will be used to form restrictions. Assume
that some parameter Ψ changes along the path s so that it does not exceed the upper ΨU
and lower ΨL boundaries. Then, the sum of the areas between the upper limit ΨU and the
function Ψ and between the lower limit ΨL and the function Ψ must be strictly equal to the
area within boundaries. That is, for i-th FE and along the trajectory∫ xi

xi−1

(ΨU − ΨL)s′xidx =
∫ xi

xi−1

|ΨU − Ψ|s′xidx +
∫ xi

xi−1

|Ψ − ΨL|s′xidx (145)

Integrals can be calculated numerically, for which we introduce the following denotations.
For integrals between bounds (UL), upper bound and function (UF), and function and

lower bound (FL), we may denote:

z(UL)
Ψi (ξ) = (ΨU − ΨL)s′xi, z(UF)

Ψi (ξ) = |ΨU − Ψ|s′xi, z(FL)
Ψi (ξ) = |Ψ − ΨL|s′xi (146)

Then, for the i-th path segment, using Equation (131), vectors of Equation (146) func-
tions are represented as follows

z(k)Ψi = z(k)Ψi

(
ξ
(

ϑT
))

, k = UL, UF, FL (147)

Combining all the segments, the integrals can be calculated numerically as

I(k)Ψ ≈ 1
2

Lsz
(k)
Ψ w, k = UL, UF, FL (148)

Thus, the requirement of nonlinear equality constraint along all the segments for a
parameter Ψ, according to Equation (145) is expressed as follows

cΨ = I(UL)
Ψ − I(UF)

Ψ − I(FL)
Ψ = 0 (149)

Kinematic Parameters’ Constraints. Using this scheme above, we form a vector Ψk
of nonlinear integral constraints for a series of kinematic parameters such as longitudinal
speed, yaw rate, angular acceleration, and longitudinal jerk, where each j-th element
corresponds to Ψkj.

Ψk =


Vζ

ω
ε
jζ

, ΨkU =


VζU
ωU
εU
jζU

, ΨkL =


VζL
ωL
εL
jζL

, ck =


cVζ

cω

cε

cjζ

 = 04 (150)

where ΨkU, ΨkL = upper and lower limits of kinematic parameters, ck = vector of constraints
corresponding to kinematic parameters.

Dynamic Parameters’ Constraints. The vector Ψd of dynamic parameters includes
slip angles δ, tire lateral deformations ∆µ, roll angle ψ, and longitudinal acceleration aζ

as a function of speed. The maximum allowable roll angle at 0.4 g should not exceed 7◦.
For passenger cars, the recommended limit value is ψU = (10.8 − 4.3 B24/hg/2)◦. We may
accept 7.5◦. Thus, introducing the limits ψL = −ψU. Let us use symmetrical limits.

A particular case is the limitation of the vehicle’s traction potential. The vehicle’s
maximum acceleration depends on the speed and is due to design features. Thus, if the
vehicle speed–acceleration characteristic is known, the condition must be met∫ Vζ(i)max

Vζ(i)min

(
aζU − aζL

)
dVζ =

∫ Vζ(i)max

Vζ(i)min

∣∣aζU − aζi
∣∣dVζ +

∫ Vζ(i)max

Vζ(i)min

∣∣aζi − aζL
∣∣dVζ (151)

where aζU, aζL = upper and lower limit values of acceleration potentially implemented by
the vehicle.
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The tire’s lateral deformation limits are ∆µL = −∆µU. Combining the parameters, we
obtain the vectors

Ψd =


δ

∆µ

ψ
aζ

, ΨdU =


δU

∆µU
ψU
aζU

, ΨdL =


δL

∆µL
ψL
aζL

, cd =


cδ

c∆
cψ

caζ

 = 010 (152)

Adhesion Constraints. Having calculated the necessary traction forces on the wheels
according to Equation (54), including Equations (55) and (56), we determine the degree of
using the longitudinal and lateral adhesions on each j-th wheel.

φζ j = Rζ j/Rzj < φmax, φµj = Rµj/Rzj (153)

Then, the basic condition regarding the j-th wheel’s adhesion potential can be formed
as follows

φj =
√

φ2
ζ j + φ2

µj ≤ φmax (154)

Using Equation (154), it is possible to impose physical restrictions on the conditions of
all tire–road adhesions. Then

Ψa =


φ1
φ2
φ3
φ4

, ΨaU = φmax


1
1
1
1

, ΨaL =


0
0
0
0

, ca =


cφ1
cφ2
cφ3
cφ4

%endmatrix

 = 04 (155)

Boundary Parameters’ Constraints. Another type of constraint determines the bound-
ary conditions of kinematic parameters. Thus, one can require, for example, that the initial
(0) and final (f ) values of the predicted acceleration and jerk must correspond to preset
constant values Aζ0(f) and Jζ0(f). That is,

Ψb =


aζ0
jζ0
aζ f
jζ f

, Ψb0 =


Aζ0
Jζ0
0
0

, Ψb f =


0
0

Aζ f
Jζ f

, cb = Ψb − Ψb0 − Ψb f = 04 (156)

The desired final speed may also be included.
Total restricting conditions. Thus, the complete sets of parameters, bounds, and

nonlinear constraints are

Ψ =


Ψk
Ψd
Ψa
Ψb

, ΨU =


ΨkU
ΨdU
ΨaU
Ψb0

, ψL =


ΨkL
ΨdL
ΨaL
Ψb f

, ceq =


ck
cd
ca
cb

 = 022 (157)

5. Simulation

Trajectory. As an example, consider planning a speed mode on a curvilinear section
shown in Figure 7. Let us assume that the maneuver trajectory has already been determined
by the inverse method described in our previous studies.
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Before optimizing the speed mode, let us set the values of weight coefficients Wv in
Equation (144) and limit values.

Wv =
(
1 3 1

)T (158)

Speed derivative model limits

dVζ

dx

∣∣∣∣
U
= 5.7

[
1
s

]
,

d2Vζ

dx2

∣∣∣∣∣
U

= 1
[

1
ms

]
,

d3Vζ

dx3

∣∣∣∣∣
U

= 0.1
[

1
m2s

]
(159)

Initial and limiting values of kinematic parameters

Vζ0 = 60
[

km
h

]
, VζU = 100

[
km
h

]
, VζL = 50

[
km
h

]
,

aζU = φmaxg
[

m
s2

]
, aζL = −0.5

[
m
s2

]
, aζ0 = aζ f = 0

[
m
s2

]
, ωU = 0.5

[
rad

s

]
,

εU = 3
[

rad
s2

]
, jζU = 5

[
m
s3

]
, jζL = −2.5

[
m
s3

]
, jζ0 = jζ f = 0

[
m
s3

]
δU = 12 [◦], ∆µU = 2.5 [cm], ψU = 7.5 [◦]

(160)

We use the data of Audi A4 3.2 FSI [24] to represent the AV. All the calculations are
accomplished by using MATLAB tools [25].

Comparison of drive cases’ outputs. Figure 8 shows the results of output parameters
for the various torque vectoring schemes corresponding to the variants (A, B, C, D) in
Figure 4. Note that the same initial conditions and vehicle data are applied for all variants.
Let us consider a case of road conditions that provide the maximum adhesion coefficient
φmax = 0.5.

Longitudinal speed and acceleration. As seen in Figure 8a,b, all variants provide a smooth
and similar shape increase in speed. The lowest peak values of speed and acceleration
belong to variant (B) with single rear sport DM. Variants (A) and (D) show close results,
which are explained by the same strategy of using the longitudinal adhesion potential for
the same axle wheels. In this case, it does not matter in which way the redistribution of
drive torques on the same axle’s wheels is achieved—due to internal or external moments
relative to the semi-axles of the inter-wheel differential. Finally, the greatest speed and
acceleration are achieved with variant (C), combining the rear sport DM and front brakes.
This is because at the moment of vehicle acceleration, the inner front wheel is braked, which
leads to an increase in resistance on its semi-axle with a subsequent torque raising on the
opposite outer semi-axle. This results in growing the torque on the inter-axle differential’s
output shafts. That is, this variant provides not only the torque distribution over the same
axle wheels but partially over the axles too.
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(b) longitudinal acceleration, (c) longitudinal jerk, (d) pseudo-roll angle, (e) yaw rate, (f) angular
acceleration, (g) inter-axel differential carrier’s driving torque, (h) inter-axel differential’s front Tf and
rear Tr output torques.
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Jerk and roll angle. As seen in Figure 8c, longitudinal jerks differ in amplitude but do
not exceed the specified limits, while simultaneously meeting the requirements of zero
initial and final values. Obviously, with an increase in acceleration amplitude, the jerk also
grows; nevertheless, the curves’ unambiguity and smoothness are ensured for all drive
variants. This indicates a certain positive effect of the torque vectoring on the smoothness
and stability of the curvilinear motion.

Figure 8d shows pseudo-roll angles reflecting the potential vehicle’s body roll due
to predominantly centrifugal forces. Since the trajectory curvature determines the lateral
acceleration, which is the same for all variants, the roll angles differ little and do not exceed
the critical values.

Yaw rate and angular acceleration. As seen in Figure 8e,f, the curves of yaw rates and
angular accelerations are almost the same for different drive control options. This is because
the trajectory for all variants is the same and only the motion speed character stipulates
the differences. Owing to the unprecedented smoothness and continuity of the angular
acceleration functions, it is possible to successfully apply the inverse modeling approach,
i.e., to evaluate force and dynamic parameters using the predefined kinematic ones. Note
that the smoothness of all reference functions is one of the most important factors for the
AV’s stable control.

Inter-axle (central) DM torques. Figure 8g shows the torques on the central differential’s
carrier. As expected, the highest power costs correspond to variant (A), since the drive
torques on the inner wheels are limited by the braking moments. That is, despite the
high-quality regulation, this option requires excessive energy costs. The lowest energy
consumption is provided by variant (B) with a rear sport DM, which requires almost
250 Nm less than in the case of variant (A). Variant (C) also ensures less torque than (A)
and, nevertheless, more speed. Variant (D) is characterized by the lowest specific power
costs regarding the speed mode since the torque redistribution is provided by internal and
not external moments relative to the wheels’ driving semi-axles.

Figure 8h shows the distribution of torques between the vehicle axles by the variants.
Note that the main difference in the values of the axles’ drive torques is observed in the
first phase of acceleration since the effect of redistributing the vertical reactions is especially
sensitive for the rear axle. As the steering angles and acceleration begin to diminish when
the curvature decreases (about 35 m of the path), the rear tires’ kinematic radii instantly
become smaller than the same radii of the front wheels. As a result, this leads to the
temporal effect of equalizing the axles’ drive torques. Subsequently, owing to decreasing
the influence of redistributing the vertical reactions and approaching the trajectory to a
straight line, the ratio of torques becomes close to the mechanically preset in the inter-axle
differential (i.e., 40/60).

Case A. Figure 9 summarizes the results of optimizing the parameters for the variant
by controlling the rear and front brakes. As seen (Figure 9a,b), the sideslip angles and the
tires’ lateral deformations change smoothly and do not exceed the preset limits. The peak
sideslip angles are reached by the front inner and rear outer wheels. In this case, the front
inner wheel moves along the path with the greater curvature, and the rear outer wheel
has the maximum vertical load (Figure 9c). The distribution of lateral forces (Figure 9d)
is mostly proportional to the wheel loads. Due to individual adjustment, all longitudinal
forces (Figure 9e) on the wheels are different. The braking moments are of greatest interest
(Figure 9f).

As seen, the braking moments of the inner wheels change smoothly, and the front
inner wheel’s braking moment is greater than that of the rear one. This is due to the need
for withdrawing a larger moment from the front inner wheel, which is in worse adhesion
conditions. At the same time, the braking moments of the outer wheels remain zero.
Owing to the proposed strategy for distributing torques between the same axle wheels, the
longitudinal adhesion potentials are pairwise the same for the wheels of the front and rear
axles, respectively (Figure 9g). The lateral adhesion factor (Figure 9h) and total adhesion
(Figure 9i) are represented by relatively narrow bunches of the common tendency curves.
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At the same time, none of the wheels violates the adhesion limit requirements. Figure 9j
depicts the relation between the acceleration’s longitudinal and transversal components,
showing continuity, smoothness, and good agreement with the trajectory curvature and
the longitudinal speed’s derivatives as well.

Case B. Figure 10 shows the results of optimizing parameters for the variant with a
controlled rear sport DM. As seen (Figure 10a,b), the sideslip angles and the tires’ lateral
deformations have the smallest values among all the variants since the speed is also the
lowest. In Figure 10e reflecting the longitudinal reactions, as noted, the traction forces on
the front wheels are almost coincident, which is explained by the equality of the drive
torques on the semi-axles of the symmetric (open) front DM. Figure 10f depicts the internal
moment of the rear sport DM, which is positive for the outer wheel’s clutch and zero for
the inner wheel’s clutch. In Figure 10g, the rear wheels’ adhesion potentials are the same,
unlike the front wheels. Thus, the adjustment possibilities are limited by the adhesion of
the inner front wheel. Given the drive design at the specified road and initial conditions,
this variant partially underuses the adhesion limit but provides good smoothness of the
vehicle dynamics.

Case C. Figure 11 reflects the results of optimizing the parameters for the combined
control variant with the rear sport DM and front brakes. As seen (Figure 11a,b), the sideslip
angles and tires’ lateral deformations reach the largest values among all options since the
speed is also the highest. In Figure 11e the wheels’ traction forces differ significantly in the
maneuver’s first phase and converge in the second phase after decreasing the curvature.
Figure 11f depicts the moments required for the rear sport DM’s clutches and front brakes.
These moments are positive for the rear outer wheel’s clutch and front inner wheel’s brake,
and they are zero for the rear inner wheel’s clutch and front outer wheel’s brake. In
Figure 11g, the adhesion potentials of the front and rear wheels are pairwise coincident,
which emphasizes the strategy’s effectiveness. Thus, the control possibilities are expanded
and make it possible to bring the wheels to modes close to the limiting adhesion conditions
if needed.
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(d) lateral reactions, (e) longitudinal reactions, (f) wheels’ braking moments, (g) longitudinal adhesion
factor, (h) lateral adhesion factor, (i) full adhesion factor, (j) relation between longitudinal and lateral
accelerations.

Case D. Figure 12 shows the results of optimizing the parameters for the variant with
two controlled inter-wheel sport DMs. As seen (Figure 12a,b), the sideslip angles and tires’
lateral deformations are characterized by smoothness and their values do not exceed the
corresponding limits. In Figure 12e the front wheels’ traction forces for this variant play
the greatest role in comparison with other schemes, which has a positive effect on the
vehicle steerability. Figure 12f depicts the internal moments of the sport DMs’ clutches,
which are positive for the outer wheels’ clutches and zero for the inner wheels’ clutches. In
Figure 12g, the front and rear wheels’ adhesion potentials are pairwise coincident. Thus,
the possibilities of regulating motion stability and vehicle controllability are maximized.
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Note that this drive variant is characterized by the highest cost despite the high effi-
ciency and economy since there is no external resistance applied to the wheels’ semi-axle.
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6. Conclusions

The main goal of this study is to improve the inverse modeling techniques for tasks
on planning AV’s speed modes, considering the design features of the drivetrain structure.
Based on the results, the following may be highlighted:

1. The proposed technique is highly efficient. The inverse approach provides stable, un-
ambiguous functions for all kinematic, dynamic, and physical parameters, which are
characterized by continuity and smoothness. In addition, the method’s performance
is distinguished by its relative simplicity and versatility, confirmed by the successfully
applied technique for predicting both trajectory and speed.

2. The vehicle’s motion dynamics significantly influences the formation of motion plan-
ning reference curves. This is facilitated by various dynamic and physical constraints
built on the kinematic parameters to be optimized. The number of restrictions posi-
tively, in general, affects forecasts’ realism, considering the design features of vehicle’s
drive, as well as the speed mode’s safety within the limits of vehicle capabilities.

3. Pseudo-parameters, such as sideslip, lateral tire deformation, and body roll, were used
as extended criteria for motion safety, which allowed these physical parameters to be
included in the nonlinear constraints of the AV kinematic model. Even though these
parameters express equivalent values, their use increases the accuracy of forecasts
and reduces the probability of critical regimes.

4. Parameters such as sideslip and tire lateral elasticity are the most sensitive to the
curvilinear motion mode. The graphs show these parameters do not exceed the preset
limits. However, the tangent angles of these curves at points close to the limit levels
may be critical for the subsequent curves’ inflection at the next planning cycle. In this
regard, the use of restricted derivatives for slip angles and tire lateral deformation
may also be expedient.

5. The considered schemes of transmissions and control for distributing torques provide
the effective capability of planning the actuators’ impact based on the AV kinematic
model. At the same time, in accordance with the strategy of equal longitudinal adhe-
sion potential of the same axle wheels, the curves’ smoothness of braking moments
and friction clutches’ torques of sport DMs is ensured, which has a positive effect on
maintaining the stability of both control and motion. The predetermined continuous
kinematic parameters, such as yaw rate and angular acceleration make it possible to
calculate with sufficient accuracy and smoothness a set of force parameters required
for the vehicle model’s dynamic equilibrium.
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6. Using a nonlinear tire model in the proposed approach had advantages and disadvan-
tages. On the one hand, this leads to more accurate predictions of lateral forces, and on
the other hand, due to the inevitable use of iterations in solving nonlinear equations,
the optimization performance is worsened. Thus, regarding further improving the
approach, a compromise between the modeling quality and the forecasting rapidity is
needed, which may require the use of linearization followed by transiting from direct
parameters to their increments with subsequent accumulation.
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