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Abstract: Aptamers are three-dimensional structures of DNA or RNA that present high affinity and
selectivity to specific targets, obtained through in vitro screening. Aptamers are used as biological
recognizers in electrochemical biosensors, the so-called aptasensors, providing greater specificity
in recognizing the most diverse analytes. Electrochemical aptasensors have extremely relevant
characteristics, such as high sensitivity, low cost compared to other biorecognizers such as antibod-
ies, and excellent compatibility, being considered one of the most promising alternative methods
in several areas, such as biomedical diagnosis and monitoring environmental contaminants. In
this sense, the present work reviews the relevant aspects of methodologies based on electrochem-
ical aptasensors and their applications in determining antibiotics, seeking to foster innovation in
electrochemical biosensors.
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1. Introduction

Aptamers belong to the class of nucleic acids and are small single-stranded (ss) DNA
or RNA molecules. They have the ability to change their three-dimensional conformation
in a unique way when binding to a target species. This binding can be accomplished
through electrostatic interaction, hydrogen bonding, or van der Waals force. The structure
of aptamers allows them to bind to their targets in a way that provides high affinity and
specificity, similar to the specificities of monoclonal antibodies; consequently, aptamers are
called chemical antibodies [1–3].

Aptamers are stable to variations in pH and temperature and can be stored for ex-
tended periods; other recognizers such as antibodies and enzymes can undergo denatura-
tion with these variations [4].

Aptamers can be obtained through the in vitro selection methodology, SELEX (Sys-
tematic Evolution of Ligands by Exponential enrichment) [5]. There are different SELEX
processes in new selection protocols, but they have the same basic principles. The method
consists of amplifying sequences with the highest binding affinity to the species of interest
(Figure 1).

The selection generates structures capable of selectively combining/binding the
species under analysis. In general, the methodology is based on steps of separation and
amplification. The initial part consists of the chemical synthesis of the oligonucleotides used
as a starting point. After incubating the oligonucleotides with the species of interest and
removing unbound molecules (washing), small amounts of oligonucleotides that interact
with the target are amplified by polymerase chain reaction (PCR). In the next step, this new
expanded set of oligonucleotides is exposed again to the species of interest in the following
cycle. The selected aptamers are cloned, providing individual aptamers with correlated
sequences [6,7].
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Figure 1. General representation of the SELEX method. 

Smaller molecules have a surface area with less access, so the bonds between the ap-
tamer and the species of interest have lower affinity, compromising the specificity of the 
biological receptor. In this sense, intentional changes are made in the aptamer selection 
steps to generate species with greater affinities and specificity to the analyte. The literature 
discusses methods that will contribute to the selection of more suitable sequences accord-
ing to the purpose [8,9]. 

Due to the possibility of being synthesized in vitro, and the affinity characteristics, 
aptamers have been used in several research methods. Aptamers can be developed to de-
tect various analytes, such as organic compounds, metal ions, cells, and proteins. A flexi-
ble and cost-effective design allows aptamers to be used in analysis methods with excel-
lent performance [10]. Detection methods using aptamers have been employed in con-
junction with colorimetry [11], fluorescence [12,13], surface plasmon resonance [14,15], 
and chemiluminescent [16] and electrochemical [17–19] techniques. The literature shows 
a growing number of studies aimed at the development of electrochemical biosensors 
based on aptamers (Figure 2). 

 
Figure 2. Number of scientific publications on electrochemical aptasensors in the last ten years. Key-
word: Electrochemical Aptasensor, Source: Science Direct®, September 2023. 

Figure 1. General representation of the SELEX method.

Smaller molecules have a surface area with less access, so the bonds between the
aptamer and the species of interest have lower affinity, compromising the specificity of the
biological receptor. In this sense, intentional changes are made in the aptamer selection
steps to generate species with greater affinities and specificity to the analyte. The literature
discusses methods that will contribute to the selection of more suitable sequences according
to the purpose [8,9].

Due to the possibility of being synthesized in vitro, and the affinity characteristics,
aptamers have been used in several research methods. Aptamers can be developed to
detect various analytes, such as organic compounds, metal ions, cells, and proteins. A
flexible and cost-effective design allows aptamers to be used in analysis methods with
excellent performance [10]. Detection methods using aptamers have been employed in
conjunction with colorimetry [11], fluorescence [12,13], surface plasmon resonance [14,15],
and chemiluminescent [16] and electrochemical [17–19] techniques. The literature shows a
growing number of studies aimed at the development of electrochemical biosensors based
on aptamers (Figure 2).
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An electrochemical biosensor integrates the following components: the biorecognition
element, the transduction element, and the mediators. The recognition element is respon-
sible for identifying the presence of the species of interest in the analyzed environment,
and the transduction element transduces the signal detected by the recognition element
into a measurable signal. Mediators have the function of providing an interaction between
the sample, the biological recognizer, and the transducer [20]. Electrochemical biosen-
sors provide accurate, cheap, and simple detection, thus contributing to the development
of miniaturized devices that result in methods with low detection limits, working with
reduced sample volumes.

Electrochemical aptasensors are a kind of biosensor that have aptamers as biorecog-
nition elements for the specific detection of analytes. The formation of original three-
dimensional structures of aptamers in specific environments favors detection with high
precision high precision. The aptamer recognition event in the electrochemical device
produces signals that can be measurable as current or resistance, resulting in voltammetric
and impedimetric biosensors, respectively (Figure 3). Impedimetric devices are based
on variations in properties’ resistance that occur on the electrode surface as a function of
biological recognition. In voltammetric detection, the result of the biological interaction at
the electrode is transduced as an electrical current. Both impedimetric and voltammetric
detection sensors have high sensitivity [21,22].
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Ikebukuro et al. report the first electrochemical detection system using aptamers. The
work consisted of developing an aptasensor aimed at detecting protein with two different
antithrombin aptamers capable of recognizing specific parts of the target protein, making it
possible to detect thrombin selectively [23].

Aptasensors can be used in several areas, such as clinical diagnosis [24–27], the food
industry [28–30], and environmental monitoring of contaminating species [31–34], with
high precision.

In the context of environmental contaminants, the incorrect and exaggerated use of
antibiotics has generated concern among researchers because they can provide bacterial
resistance. Antibiotic resistance is capable of increasing the severity of diseases, contributing
to inefficient treatments, long hospital stays, and increased healthcare costs. In this sense,
due to the importance of detecting antibiotics, selective electroanalytical methods using
aptamers have stood out as promising alternatives [35].
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This review addresses research from the last ten years about electrochemical aptasen-
sors aimed at determining antibiotics. This study considered antibiotics that are a high
risk to the environment and animal health. The relevant aspects in developing aptasensors
were also discussed.

2. Antibiotics and Electrochemical Detection

Antibiotics are drugs capable of eliminating or preventing bacterial proliferation
and are used in the therapy of various infections in humans and animals [36]. The first
antibiotic discovered was penicillin in 1928 by A. Fleming and, later, came other antibiotics
produced to treat various bacterial infections [37]. Based on their structure, antibiotics
are classified into tetracyclines, macrolides, aminoglycosides, streptogramins, β-lactam
antibiotics, quinolones, and peptides [38].

The global consumption of antibiotics has expanded and, due to their widespread
use, significant quantities of antibiotics have been released into the environment. They are
considered an emerging class of pollutants, due to their presence in high concentrations in
water and soil. Many of these compounds show significant persistence and accumulate in
solid matrices [39].

In the environment, these residues can cause several negative effects such as ecosystem
imbalance. Studies have revealed that ingestion of antibiotics via drinking water increases
the risk of serious human diseases [38]. Also, regarding the effects of the excessive use of
antibiotics, Singh et al. report that the direct effects are related to the emergence of resistance
in human intestinal flora, associated with the consumption of meat products containing
antibiotics. The indirect and long-term effects of the indiscriminate use of antibiotics in
humans are carcinogenicity, damage to the reproductive system, and teratogenicity [40].

Therefore, monitoring antibiotics is one of the ways to limit the risks due to pollution
by these compounds. The main antibiotic detection methods are microbial or micro-
biological inhibition, immunological, chemoreceptor-based, and chromatography [41].
Electroanalytical methods are alternative methods for detecting antibiotics. These devices
have characteristics such as high sensitivity and the possibility of miniaturization at a low
cost [42–45].

Due to providing methodologies with high selectivity and robustness, several electro-
chemical aptasensors were developed to determine antibiotics. The voltammetric, potentio-
metric, conductometric, and electrochemical impedance spectroscopy (EIS) techniques can
be used to detect the signal generated in the biosensor device; therefore, electrochemical
aptasensors are classified depending on the technique used [35].

Bai et al. report the construction of an aptasensor for the determination of sul-
fadimethoxine. On the electrode surface, a hybridization reaction occurred between the
probe DNA and the aptamer DNA labeled at its 5′ terminal. There was an improvement
in the signal after generating the aptamer-target conjugate. The nuclease present digests
the probe’s DNA; thus, the antidsDNA is not free on the electrode surface, providing a
greater intensity in the electrochemical signal, and enabling the detection of sulfadimethox-
ine. Via differential pulse voltammetry, the method showed a linear response range of
0.1–500 nmol L−1 and a detection limit of 0.038 nmol L−1. The applicability of the device
was proven through the determination of sulfadimethoxine in drugs and milk samples
presenting excellent recovery values [46].

Li et al. describe the construction of a dual-label multiple aptasensor capable of
simultaneously detecting the antibiotics, kanamycin (KAN) and tobramycin (TOB). The
aptasensor was made up of aptamer filaments, quantum dots, and gold nanoshells. Via
differential pulse voltammetry (DPV), the developed aptasensor presented a wide linear
response (KAN, 1–4× 102 nM; TOB, 1–1× 104 nM) and low detection limits (KAN, 0.12 nM;
TOB, 0.49 nM). The application of the aptasensor in milk samples enriched with KAN and
TOB was satisfactory [47].

In research by Guan et al., they observed aptamer sequences with high selectivity for
penicillin G (PenG). The affinity of the aptameric sequence for PenG was detected using
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electrochemical detection. Modifying the surface of the aptasensor with gold nanoparticles,
reduced graphene oxide, and further functionalized with tetrahedral DNA nanostructures
improved the device’s response (Figure 4). The aptasensor proved to show high specificity
in the determination of PenG in a linear range of 0.2 nM to 1 mM with a detection limit of
0.05 nM. When applying the method to milk samples enriched with penG, the aptasensor
showed high recovery rates (98–109%). The sample underwent prior treatment to remove
fat and provide a more accurate detection method [48].
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ref. [48]).

Naseri et al. report the development of an aptameric biosensor employing a glassy
carbon electrode. The base electrode was modified by functionalized carbonaceous nanoma-
terial to determine tetracycline. The biosensor showed a wide linear range from 1.0 × 10−17

to 1.0 × 10−5 M and a low detection limit (2.28 × 10−18 M). The proposed device success-
fully determined tetracycline residues in milk samples [49].

Table 1 presents more methods employing electrochemical aptasensors described in
the literature for antibiotic detection in the last ten years.

From the analysis of Table 1, it is possible to notice that different nanomaterials were
used in the construction of the devices. Among metallic nanoparticles, gold nanoparticles
were the most used. In the applications of the electrochemical aptasensors evaluated, in
milk samples, steps such as sample preparation to remove fat and proteins were carried out.
The biosensors showed high recovery percentages, proving the ability to detect antibiotics
in real samples, and the most-used techniques were DPV and EIE.



Electrochem 2023, 4 558

Table 1. Application of electrochemical aptasensor in the detection of antibiotics.

Antibiotic Technique Modification Sample Detection Range Limit of Detection
(LOD) Ref.

Tetracycline DPV Cu2O@Au milk 1.0 nM–1000 µM 0.16 nM [50]

Streptomycin EIS Pencil lead graphite-based
electrochemical aptasensor milk 10−8–10−16 M 0.8 × 10−18 M [51]

Oxytetracycline DPV 4-carboxyphenyl anchored GCE milk 1.0 × 10−9–1.0 × 10−4 g mL−1 2.29 × 10−10 g mL−1 [52]

Ampicillin LSV MWCNTs milk 1.0 × 10−13–1.0 × 10−8 M 1.0 × 10−13 [53]

Amoxicillin EIS TiO2-g-C3N4@Au NPs wastewater 0.5–3 nM 0.2 nM [54]

Ampicillin DPV Endonuclease DpnII milk and water 0.1–100 nM 32 pM [55]

Ampicillin EIS Co-MOF@TPN-COF human serum, river water, and milk 1.0 fg mL−1 –2.0 ng mL−1 0.217 fg mL−1 [56]

Tetracycline SWV Aptamer cocktail honey 0.01–1000 ng mL−1 0.0073 ng/mL [57]

Ciprofloxacin DPV rGO/PEI/TiO2 water 0.003–10.0 µM 0.7 nM [58]

Streptomycin DPV PCNR/GR–Fe3O4–AuNPs milk 0.05–200 ng mL−1 0.028 ng mL −1 [59]

Kanamycin DPV MoS2-Au-HE milk 1.0–1.0 × 105 ng L −1 0.8 ng L−1 [60]

Sulfaquinoxaline DPV AuPd NPs@UiO-66-NH2/CoSe2 pork 1.0–100 ng mL−1 0.547 pg mL −1 [61]

Tetracycline EIS Fe3O4-IL milk 1 × 10−9–1 × 10−5 M 1 × 10−9 M [62]

Tetracycline SWV PAN@Cu-BTC meat 10 pM–1 µM 0.32 pM [63]

Tobramycin DPV phi29 DNA polymerase and nicking
endonuclease Nt.AlwI milk and water 10–200 nM 5.13 nM [64]

Tobramycin EIS SnOx@TiO2@mC human serum and human urine 0.01–5 ng mL−1 6.7 pg mL−1 [65]

Kanamycin DPV SA-AuNPs/OMC-CS milk 0.1–1000 nM 0.03569 nM [66]

Streptomycin EIS PdNPs/CNT/Chi milk 0.10–1500 nM 18 pM [67]

Chloramphenicol DPV Si-Fe/NOMC eye drop 1.0–500 µM 0.03 µM [68]

Ampicillin EIS POP milk 1.0 × 10–5–5.0 ng mL−1 1.33 × 10–6 [69]

Ciprofloxacin DPV 3D Au-PAMAM/rGO raw milk 1 µM–1.0 nM 1.0 nM [70]

Kanamycin DPV GR-TH/HNP-PtCu pork meat and chicken 5 × 10−7–5 × 10−2 µg mL−1 0.42 pg mL−1 [71]
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Table 1. Cont.

Antibiotic Technique Modification Sample Detection Range Limit of Detection
(LOD) Ref.

Tetracycline DPV MBCPE/Fe3O4NPs/OA drug, milk, honey, and blood serum 1.0 × 10−10–1.0 × 10−7 M 2.9 × 10−11 M [72]

Tetracycline DPV C-WO3@AuNPs water, milk, honey, and black tea 0.1–100 nM 4.8 × 10−2 nM [73]

Enrofloxacin SWV AuPt@h-CeO2/MoS2 water and milk 5.0 × 10−6–1.0 × 10−2 ng mL−1 1.02 × 10−7 ng mL−1 [74]

Ampicillin DPV T7 exonuclease milk 0.02–40 nM 4.0 pM [75]

Chloramphenicol
(CAP) and

oxytetracycline (OTC)
SWV NMOF milk 10−4–50 nM

CAP 0.033 pM OTC
0.048 pM [76]

Gold nanoparticles (AuNPs) on the surface of Cu2O nanomaterials (Cu2O@Au); linear sweep voltammetry (LSV); multi-wall carbon nanotubes (MWCNTs); metal −organic frameworks
(MOFs); g-C3N4 on the surface of TiO2 microspheres and gold nanoparticles (TiO2-g-C3N4@Au NPs); Co-based metal–organic frameworks (Co-MOFs) and terephthalonitrile-based
covalent organic framework (TPN-COF); Square Wave Voltammetry (SWV); polyethyleneimine grafted reduced graphene oxide and titanium dioxide (rGO/PEI/TiO2) nanocomposite;
carbon nanorods (PCNR) formed by porous carbon nanosphere and multifunctional graphene composite (GR–Fe3O4–AuNPs); nanosheets of MoS2 (MoS2 nanosheets) and a composite
composed of MoS2 nanosheets, Au nanoparticles (AuNPs), and hemin (HE) (denoted as MoS2-Au-HE); minated zirconium-based MOFs (UiO-66-NH2), Au and Pd nanoparticles (AuPd
NPs@UiO-66-NH2/CoSe2); ionic liquid (IL)-ferroferric oxide (Fe3O4); polyaniline@copper-1,3,5-benzenetricarboxylic acid (PAN@Cu-BTC); mesoporous carbon nanospheres embedded
with SnOx (x = 0, 1, or 2) and TiO2 nanocrystals (SnOx@TiO2@mC); mesoporous carbon–chitosan (OMC-CS)/gold nanoparticles–streptavidin (AuNPs-SA); palladium nanoparticles
decorated on chitosan–carbon nanotube (PdNPs/CNT/Chi); an iron–nitrogen co-doped ordered mesoporous carbon–silicon nanocomposite (Si-Fe/NOMC); novel porous organic
polymer (POP); reduced graphene oxide and nanogold-functionalized poly(amidoamine) dendrimer (3D Au-PAMAM/rGO); thionine-functionalized graphene (GR-TH) and hierarchical
nanoporous (HNP) (GR-TH/HNP-PtCu); magnetic bar carbon paste electrode (MBCPE) with Fe3O4 magnetic nanoparticles and oleic acid (OA), (MBCPE/Fe3O4NPs/OA); tungsten
trioxide-modified with multi-walled carbon nanotubes (MWCNTs) and gold nanoparticles (C-WO3@AuNPs); composite of Au- and Pt-coated hollow cerium oxide (AuPt@h-CeO2/MoS2).
Nanoscale metal–organic frameworks (NMOFs).
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In antibiotic detection methods, combining the target analyte with the aptamer will
lead to the conformational modification of the DNA or RNA molecules, altering the electro-
chemical signal to achieve target detection. The search for increasingly sensitive methods is
a challenge for each proposal developed. The sensitivity of the aptasensor depends on the
electrode surface, the interface characteristics of the materials used as modifiers, and the
aptamer immobilization [77].

3. Relevant Aspects in the Development of Electrochemical Aptasensors

In the development of an aptameric biosensor with electrochemical detection, the
adhesion of the biological material to the surface of the transducer is essential, which
requires that the materials used as electrode modifiers present a high surface area and
improve electrochemical properties [78]. In this sense, nanomaterials have extremely
attractive characteristics and can be used as modifiers on the surface of electrodes [79].

3.1. Nanomaterial-Modified Electrochemical Aptasensors

Nanomaterials have dimensions from 1 to 100 nm, and their properties are different
from the properties of molecules and crystalline solids on a larger scale. Carbon-based
nanomaterials, such as carbon nanotubes, graphene, and carbon black, show advantageous
characteristics, such as a high specific surface area, and excellent electrical conductivity [80].

Structural characteristics of carbonaceous nanomaterials have been widely investi-
gated in methodologies based on biosensors with electrochemical detection. The use of
these nanomaterials in aptasensors can lead to more precise and stable methods [81]. The
main advantages of using nanoscale materials as modifiers on electrodes are an increased
electroactive area, improved surface kinetics, improved electrode selectivity because nano-
materials behave as a stable support for functionalization with specific groups, (this char-
acteristic is important in immobilization of the aptamer), and improved adsorption of
analytes on the electrode surfaces, thus increasing sensitivity [82].

Hui et al. present an aptamer-based electrochemical methodology for the detection
of streptomycin (STR) in dairy products. To provide greater sensitivity to the aptasensor
device, the composite called PANI@N-CNTs, based on carbon nanotubes doped with N and
polyaniline (PANI), was used as the substrate. Carbonaceous nanomaterials are excellent
electrical conductors, and polyaniline is a conductive polymer with a special conduction
mechanism [83].

Metal–organic frameworks (MOFs) are made up of a long network of metallic ions,
coordinated to organic molecules. MOFs are considered excellent materials for DNA/RNA
immobilization in the construction of methods that employ aptamers. This is because they
have functional groups, such as amines and carboxyls, and can be functionalized according
to the application. Additionally, they are capable of generating π-stacking and hydrogen
interaction with negatively charged aptamers [84].

In several methods using electrochemical biosensors, gold nanoparticles (AuNPs) are
part of the sensor construction, because they have electrical conductivity, a high surface area,
and are compatible with biological compounds. They can be obtained via electrodeposition
on the electrode surface or synthesized and deposited by drop-casting (simple method) [85].

Peng et al. report a biosensor based on aptamers. The device was modified with a
nanocomposite formed by metal–organic frameworks, and silver-coated bimetallic gold
nanoparticles for the detection of streptomycin (STR). The composite was used to amplify
the electrochemical responses. Metal–organic networks have a high porosity and high
internal surface area. The noble metal nanoparticles contribute to the better immobilization
of the biorecognizer, due to the connection of the thiol group (present in the aptamer
sequence) with silver. As a result, the aptasensor presented a fast response and a low
detection limit (0.033 nM). The aptasensor was satisfactorily employed to detect STR in
food products with high recovery rates (98.2% to 110.1%) [86].

Modifying the aptameric sequences can improve the sensitivity of methodologies
employing aptamers. This fact occurs because the modification favors the immobilization
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of the biological component and improves resistance to degradation. It is important to
highlight that these procedures should not change the specific interaction of the aptamer
with the species of interest. Sequence changes are common at the 5′ and 3′ ends and
generally consist of the insertion of an active functionality. They promote a greater binding
affinity, and consequently more selectivity for the analytes [29,87–89].

Wang et al. describe the development of a printed electrochemical aptasensor, which
was modified with carbonaceous nanomaterial and gold nanoparticles for the determination
of the antibiotics, kanamycin (KAN) and streptomycin (STR). The sequences used have
been changed:

(KAP), 5-NH2-AGATGGGGGTTGAGGCTAAGCCGA-3; STR aptamer (STP), 5-NH2-
GGGGTCTGGTGTTCTGCTTTGTTCTGTCGGGTCGT3; complementary single strand of
KAP (cKAP), 3-NH2-TCTACCCCCAACTCCGATTCGGCT-5; complementary single strand
of STP (cSTP), 3-NH2-CCCCAGACCACAAGACGAAACAAGACAGCCCAGCA-5.

Due to the nanomaterials used, the aptasensor presented a high electrochemical
conductivity and high surface area. The complementary aptamer chains were well inserted
into the surface of the transducer. The method for KAN and STR showed excellent limits of
detection, 87.3 and 45.0 pM, respectively [90].

Table 2 presents aptameric sequences that were modified in methodologies based on
electrochemical aptasensors for antibiotic detection.

Table 2. Aptameric sequences modified applied in methods based on electrochemical aptasensors for
antibiotic detection.

Antibiotic Sequences Ref.

Penicillin 5′-NH2-CTG AATTGGATCTCTCTTCTTGAGCGATCTCCACA-3′ [91]

Streptomycin 5′-NH2-GGGGTCTGGTGTTCTGCTTTGTTCTGTCGGGTCGT-3′ [92]

Oxytetracycline 5′-SH-CGACGCACAGTCGCTGGTGCGTACCTGGTTGCCGTTGTG [93]

Kanamycin 5′-Bio-ACCGCGGGGUUGCGGACCGGGAGCUCCAGC-NH2-3′ [47]

Tobramycin 5′-Bio-GGCACGAGGUUUAGCUACACUCGUGCC-NH2-3′ [47]

Streptomycin
(SH-cDNA): 5′-ACGACCCGACAGAACAAAGCAGAACACCAGACCCC-SH-3′

Amino-modified STR aptamer (NH2-Apt):
5′-NH2-GGGGTCTGGTGTTCTGCTTTGTTCTGTCGGGTCGT-3′

[94]

Other approaches that modify aptamers have been conducted to conjugate aptamers
with active targeting drugs or nanoparticles. The process consists of inserting a functionality
at the 3′ and 5′ ends of the sequence to interact with the coupling co-participant on the
surface of the nanomaterial [89].

As reported in the development of aptameric electrochemical biosensors, it is im-
portant to evaluate the influence of biorecognizer immobilization on analytical perfor-
mance [95]. Effective strategies are also relevant in aptamer design [96]. Some of these
strategies are discussed below.

3.2. Configurations of Electrochemical Aptasensors

Several configurations can be used in the process of obtaining an electrochemical
aptameric device, according to the analytical purpose. In the detection of electrochem-
ical aptasensors, the labeled (labeled sequences) and unlabeled (unlabeled sequences)
approaches are used [97].

In labeled strategies, the aptamer can be signaled by a diversity of species that can
undergo oxidation or reduction. These redox flags are linked to the nucleic acid and
drive the analytical response when there is biological recognition of the species of interest
(Figure 5) [97]. These redox probes are chosen according to the profile, smallest difference
between the oxidation and reduction peaks (reversibility), and constant behavior. The
response potential range must be considered according to the electrode used [98].
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An attenuation or increase in the intensity of the anodic/cathode peak current of the
electroactive signaling species may occur at increasing concentrations of the analyte. Thus,
the electrochemical signals measured depending on the changes that occur on the surfaces
of these biosensors have the possibility of being “signal-on” or “signal-off” (Figure 6),
that is, there will be a greater or lesser intensity in the signal measured after the interac-
tion of the biological material with the analyte, depending on the assay format used in
the development of the aptasensor. In these strategies, aptasensors are called structure
switching [97,98].
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Li et al. report the construction of a biosensor using aptamers for the detection
of two antibiotics at the same time. The detection strategy employed metal cations as
signal indicators since Cd2+ and Pb2+ cations generated separate peaks in differential
pulse voltammetry. The analytes studied were kanamycin and streptomycin. When the
analytes were in the evaluated medium, the KAN aptamer (KAP) and the STR aptamer
(STP) were released from their complementary chains, generating changes in Cd2+ and Pb2+.
At the same time, the complementary chain of each sequence was linked to the poly(A)
structure (cSTP-PolyA-cKAP), providing greater structural mobility. In simultaneous
electrochemical detection, signal interference may occur from one analyte to another. The
proposed aptasensor did not show overlapping responses from the antibiotics, due to the
different peaks of the flags used. The method used carbonaceous and metallic nanomaterials
as the aptasensor platform and showed detection limits for KAN of 74.50 pM and for STR
of 36.45 pM [99].

The development of electrochemical aptasensors with the so-called label-free strategy
is carried out by inserting the aptamer on the surface of the transducer and the recognition
reaction is monitored through its interference in the electrochemical reaction between the
modified surface and a redox probe [98].

Wang et al. developed an electrochemical biosensor with an aptamer as a recognizer
for determining sulfamethazine (SMZ). The working electrode consisted of a glassy carbon
electrode modified with an electroactive nanocomposite. A cationic polymer, cationic
polyethyleneimine, immobilized the aptamer and favored its interaction with the negatively
charged analyte. Using the label-free method, ruthenium complex [Ru(NH3)6]3+ was used
as a redox probe. The biosensor showed an excellent LOD of 4.0 pM for SMZ [100].

4. Conclusions

The present review addressed important aspects in the development of electrochemical
aptasensors and showed their applications in the detection of antibiotics. Electrochemical
aptasensors provide an approach with high specificity for the detection of antibiotics. They
can achieve very high sensitivity, with low detection limits (from ng m L−1 to fg mL−1).
Aptamers can be synthesized in vitro with high sensitivity for specific targets, and they can
be modified to demonstrate high precision and stability.

The work showed a growing number of electrochemical aptasensors. Most of the an-
tibiotic detection applications were in milk samples. With advances in material technology,
immobilization, and modification of aptamers, there are prospects for the development of
portable and low-cost devices, which can be used in situ, such as on dairy farms.
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