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Environmental pollution has become a pervasive and pressing issue in the modern
world, mainly arising from human activities that release harmful substances into the air,
water, and soil [1]. As industrialization, urbanization, and the increasing use of fossil fuels
have accelerated, organic pollutants (e.g., pesticides, herbicides, chlorinated hydrocarbons
(CHCs), and polycyclic aromatic hydrocarbons (PAC)), inorganic contaminants (e.g., metals
ions from Cd, Cu, Pb, Zn, Hg, V, Tl, and U), metalloids (e.g., As and Sb), micro- and
nanoparticulate matter, greenhouse gases, and toxic volatile organic compounds (VOCs:
formaldehyde, carbon tetrachloride, trichloroethylene, toluene, etc.) have reached unprece-
dented levels [2–6]. Their persistence in the environment has become a global concern.
Novel and sustainable approaches for remediation are urgently needed [7].

In fact, this contamination poses a threat to ecosystems, biodiversity, and human health,
making environmental pollution a global issue that demands immediate attention [8,9].
The consequences of environmental pollution are far-reaching, as they impact air quality,
water resources, and the overall balance of ecosystems. From smog-choked urban areas
to contaminated water bodies, the visible and invisible effects of pollution underscore the
need for comprehensive solutions [2,10]. Addressing environmental pollution requires
a concerted effort via sustainable practices and technological innovations to mitigate
the damage already done and prevent further degradation of our shared environment,
considering soil and water consumption or the presence of toxic microorganisms [11–13].

In the modern era, however, environmental remediation faces new and intricate chal-
lenges. Rapid technological advancements, emerging pollutants, and the global nature of
environmental issues demand innovative solutions. Climate change adds an additional
layer of complexity, altering the dynamics of ecosystems and requiring adaptive remedi-
ation strategies [14]. For instance, it is well known that organic pollutants have a high
impact on aquatic life, atmosphere, and human health. Due to their persistent chemical
characteristics, the hazardous effects increase with adverse effects on the quality of the
ecosystem, especially considering that their fate cannot be exactly predicted [15].

Addressing these modern challenges requires a multifaceted approach integrating
traditional remediation methods with cutting-edge technologies and a deep understanding
of the interplay between human activities and the environment [16].

In this framework, the use of nanomaterials in environmental remediation (which is
called nanoremediation) has emerged as a groundbreaking and innovative approach with an
almost 80% drastic reduction in operational costs and a significant reduction in time frame
for treating contaminated sites compared to conventional remediation methods [16–18].
Sustainable and timely remediation can be obtained with nanostructured materials that
combine surface functionalization with the use of a variety of systems, i.e., bio-based
nanosorbents, inorganic porous materials, nanodots, nanospheres, nanocomposites, and
magnetic or photoactivable nanoparticles [19–21]. For instance, metal nanoparticles can
be used for their surface interaction with pollutants and catalytic reduction of organic
molecules [22].
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Nanomaterials, which are characterized by their size in the range of nanometers
(10−9 m), peculiar properties, and unique functionalities, offer a powerful toolset for
targeted and efficient remediation processes. Their application in environmental cleanup
ranges from removing pollutants in water (both industrial and domestic), mine tailing,
and soil to air sensing and purification [23–25]. This cutting-edge technology not only
enhances the efficacy of remediation efforts but also minimizes the environmental impact
of traditional cleanup methods [26]. Indeed, according to their nature, nanomaterials can
act as excellent adsorbers, catalysts, and sensors for different pollutants. Due to their high
surface-to-volume ratio, it is possible to (1) improve the adsorption capacities of sorbent
materials; (2) enhance the mobility in solution, ensuring that a whole volume can be quickly
scanned; (3) take advantage over the high surface reactivity (mainly due to the high density
of low-coordinated atoms at the surface, which are known as dangling bonds) to further
functionalize nanomaterials and enlarge the physico-chemical mechanisms to degrade or
scavenge pollutants; and (4) synthesize them in different sizes and morphologies (ranging
from spheres to more anisotropic shapes), given that they are versatile materials, tuning
their properties according to the final purpose.

According to the nanomaterial type, different mechanisms can be used to remove
pollutants from different sources, often combining synergistic properties. Metal and metal
oxide nanoparticles (gold, silver, copper, silica, iron oxides, titanium oxides, zinc oxide,
manganese oxide, etc.) and their bimetallic combination [22,27,28] or metal–organic frame-
works and zeolites [29,30] showed the ability to adsorb several pollutants. Noble metal
nanoparticles, especially gold (AuNPs) and silver nanoparticles (AgNPs) are used for the
adsorption and catalytic degradation of antibiotics owing to their high surface reactivity
and superior reaction kinetics [31]. However, the small size of metal nanoparticles often
complicates the recovery and tends to agglomerate due to Ostwald ripening, which mini-
mizes their high surface energy [32]. This leads to a reduction in both sorption capacity and
catalytic activity (due to the loss of active sites in the catalyst). To prevent agglomeration,
stabilization of nanoparticles with surface capping/functionalizing agents, i.e., charged or
hydrophobic molecules, polymers, and dendrimers, have been attempted [32–35]. Besides
their adsorption abilities, silver nanoparticles (AgNPs) are known for their antibacterial
effects against a broad spectrum of microorganisms (e.g., viruses, bacteria, and fungi)
and are, therefore, widely used for water disinfection [36]. Magnetic nanoadsorbents
(e.g., magnetite-Fe3O4, maghemite-Fe2O3, and nickel–ferrite) are particularly attractive as
they can be easily retained and separated from treated wastes, although issues related to
toxicity still exist [37,38]. Titanium dioxide nanoparticles (TiO2NPs) have been extensively
used for the oxidative and reductive transformation of organic and inorganic contaminants
in air and water (e.g., phenolic compounds, metal ethylene diamine tetra acetate complexes,
airborne microbes, odorous chemicals, etc.) via photocatalytic degradation (a chemical
degradation pathway based on redox reactions of electron/hole pairs upon irradiation) [39].
However, due to their 3.2 eV bandgap, radiation in the UV range (320–400 nm, 5% of solar
irradiation) must be used to induce charge separation within the particle. Therefore, it is
necessary to enhance the performance of TiO2 nanoparticles (using photons from the near
visible to visible region), manipulating the particle size, doping TiO2 with foreign atoms, or
modifying with noble metals [40,41].

Nanofiltration by membranes represents another useful approach for contaminants
removal, especially in the case of water treatment, without releasing harmful by-products.
Nowadays, cellulose acetate and polyamides are the most used as filtration membranes,
although other polymers (e.g., polyvinyl alcohol (PVA) and sulfonated polysulfone (sPS))
can also be used for membrane synthesis [42]. Recently, hybrid organic/inorganic nanocom-
posite materials in the presence of inorganic nanomaterials (e.g., some metal and metal
oxides) as polymer fillers (5–10%) are attracting increasing attention due to the synergistic
combination of the counterparts [42,43]. The main limitation of the nanofiltration approach
is membrane fouling. Scaling or the formation of precipitates takes place when the concen-
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tration of ionic salts exceeds their solubility in water. Thus, alternative methods to prevent
membrane fouling are needed to improve the lifetime of membranes [42].

Carbon-based nanomaterials possess superior physical properties compared to their
bulk counterparts, such as higher pore volume and pore diameter and increased surface
area, which make them useful for commercial use as nanoadsorbents having increased
capacity, affinity, as well as selectivity [44]. Among them, carbon nanotubes and graphene
oxide (GO) showed effective acid polar gas species adsorption capacity (H2S, NOx, SO2,
etc.) and ultrafine dust removal [45–47]. However, the separation efficiency is greatly
affected by surface functionalization, which can enhance the capture efficiency of ca. 99%
in metal–organic framework and carbon nanotube (CNT)-modified filters [45].

In summary, the scientific literature has documented many instances of environmental
remediation strategies using nanomaterials (metal, bimetallic, metal oxide, polymers,
carbon-based, and related composites) (Figure 1). However, challenges still exist regarding
the stability of nanomaterials in different environmental conditions (pH, ionic strength,
granulometry, and viscosity), selectivity (the presence of co-contaminants), and reusability
(recovery and regeneration), thereby enhancing their sustainability. To cope with these
limitations, functionalization or combination of the materials appears to be one possible
solution. In addition, sophisticated characterization methods should be used to understand
the structure-function relationship of functionalizing agents in the nanomaterial-stabilizer
interface in more detail. Importantly, in vitro and in vivo toxicity studies should be carried
out, as risk evaluation of pharmacological and bioremediation activities is required in
laboratory and clinical settings. By rising to these challenges, it will be possible to advance
the application of nanomaterials to fight environmental pollution.
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Figure 1. Representative nanomaterials categories and their properties as efficient tools for environ-
mental remediation purposes. Nanomaterials icons created in BioRender.com. 
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