
Citation: Hassan, M.; Illanko, K.;

Fernando, X.N. Single Image Super

Resolution Using Deep Residual

Learning. AI 2024, 5, 426–445.

https://doi.org/10.3390/ai5010021

Academic Editors: Gianni D’Angelo

and Arslan Munir

Received: 30 October 2023

Revised: 4 March 2024

Accepted: 19 March 2024

Published: 21 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Single Image Super Resolution Using Deep Residual Learning
Moiz Hassan †, Kandasamy Illanko † and Xavier N. Fernando *,†

Department of Electrical, Computer and Biomedical Engineering, Toronto Metropolitan University,
350 Victoria Street, Toronto, ON M5B 2K3, Canada; moiz1.hassan@torontomu.ca (M.H.);
killanko@torontomu.ca (K.I.)
* Correspondence: fernando@torontomu.ca
† These authors contributed equally to this work.

Abstract: Single Image Super Resolution (SSIR) is an intriguing research topic in computer vision
where the goal is to create high-resolution images from low-resolution ones using innovative tech-
niques. SSIR has numerous applications in fields such as medical/satellite imaging, remote target
identification and autonomous vehicles. Compared to interpolation based traditional approaches,
deep learning techniques have recently gained attention in SISR due to their superior performance
and computational efficiency. This article proposes an Autoencoder based Deep Learning Model
for SSIR. The down-sampling part of the Autoencoder mainly uses 3 by 3 convolution and has no
subsampling layers. The up-sampling part uses transpose convolution and residual connections from
the down sampling part. The model is trained using a subset of the VILRC ImageNet database as
well as the RealSR database. Quantitative metrics such as PSNR and SSIM are found to be as high as
76.06 and 0.93 in our testing. We also used qualitative measures such as perceptual quality.

Keywords: single image super-resolution; deep learning; autoencoders; convolutional neural
networks; convolution; transpose convolution; skipped connections

1. Introduction

In many emerging computer vision applications medical/satellite imaging, remote
target identification and autonomous vehicles, there is a need to instantly obtain a high-
resolution image from the low resolution image using innovative means. The problem
of generating a high-resolution image given a single low-resolution image is commonly
referred to as Single Image Super Resolution (SISR). This is a challenging research topic
since given a collection of low resolution pixels, there are more than one way to obtain the
corresponding high resolution pixels. A usual solution is to constrain the solution space
using prior information about the scenery or using the context.

Common techniques for SISR can be mainly divided into three categories: interpolation-
based methods, reconstruction-based methods, and learning-based methods. Interpolation
based methods such as bi-cubic interpolation [1] and Lanczos re-sampling [2] are fast and
straightforward but suffer from poor accuracy. Reconstruction-based models, reported
in [3–6], typically incorporate complex prior knowledge to constrain the set of feasible
solutions and produce high-quality results with detailed outputs. Despite these advantages,
many reconstruction-based techniques suffer from diminishing performance as the scaling
factor increases, and are often computationally demanding.

Learning-based methods, also known as example-based methods, have gained popu-
larity in recent years. These methods utilize machine learning algorithms to recover the
relationship between the low resolution input and its corresponding high resolution coun-
terpart. Learning-based methods have shown better performance and lower computation
time requirements compared to most other methods. Very recently, deep convolutional
neural networks have emerged as a powerful tool for solving the SISR problem.

AI 2024, 5, 426–445. https://doi.org/10.3390/ai5010021 https://www.mdpi.com/journal/ai

https://doi.org/10.3390/ai5010021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ai
https://www.mdpi.com
https://orcid.org/0000-0001-7120-528X
https://doi.org/10.3390/ai5010021
https://www.mdpi.com/journal/ai
https://www.mdpi.com/article/10.3390/ai5010021?type=check_update&version=1

AI 2024, 5 427

A Convolutional Neural Network (CNN) is a type of machine learning algorithm
that can automatically learn complex features in input image data [7]. This makes CNN
a very powerful tool in various image processing tasks. Autoencoders were originally
developed to learn a compressed, low dimensional representation of the data in a large
vector [8]. Autoencoders found numerous new applications when scientists realized that
the compressed representations could be used to generate a new variation of the original
large vector. Consequently, deep Autoencoders were developed recently to create a new
variation of the input image by using a type of ‘reverse’ CNN.

Several deep learning-based methods that have been proposed for the SISR problem
use different variations on the Autoencoder architectures. These methods have achieved
state-of-the-art results in terms of both quantitative metrics and visual quality. However,
there are still some challenges that need to be addressed, such as the trade-off between
computation time and quality, the extent of generalization of a particular model across
different domains and scales, and the need for more realistic evaluation metrics. Despite
these challenges, the use of deep networks for SISR continues to be an active area of
research, with new methods and architectures being proposed regularly.

In this article, we propose a novel approach to solve the SISR problem using Deep
Convolutional Residual Neural Networks. Our model will be based on an Autoencoder
structure which has CNN at the first half followed by a ‘reverse’ CNN, mentioned above,
in the second half. The ‘reverse’ CNN part will perform up sampling using transpose
convolution, and use skipped connections from the CNN part to enrich the collection
of feature maps on the second half. The article examines the different metrics and loss
functions used to achieve optimal performance. The proposed approach is evaluated using
both quantitative and qualitative measures to compare the results of each model, including
peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and perceptual quality.

The next section presents a brief overview of related works. Section 3 outlines the
evolution of Autoencoders and provides the theory behind them. The problem statement,
proposed model, and the used dataset are described in Section 4. The methodology, hyper
parameters, and the training details are given in Section 5. The results are discussed in
Section 6, followed by conclusions in Section 7.

2. Related Work

This section presents a brief review of the deep learning based SISR reported in
recent literature.

Dong et al. [9] proposed a Super Resolution Convolutional Neural Network (SRCNN)
that consisted of three major components; patch extraction, non-linear mapping, and
reconstruction. In the patch extraction layers, convolution filters extracted the image
features without any subsampling. The non-linear mapping was performed by an artificial
neural network. The reconstruction layer used bi-cubic interpolation to up-sample the low-
resolution image. The model was trained using the Mean Squared Error (MSE) loss function
and the results were evaluated using SSIM and MSSIM. It was reported that increasing
the number of layers did not result in better performance. The article reported that the
architecture is sensitive to learning rate and parameter initialization, and the depth of the
network made it very difficult to set appropriate learning rates that guarantee convergence.
The architecture reportedly achieved a PSNR of 32.52.

A model that uses a special, pre-trained, loss network instead of the pixel by pixel
losses was developed by Johnson et al. [10]. The loss network used perceptual losses that
depend on high-level features which produced visually appealing results. The model
consisted of two main components; an image transformation network and a loss network.
The transformation network used several residual blocks followed by convolutional layers.
The results achieved were very visually pleasing. However, quantifying these results
seemed to be a problem. In defence of [10], it should be noted that as reported in [11,12],
PSNR and SSIM rely on per-pixel differences and correlate poorly with human assessment
of visual quality, which is what this model is supposed to achieve.

AI 2024, 5 428

Motivated by the small receptive field and the very slow training needed in the
SRCNN [9], a Very Deep Super Resolution (VDSR) model was proposed in [13] that makes
use of 20 convolutional layers. This very deep CNN network used gradient clipping
techniques to handle the exploding gradient problem. Moreover, the model was designed
to learn the difference between the target Hi-Res image and the input Lo-Res image rather
than learning the Hi-Res image directly. This resulted in significantly reduced training time.

The introduction of ResNet by He et al. [14] opened the door for more advancement
in Super Resolution. The core idea of ResNet is to enable a CNN network to be very deep
without suffering from the vanishing gradient problem. ResNet layers were reformulated
to learn residual functions with reference to the layer inputs, instead of unreferenced
functions. These residual networks were easier to optimize and gained higher accuracy
with increased network depth. A ResNet block constituted of one or more convolutional
layers followed by Batch Normalization and a ReLU activation.

An architecture called Super Resolution Residual Network (SRResNet) was proposed
by Ledig et al. [15]. Removing the Batch Normalization (BN) modules in the SRResNet
architecture as proposed by Lim et al. [16] achieved better results. The model contained
convolutional layers followed by residual blocks. The last part consisted of upsampling
and convolution layers.

To make better use of the hierarchical features extracted from Low-Resolution images,
Zhang et al. [17] proposed a Residual Dense Network (RDN) for Image Super Resolution
that is also based on ResNet architecture. This network modifies the residual blocks by
connecting each layer to all subsequent layers in the block.

Since low resolution inputs and features contain low frequency information that
are equally treated across channels, Zhang et al. [18] presented a model that selectively
emphasizes informative channels in each feature map. This model, named Image Super-
Resolution Using Very Deep Residual Channel Attention Network (RCAN), is also based
on ResNet architecture.

MSE loss function has its limitations when used in Super Resolution as it encourages
average-like solutions that are not visually pleasing. Motivated by this, Ledig et al. [15]
proposed a model for image Super Resolution using Generative Adversarial Network
(SRGAN), in which the authors suggested a perceptual loss function which consists of an
adversarial loss and a content loss. The adversarial loss pushes the solution to the natural
image manifold by using a discriminator network that is trained to differentiate between
the super-resolved images and the original photo-realistic images. The content loss is
motivated by perceptual similarity instead of pixel-wise similarity. The generator network
structure mainly consists of residual blocks each of which starts with two convolutional
layers followed by batch normalization layers and ReLU as the activation function. One of
the metrics used by the authors to evaluate the model is the Mean Opinion Score (MOS),
where 26 human observers rated the Hi-Res output images. Compared to other SISR
methods, the authors showed that the SRGAN model achieved the highest MOS scores.

Yang et al. [19] reviewed deep learning methods used for SISR and summarized
the trends and challenges ahead for Deep Learning (DL) algorithms in tackling the SISR
problem. The authors argued that lighter deep architectures for efficient SISR are needed.
Even though very high accuracy for Hi-Res images from Lo-Res images was achieved, it
is very difficult and impractical to deploy these models to real world scenarios, due to
the massive number of parameters and computational needs. They suggested that lighter
models should be designed either from scratch or from slimming down current architectures
without large compromise on performance. Moreover, the authors believed that more work
should be done to bridge the gap in our understanding of deep models for SISR. The success
of deep learning is said to be attributed to learning powerful representations. However, to
date, these representations are not fully understood, and the deep architectures are treated
as a black box. For DL-based SISR, the deep architectures are often viewed as a universal
approximation, and the learned representations are often omitted for simplicity. This
behavior is not beneficial for further exploration, and the authors argued that more work

AI 2024, 5 429

should be done on why and how these models work. That is, more theoretical explorations
are needed. Lastly, the paper addressed the issue of not having rational unified assessment
criteria for SISR. Most of the DL methods use the MSE as the loss function despite the fact
that it has been shown as a poor criterion for SISR. Clear definitions for assessment criteria
for SISR will help designing better optimization objectives and will make the comparison
between models more rational.

A Specific activating function, in place of ReLu and MTLU was proposed by
Gao et al. [20]. They argued that both ReLu and MTLU provide only a static scaling factor,
whereas their new Pixel Attention Activating Function (PAAF) can provide a dynamic
pixel-wise scaling factor that is more sensitive to the image features. They demonstrated
the advantage of PAAF by providing results that compared PAAF to that obtained with
ReLu and MtLU.

Li et al. [21] designed a non-linear global feature fusion (NGFF) module that combined
the outputs from the deep feature aggregation blocks (DFAB). Shallow features were
extracted from the inputs by a 3 by 3 convolutional filter and the results were sent to NGFF
for residual learning. The paper presents PSNR and SSIM results comparing their method
to other techniques.

An entirely different approach to SISR that used unsupervised learning was proposed
by Yamawaki et al. [22]. The main part of their model is a GAN-like encoder-decoder with
skipped connections that was trained to produce a high-resolution image while noise is
at the input. A convolutional layer was used to down-sample the output of the GAN to
produce a low-resolution image, and this image is compared to the actual low-resolution
image in the dataset to create the loss function for the GAN.

Ju et al. [23] focused on the problem of acquiring high definition 3D surface structures
in computer vision from low resolution photometric stereo images. Their method uses
a dual-position threshold normalization preprocessing scheme, a local affinity feature
module, a parallel multi-scale feature extractor, and a shared-weight regressor. The article
presents the results of many ablation experiments to justify their method.

In [24], Chen et al. argue that most of the existing deep convolution-based method-
ologies fail to capture targeted information when the distribution of spatial and channel
information is uneven in low-resolution images. To address this issue, they propose a
cascade attention blend residual network. A non-local channel and multi-scale attention
are considered for channel-wise dependencies and multi-scale receptive fields, respec-
tively. The paper reports promising super resolution results while reducing the number of
parameters in the model by about 50%.

An article by Chen et al. [25] combines the spatial and channel dimensions in Trans-
former to obtain an image representation. They propose Dual Aggregation Trans-former
(DAT), for image SR. DAT aggregates features across spatial and channel dimensions, in
the inter-block and intra-block, in a dual manner. The paper also proposes an adaptive
interaction module (AIM) and the spatial-gate feed-forward network (SGFN) to achieve
intra-block feature aggregation.

A detailed study of the latest techniques used for SISR can be found in [26]. Here,
53 different models were evaluated on 7 different datasets. The study tabulated the per-
formances of the various models measured in PSNR and SSIM for scaling factors starting
from 2 to 16.

3. Autoencorders

The deep learning model used in this article belongs to a class of networks called
Autoencoders. Autoencoders were originally developed for the purpose of dimensionality
reduction [8]. They were used to learn a compressed representation of vector data. The
simplest Autoencoders are Artificial Neural Networks (ANN) with an hour-glass structure.
These Autoencoders were trained with the input vectors as the targets. An Autoencoder
that takes in a vector of size 1000 and reduces the dimension to 100 is shown in Figure 1.

AI 2024, 5 430

After training, the outputs from the bottle-neck layer in the middle produces a lower
dimensional representation of the input vector.

Later on, researchers surmised that the compressed data could be used to construct
a different version of the original input. Note, the inputs were often images rather than
vectors. The input images were often flattened and fed to the hour-glass ANN. A well
known application of this is image denoising.

Figure 1. Early Autoencoder Architecture. Different colors indicate different depth of hidden layers.

Recently, Image Autoencoders evolved to include the components of CNN [7]. They
used a U-shaped architecture, where the left side had a CNN and the right side had a
‘reverse’ CNN. A typical CNN has convolutional filters (Figure 2), featuremap layers,
activations, and subsampled maps (Figure 3) followed by an ANN that performs the
classification (Figure 4).

A convolutional filter moves around the image, takes dot products with the image at
each location and places them on a featuremap. The convolution operation is illustrated
in Figure 2. Maxpooling is a subsampling operation where a region in a featuremap is
replaced by a single representative pixel. Maxpooling is explained in Figure 3. A simple
CNN that uses two layers of convolution and maxpooling to extract features, and then uses
an ANN to perform image classification is shown in Figure 4.

Image or Feature Map

Represent with
one pixel

Convolution

Represent with
one pixel

Figure 2. Schematics of 2D Convolution: A moving image filter takes dot-products with a sub-matrix
of the image and places the result in a new image called the featuremap.

AI 2024, 5 431

Featuremap

1

4 1

2

2 3

31

1

03

3

2

2

1

1

1 1

1

1

11

1

1

1
3 by 3 Max pooling

1

1

1 3

7 2

4

2 50

7

0

0

0

5

Subsampled map

Figure 3. Example of a Subsampling Operation: Maxpooling.

Image Normalize

Featuremap

After ReLu

Subsampled

Normalized

Flatten each map and
Concatenate into

One Vector

ANN
Classification

+ +

+ +

=

=

Filter-1,1

Filter-1,3

Filter-2,1

Filter-2,1

Filter-2,1

Filter-1,2

Filter-2,2

Filter-2,2

Filter-2,2

A CNN with three Convolutional Filters followed by two Convolutional Filters

Figure 4. A Simple Schematic of Convolutional Neural Network (CNN).

A typical Autoencoder structure is shown in Figure 5. It is important to note that the
CNN on the left side of an Autoencoder does not end in an ANN. Rather, the CNN in an
Autoencoder ends in a small featuremap. The right side of the Autoencoder starts with this
small featuremap and uses transpose convolution and skipped connections from the left
side to gradually build up the required output image.

The most important operation on the right side of an Autoencoder is the upsampling
done by the Transposed convolution. The following example explains this operation. In
Figure 6, a 3 by 3 transpose convolution filter operates on a featuremap of shape 4 by 4 pixel
by pixel with stride 2 to produce an upsampled map. The filter kernels are multiplied by the
pixel value in the top left corner of the feature map to generate a 4 by 4 submatrix. Now the
filter moves to the right by one pixel and repeats the computation. The resulting submatrix
is placed in the upsampled map after moving two pixels to the right. The calculations are
shown step by step below:

AI 2024, 5 432

Image Segmented Image

CNN Reverse CNN

Convolution
Featuremaps
ReLu
Maxpooling

Convolution
Featuremaps
ReLu
Upsampled maps
Concatenation

Featuremaps are added to the
collection of upsampled maps

Small Featuremap

Skipped Connections, Concatenation,
or Copy and Crop

Figure 5. Typical Autoencoder Structure.

W = ones(3, 3)

X

12

3

3

3

4 1

2

1

1

2

3

1

2

2

2

times 0.1

Y

Figure 6. The transpose Convolution.

Y =

0.2 0.2 0.2 0 0 0 0 0 0
0.2 0.2 0.2 0 0 0 0 0 0
0.2 0.2 0.2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

+

0 0 0.1 0.1 0.1 0 0 0 0
0 0 0.1 0.1 0.1 0 0 0 0
0 0 0.1 0.1 0.1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(1)

+

0 0 0 0 0.3 0.3 0.3 0 0
0 0 0 0 0.3 0.3 0.3 0 0
0 0 0 0 0.3 0.3 0.3 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

+

0 0 0 0 0 0 0.2 0.2 0.2
0 0 0 0 0 0 0.2 0.2 0.2
0 0 0 0 0 0 0.2 0.2 0.2
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(2)

+

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0.4 0.4 0.4 0 0 0 0 0 0
0.4 0.4 0.4 0 0 0 0 0 0
0.4 0.4 0.4 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

+ (3)

AI 2024, 5 433

Skipped connections in Autoencoders refers to the fact that some feature maps from
the CNN on the left side are copied and added to the collection of upsampled maps on the
‘reverse’ CNN on the right side.

4. Problem Statement and the Model

The goal of this work is to produce a deep neural network model that is capable of
creating high resolution images given the corresponding low resolution image. In particular,
the purpose is to develop a lightweight model with a minimum number of parameters,
in order to address the computational and resource constraints. The architecture used in
the CNN part of the Autoencoder used in this article is borrowed from the state-of-the-art
CNN called ResNet.

The first Dataset to be used is a subset from the ImageNet database. This dataset was
chosen because it was adopted by most of the models mentioned earlier and represents
a benchmark for performance comparison. The second dataset used in this article is the
RealSR V1 from Kaggle. This dataset is known for its realistic depiction of the world
around us.

5. Proposed Method
5.1. Proposed Network

The Low-Res input image was first reshaped to the size of 256× 256× 3. Let us denote
the reshaped input image as Y. The aim is to recover a Hi-Res image f(Y) from Y, and that
for F(Y) to be as similar as possible to the ground truth Hi-Res image X.

The Autoencoder model used with the ImageNet dataset consists of 5 convolutional
layers that down-sample the input image from 256 × 256 × 3 to 8 × 8 × 512 after the fifth
layer. This is followed by 5 transposed convolutional layers that up-sample the image from
8 × 8 × 512 to 256 × 256 × 6. Residual connections were used between the convolutional
layers and the transposed convolutional layers as shown in Figure 7. Finally, image
reconstruction is achieved by one convolutional layer at the end.

Figure 7. Our Network Structure. Here we have five conv. layers to down sample the input image,
followed by five Transposed conv. layers for up-sampling, and one last Conv. layer for image
reconstruction. Residual skip connections are not shown in this figure.

All the filters used in the model are of the same kernel size 3 × 3 except for the last
image reconstruction layer which has a kernel size of 2 × 2. The number of filters in each
layer starts with 128 filters on the first and second convolutional layers and goes to 256, 512,
512 on the third, fourth, and fifth down-sampling layers respectively. Using an increasing
number of filters enabled us to stack feature maps and avoid any loss of features between
the layers through this down-sampling. As for the decoder part of the model, the number
of filters decreases gradually from 512 filters at the first layer to 256, 128, 128, 3 on the other
four layers. The last reconstruction layer consists of only 3 filters.

AI 2024, 5 434

When removing Batch Normalization (BN) modules from the model, better results
were achieved with less memory usage. To help tackle the issue of vanishing gradients,
the activation function applied through all the layers was the Leaky Rectified Linear Unit
(Leaky ReLU).

For the images from the RealSR V1 dataset, the number of convolutional filters were
increased to 1024, 1024, 512, and 512, starting from the first layer. The models were
implemented using the TensorFlow framework and run on Google Colab. The TensorFlow
code is given in Appendix A.

5.2. Training

Learning end-to-end mapping requires the estimation of the network parameters
W1, W2, . . . , W11 and B1, B2, . . . , B11 where Wi, Bi denotes the parameters of the learning
filters in the ith layer, that minimize the loss between the reconstructed image and the
ground truth image. We use the Mean Absolute Error (MAE) as the loss function:

Loss =
1
n

n

∑
i=1

|F(Yi)− Xi| (4)

In Super-resolution algorithms, the input image goes through all layers until the
output. This requires very-long term memory, and also causes the issue of vanishing
gradients. Residual learning with skip connections solve this issue; instead of learning the
output directly from the input, the network learn the residual image between the output
and input in different layers as shown in Figure 8.

Figure 8. Network Architecture with skip connections.

AI 2024, 5 435

6. Experiments and Results
6.1. Training Data

Because of limitations in computational time, a subset of the ILSVRC 2013 ImageNet
dataset was used in our experiments. The subset consisted of 855 images. Out of the
855 images, 700 images used for training, 130 for validation, and 25 images for testing.
In the case of the ReaS V1 dataset, 50 images were used for training, and 32 were used
for testing.

On the Google Colab T4 GPU Core, the 700 images from the ImageNet dataset took
5 min and 31 s over 20 Epochs to train and validate on the 130 images. The validation
accuracy achieved was 87%. On the same GPU core, the images of RealSR V1 dataset took
16 min and 43 s to achieve a validation accuracy of 81%. On average the testing or inference
took 17 micro-seconds per image.

6.2. Training Parameters

For the final model, we selected a network with 11 layers. Filters in all the layers
except for the last layer, are of size 3 × 3. This achieved the best results when compared
with 5 × 5 filters. The optimizer we use is ’adam’ and the initial learning rate is 0.001.
Activation functions through all layers is the Leaky Rectified Linear Unit (Leaky ReLu). We
train all experiments over different numbers of epochs, however best results achieved with
an epoch equals to 7. Our final model consists of 9,597,646 trainable parameters.

6.3. Model and Performance Trade-Off

Our proposed model was evaluated with different values of learning rate and number
of epochs. We computed three metrics to assess the quality of the predicted images: Peak
Signal to Noise Ratio (PSNR), Mean Squared Error (MSE), and Structural Similarity Measure
(SSIM). We found that increasing the number of epochs generally improves the performance
of the network, as reflected by higher values of PSNR and SSIM and lower values of MSE.
As for the learning rate, using a lower learning rate achieved better results only when a
higher number of epochs is used. Overall, our findings suggest that optimizing the number of
epochs while fine tuning the learning rate will further enhance the performance of the model.

The PSNR, MSE, and SSIM results are presented in Tables 1–4. Each table lists the
PSNR, MSE, and SSIM values obtained with different initial learning rates and number of
training Epochs. It is worth mentioning here, that the actual range of PSNR values achieved
by previous models vary greatly from the PSNR values this model achieved. This is mainly
due to the dataset used and the size and complexity of the images.

For visual quality inspection, nine different test images from the ImageNet dataset are
shown in Figures 9 and 10. On each Figure, the leftmost picture shows the ground truth
high-resolution image. The middle picture depicts the low-resolution input to the model.
The right most picture shows the high-resolution output from the model.

The results from the RealSR V1 dataset [27,28] are shown in Table 5 and Figure 11.
These results were obtained over 120 epochs with an initial learning rate of 0.0001.

Table 1. PSNR, MSE, and SSIM values for 9 testing images. These values were obtained with
3 × 3 filters, 11 layers, 7 epochs, and 0.001 step size. Average values for PSNR, MSE, and SSIM are
76.40, 0.005, and 0.89 respectively.

PSNR MSE SSIM

73.02 0.01 0.9
75.69 0.01 0.88
75.63 0.01 0.90
75.85 0.01 0.92
73.51 0.01 0.83
82.34 0.001 0.96
79.64 0.002 0.93
77.38 0.003 0.86
74.59 0.01 0.90

AI 2024, 5 436

Table 2. PSNR, MSE, and SSIM values for 9 testing images. These values were obtained with
3 × 3 filters, 11 layers, 7 epochs, and 0.0001 step size. Average values for PSNR, MSE, and SSIM are
72.76, 0.01, and 0.81 respectively.

PSNR MSE SSIM

70.51 0.02 0.81
72.50 0.01 0.78
72.50 0.01 0.81
71.95 0.01 0.84
69.78 0.02 0.68
77.90 0.003 0.93
75.25 0.01 0.88
72.75 0.01 0.76
71.75 0.01 0.81

Table 3. PSNR, MSE, and SSIM values for 9 testing images. These values were obtained with
3 × 3 filters, 11 layers, 20 epochs, and 0.001 step size. Average values for PSNR, MSE, and SSIM are
75.76, 0.01, and 0.91 respectively.

PSNR MSE SSIM

73.98 0.01 0.92
75.34 0.01 0.89
76.07 0.004 0.92
75.41 0.01 0.94
73.16 0.01 0.86
79.86 0.002 0.97
77.54 0.003 0.94
75.36 0.01 0.83
75.09 0.01 0.92

Table 4. PSNR, MSE, and SSIM values for 9 testing images. These values were obtained with
3 × 3 filters, 11 layers, 20 epochs, and 0.0001 step size. Average values for PSNR, MSE, and SSIM are
78.25, 0.003, and 0.93 respectively.

PSNR MSE SSIM

74.47 0.007 0.93
77.24 0.004 0.92
77.35 0.004 0.94
78.09 0.003 0.95
75.02 0.006 0.89
85.10 0.001 0.98
81.87 0.001 0.95
79.05 0.002 0.90
76.05 0.005 0.93

Table 5. PSNR, MSE, and SSIM values for the 9 testing images from the RealS V1 dataset.

PSNR MSE SSIM

73.24 0.0093 0.85
74.70 0.0066 0.90
76.55 0.0043 0.90
71.38 0.0142 0.83
74.03 0.0077 0.86
74.21 0.0074 0.87
70.75 0.0160 0.70
75.01 0.0062 0.90
75.64 0.0053 0.91

AI 2024, 5 437

Figure 9. Image examples. High Resolution Ground Truth Images are on the left, Low Resolution
Input are in the middle, and the High Resolution Output Images are on the right. Note, Low-Res
image colors may be different from the original due to TensorFlow.

AI 2024, 5 438

Figure 10. High Resolution Ground Truth Image on the left, Low Resolution Input in the middle, and
the High Resolution Output Image on the right.

AI 2024, 5 439

Figure 11. High Resolution Ground Truth Image on the left, Low Resolution Input in the middle, and
the High Resolution Output Image on the right.

7. Conclusions

In this article, we presented a single image super-resolution technique using deep
convolutional residual networks. We obtained remarkable average values for PSNR, MSE,
and SSIM. Generally training deep networks is difficult because of the vanishing gradient
problem. In this work, we used residual-learning to overcome this issue. The network can
be further optimized with larger training datasets. However, they need higher computa-
tional power. Moreover, the performance can be possibly improved by exploring more
filters and different training strategies.

Author Contributions: All authors have equally contributed this paper. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Natural Sciences and Engineering Research Council (NSERC)
of Canada.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used in this article is freely available at Kaggle:
https://www.kaggle.com/datasets/adityachandrasekhar/image-super-resolution (accessed on 10
November 2023); https://www.kaggle.com/datasets/yashchoudhary/realsr-v1 (accessed on 10
November 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

The TensorFlow code that creates, trains, and tests the model is listed here:

###################################
Importing the Libraries
###################################
import numpy as np
import tensorflow as tf
import keras
import cv2
from keras.models import Sequential
from tensorflow.keras.utils import img_to_array
from skimage.metrics import structural_similarity as ssim
import math
import os
from tqdm import tqdm
import re
import matplotlib.pyplot as plt

https://www.kaggle.com/datasets/adityachandrasekhar/image-super-resolution
https://www.kaggle.com/datasets/yashchoudhary/realsr-v1

AI 2024, 5 440

from google.colab import drive
drive.mount(’/content/gdrive’)

################################
Managing the Files
################################

def sorted_alphanumeric(data):
convert = lambda text: int(text) if text.isdigit() else text.lower()
alphanum_key = lambda key: [convert(c) for c in re.split(’([0-9]+)’,
key)]
return sorted(data,key = alphanum_key)

defining the size of the image
SIZE = 256
high_img = []
#os.makedirs(’gdrive/MyDrive/TMU/Neural_Networks/Project/kaggle/

Raw Data/high_res’, exist_ok=True)
path = ’gdrive/MyDrive/TMU/Neural_Networks/Project/kaggle/

Raw Data/high_res’
files = os.listdir(path)
files = sorted_alphanumeric(files)
for i in tqdm(files):

if i == ’855.jpg’:
break

else:
img = cv2.imread(path + ’/’+i,1)
open cv reads images in BGR format so we have to convert it to
RGB
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#resizing image
img = cv2.resize(img, (SIZE, SIZE))
img = img.astype(’float32’) / 255.0
high_img.append(img_to_array(img))

low_img = []
path = ’gdrive/MyDrive/TMU/Neural_Networks/Project/kaggle/Raw Data/low_res’
files = os.listdir(path)
files = sorted_alphanumeric(files)
for i in tqdm(files):

if i == ’855.jpg’:
break

else:
img = cv2.imread(path + ’/’+i,1)

#resizing image
img = cv2.resize(img, (SIZE, SIZE))
img = img.astype(’float32’) / 255.0
low_img.append(img_to_array(img))

##################################
Visualizing the Data
##################################

AI 2024, 5 441

for i in range(4):
a = np.random.randint(0,855)
plt.figure(figsize=(10,10))
plt.subplot(1,2,1)
plt.title(’High Resolution Imge’, color = ’green’, fontsize = 20)
plt.imshow(high_img[a])
plt.axis(’off’)
plt.subplot(1,2,2)
plt.title(’low Resolution Image ’, color = ’black’, fontsize = 20)
plt.imshow(low_img[a])
plt.axis(’off’)

################################
Reshaping the Data
################################

train_high_image = high_img[:700]
train_low_image = low_img[:700]
train_high_image = np.reshape(train_high_image,

len(train_high_image),SIZE,SIZE,3))
train_low_image = np.reshape(train_low_image,(len(train_low_image),

SIZE,SIZE,3))

validation_high_image = high_img[700:830]
validation_low_image = low_img[700:830]
validation_high_image= np.reshape(validation_high_image,
(len(validation_high_image),SIZE,SIZE,3))
validation_low_image = np.reshape(validation_low_image,
(len(validation_low_image),SIZE,SIZE,3))

test_high_image = high_img[830:]
test_low_image = low_img[830:]
test_high_image= np.reshape(test_high_image,(len(test_high_image),

SIZE,SIZE,3))
test_low_image = np.reshape(test_low_image,(len(test_low_image),

SIZE,SIZE,3))

print("Shape of training images:",train_high_image.shape)
print("Shape of test images:",test_high_image.shape)
print("Shape of validation images:",validation_high_image.shape)

###############################
Defining the Model
###############################

from keras import layers
def down(filters , kernel_size, apply_batch_normalization = True):

downsample = tf.keras.models.Sequential()
downsample.add(layers.Conv2D(filters,kernel_size,padding = ’same’,

strides = 2))
if apply_batch_normalization:

downsample.add(layers.BatchNormalization())
downsample.add(keras.layers.LeakyReLU())

AI 2024, 5 442

return downsample

def up(filters, kernel_size, dropout = False):
upsample = tf.keras.models.Sequential()
upsample.add(layers.Conv2DTranspose(filters, kernel_size,

padding = ’same’, strides = 2))
if dropout:

upsample.dropout(0.2)
upsample.add(keras.layers.LeakyReLU())
return upsample

def model():
inputs = layers.Input(shape= [SIZE,SIZE,3])
d1 = down(128,(3,3),False)(inputs)
d2 = down(128,(3,3),False)(d1)
d3 = down(256,(3,3),False)(d2)
d4 = down(512,(3,3),False)(d3)
d5 = down(512,(3,3),False)(d4)

#upsampling
u1 = up(512,(3,3),False)(d5)
u1 = layers.concatenate([u1,d4])
u2 = up(256,(3,3),False)(u1)
u2 = layers.concatenate([u2,d3])
u3 = up(128,(3,3),False)(u2)
u3 = layers.concatenate([u3,d2])
u4 = up(128,(3,3),False)(u3)
u4 = layers.concatenate([u4,d1])
u5 = up(3,(3,3),False)(u4)
u5 = layers.concatenate([u5,inputs])
output = layers.Conv2D(3,(2,2),strides = 1, padding = ’same’)(u5)
return tf.keras.Model(inputs=inputs, outputs=output)

model = model()
model.summary()

################################
Compiling the Model
################################

model.compile(optimizer = tf.keras.optimizers.Adam(learning_rate = 0.001),
loss = ’mean_absolute_error’,
metrics = [’acc’])

###############################
Fitting the Model
###############################

model.fit(train_low_image, train_high_image, epochs = 20, batch_size = 1,
validation_data = (validation_low_image,validation_high_image))

#################################
Evaluating the Model
#################################

AI 2024, 5 443

def psnr(target, ref):
target_data = target.astype(float)
ref_data = ref.astype(float)

diff = ref_data - target_data
diff = diff.flatten(’C’)

rmse = math.sqrt(np.mean(diff**2.))
return 20 * math.log10(255. / rmse)

def mse(target, ref):
err = np.sum((target.astype(float) - ref.astype(float))**2)
err /= float(target.shape[0] * target.shape[1])
return err

def compare_images(target, ref):
scores = []
scores.append(psnr(target, ref))
scores.append(mse(target, ref))
scores.append(ssim(target, ref, multichannel=True))
return scores

####################################
Visualizing Predictions
####################################

def plot_images(high,low,predicted):
plt.figure(figsize=(15,15))
plt.subplot(1,3,1)
plt.title(’High Image’, color = ’green’, fontsize = 20)
plt.imshow(high)
plt.subplot(1,3,2)
plt.title(’Low Image ’, color = ’black’, fontsize = 20)
plt.imshow(low)
plt.subplot(1,3,3)
plt.title(’Predicted Image ’, color = ’Red’, fontsize = 20)
plt.imshow(predicted)

plt.show()

scores = []
for i in range(1,10):

predicted = np.clip(model.predict(test_low_image[i].reshape(
1,SIZE, SIZE,3)),0.0,1.0).reshape(SIZE, SIZE,3)

scores.append(compare_images(predicted, test_high_image[i]))
plot_images(test_high_image[i],test_low_image[i],predicted)

###
Saving results and the model
###

import pandas as pd
df = pd.DataFrame(scores)
df.columns = [’PSNR’, ’MSE’, ’SSIM’]

AI 2024, 5 444

df.to_csv(’3_3_11_20_0.001.csv’, index=False)

model.save("final_model.h5")

References
1. Keys, R. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 1981,

29, 1153–1160. [CrossRef]
2. Duchon, C.E. Lanczos filtering in one and two dimensions. J. Appl. Meteorol. 1979, 18, 1016–1022. [CrossRef]
3. Dai, S.; Han, M.; Xu, W.; Wu, Y.; Gong, Y.; Katsaggelos, A.K. Softcuts: A soft edge smoothness prior for color image super-

resolution. IEEE Trans. Image Process. 2009, 18, 969–981. [PubMed]
4. Sun, J.; Xu, Z.; Shum, H.Y. Image super-resolution using gradient profile prior. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8.
5. Yan, Q.; Xu, Y.; Yang, X.; Nguyen, T.Q. Single image super-resolution based on gradient profile sharpness. IEEE Trans. Image

Process. 2015, 24, 3187–3202. [PubMed]
6. Marquina, A.; Osher, S.J. Image super-resolution by TV-regularization and Bregman iteration. J. Sci. Comput. 2008, 37, 367–382.

[CrossRef]
7. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM

2017, 60, 84–90. [CrossRef]
8. Hinton, G.E.; Zimel, R.S. Autoencoders, Minimum Description Length and Helmholtz Free Energy. In Proceedings of

the Advances in Neural Information Processing Systems 6 (NIPS 1993), Denver, CO, USA, 29 November–2 December 1993;
pp. 600–605.

9. Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach.
Intell. 2015, 38, 295–307. [CrossRef]

10. Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual losses for real-time style transfer and super-resolution. In Proceedings of the
European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 694–711.

11. Wang, Z.; Bovik, A.C. Mean squared error: Love it or leave it? a new look at signal fidelity measures. IEEE Signal Process. Mag.
2009, 26, 98–117. [CrossRef]

12. Kundu, D.; Evans, B.L. Full-reference visual quality assessment for synthetic images: A subjective study. In Proceedings of the
2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 3046–3050.

13. Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,7–30 June 2016; pp. 1646–1654.

14. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

15. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al.
Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 105–114.

16. Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced deep residual networks for single image super-resolution. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 136–144.

17. Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Residual dense network for image super-resolution. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–23 June 2018; pp. 39–48.

18. Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks. In
Proceedings of the European Conference on Computer Vision, Munich, Germany, 8 September 2018; pp. 286–301.

19. Yang, W.; Zhang, X.; Tian, Y.; Wang, W.; Xue, J.H.; Liao, Q. Deep Learning for Single Image Super-Resolution: A Brief Review.
IEEE Signal Process. Mag. 2019, 36, 110–117. [CrossRef]

20. Gao, X. Pixel Attention Activation Function for Single Image Super-Resolution. In Proceedings of the IEEE International
Conference on Consumer Electronics and Computer Engineering, Guangzhou, China, 6–8 January 2023.

21. Li, Y.; Long, S. Deep Feature Aggregation for Lightweight Single Image Super-Resolution. In Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing, Rhodes Island, Greece, 4–10 June 2023.

22. Yamawaki, K.; Han, X. Deep Unsupervised Blind Learning for Single Image Super Resolution. In Proceedings of the IEEE 5th
International Conference on Multimedia Information Processing and Retrieval, Los Alamitos, CA, USA, 2–4 August 2022.

23. Ju, Y.; Jian, M.; Wang, C.; Zhang, C.; Dong, J.; Lam, K.-M. Estimating High-resolution Surface Normals via Low-resolution
Photometric Stereo Images. IEEE Trans. Circuits Syst. Video Technol. 2023, 1–14. [CrossRef]

24. Chen, T.; Xiao, G.; Tang, X.; Han, X.; Ma, W.; Gou, X. Cascade Attention Blend Residual Network For Single Image Super-
Resolution. In Proceedings of the IEEE International Conference on Image Processing, Anchorage, AK, USA, 19–22 Septem-
ber 2021.

25. Chen, Z.; Zhang, Y.; Gu, J.; Kong, L.; Yang, X.; Yu, F. Dual Aggregation Transformer for Image Super-Resolution. arXiv 2023,
arXiv:2308.03364.

http://doi.org/10.1109/TASSP.1981.1163711
http://dx.doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
http://www.ncbi.nlm.nih.gov/pubmed/19342335
http://www.ncbi.nlm.nih.gov/pubmed/25807567
http://dx.doi.org/10.1007/s10915-008-9214-8
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/TPAMI.2015.2439281
http://dx.doi.org/10.1109/MSP.2008.930649
http://dx.doi.org/10.1109/TMM.2019.2919431
http://dx.doi.org/10.1109/TCSVT.2023.3301930

AI 2024, 5 445

26. Saofi, O.; Aarab, Z.; Belouadha, F. Benchmark of Deep Learning Models for Single Image Super-Resolution. In Proceedings of the
IEEE International Conference on Innovative Research in Applied Science, Engineering and Technology, Meknes, Morocco, 3–4
March 2022.

27. Cai, J.; Zeng, H.; Yong, H.; Cao, Z.; Zhang, L. Toward real-world single image super-resolution: A new benchmark and a
new model. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2
November 2019.

28. Cai, J.; Gu, S.; Timofte, R.; Zhang, L. Ntire 2019 challenge on real image super-resolution: Methods and results. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Autoencorders
	Problem Statement and the Model
	Proposed Method
	Proposed Network
	Training

	Experiments and Results
	Training Data
	Training Parameters
	Model and Performance Trade-Off

	Conclusions
	Appendix A
	References

