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Abstract: This paper proposes and implements an approach to evaluate human–robot cooperation
aimed at achieving high performance. Both the human arm and the manipulator are modeled as a
closed kinematic chain. The proposed task performance criterion is based on the condition number
of this closed kinematic chain. The robot end-effector is guided by the human operator via an
admittance controller to complete a straight-line segment motion, which is the desired task. The best
location of the selected task is determined by maximizing the minimum of the condition number
along the path. The performance of the proposed approach is evaluated using a criterion related to
ergonomics. The experiments are executed with several subjects using a KUKA LWR robot to repeat
the specified motion to evaluate the introduced approach. A comparison is presented between the
current proposed approach and our previously implemented approach where the task performance
criterion was based on the manipulability index of the closed kinematic chain. The results reveal
that the condition number-based approach improves the human–robot cooperation in terms of the
achieved accuracy, stability, and human comfort, but at the expense of task speed and completion
time. On the other hand, the manipulability-index-based approach improves the human–robot
cooperation in terms of task speed and human comfort, but at the cost of the achieved accuracy.

Keywords: closed kinematic chain; condition number; genetic algorithm; optimization; human–robot
interaction; ergonomics

1. Introduction

Human–robot interaction (HRI) is one of the most investigated research fields in
robotics. HRI has significant benefits when executing a cooperative task in comparison
with the guidance offered by a teach pendant or simple robotic automation. On this point,
it is important to differentiate between the terms “human–robot cooperation or collabo-
ration” and “human–robot communication”. Human–robot cooperation or collaboration
(HRC) [1,2] is the research area aimed at combining the capabilities of robots with human
skills in a complementary manner. Robots can assist humans by increasing their capabilities
in terms of precision, speed, and force. In addition, robots can reduce the stress and the
tiredness of the human operator and thus improve their working conditions. Humans can
contribute to cooperation in terms of experience, knowledge about executing a task, intu-
ition, easy learning, and adaptation, and through easily understanding control strategies.
Many tasks require both a high human-operator flexibility and robot payload ability [3],
for example, in the manipulation of heavy or bulky objects and the assembly of heavy
parts. Therefore, cooperative manipulation could help complete these tasks more easily
and reduce human burden. Collaboration and cooperation are often used interchange-
ably. However, collaboration differs from cooperation as it includes a shared goal and
joint action, where both parties’ success depends on one another [4,5]. In human–robot
communication [6], the robot receives commands from the human operator to operate
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on a workspace via speech or gestures; this is called one-way communication. Two-way
communication works using AR techniques [7], where the information is transferred to the
robot by the human operator via vision sensors. In a co-manipulation task, finding the best
configuration of the human arm and the manipulator is very important for improving the
HRI, which is the main topic of the current paper.

In robotics, condition numbers are used as a tool to measure the degree of dexterity.
The condition number of the Jacobian matrix is used to show the kinematic isotropy of
the manipulator. Isotropic configuration has a number of advantages such as good servo
accuracy and avoiding singularity [8]. As the human arm can be modeled as a kinematic
chain, the condition number is used in ergonomics, separate from other criteria, to evaluate
the human arm motion.

1.1. Related Work

Ergonomics’ investigations have demonstrated that human arm movements have
more advantages in specific directions than in other directions, both as far as comfort
and speed, because of the anatomical characteristics of the hand−arm complex. In [9,10],
Meulenbroek and Thomassen demonstrated the movement preference in specific directions
on the horizontal plane for repetitive line-drawing tasks. The authors of [11–13] presented
similar directional preferences using a free-stroke drawing task. Reviewing the potential
sources of movement cost, Dounskaia and Shimansky deduced that the movements of the
multi-joint human arm are characterized by the so-called “trailing joint control pattern”,
which reduces the joint’s coordination neural effort [14]. Movement in a diagonal direction
has a profound effect in terms of speed. Schmidtke and Stier ([15]; quoted in Sanders and
McCormick [16], p. 290) and Levin et al. [17] demonstrated that the fastest movements
occurred along the right diagonal, whereas the slowest movements occurred along the left
diagonal. In accordance with the classic theories of motor control, the latter findings reflect
a speed−accuracy trade-off, predicting that faster movements are executed with lower
accuracy, and vice versa (see [18,19] for a review). More recent motor control models have
increased the possibility of a cost−benefit trade-off between the foreseeable muscular effort
and the expected rewards [20–23]. The discrepancies between the required movement
orientations and actual corresponding ones are more noticeable with large human arm
displacements. It is very important that these findings are incorporated and used as
evaluation criteria when designing human–robot interactive tasks.

Previous HRI research has highlighted safety aspects and the implementation of
control algorithms. In this paper, we present the ergonomics aspect. Several indices were
discussed in [13] to show the factors that influence the choice of movement directions
in order to optimize the human arm motor behavior. The interaction torque index at
the shoulder and the elbow is used for regulating the interaction torque with muscular
control for a goal-oriented movement. The inertial resistance index is used to evaluate
the relationship between the force applied at the endpoint and the endpoint acceleration
caused because of the inertia of the arm segment. The minimum sum of the squared torque
is a simplified representation of the energetic cost associated with the production of each
stroke relative to the maximum energetic cost of all the strokes. Other indices include the
minimization of jerk, the torque change, the maximization of the kinematic manipulability
index [13], and the condition number [24].

The manipulability index [25] presents the ability of the system to perform a high
TCP velocity motion with a low overall joint velocity. In our previous paper [26], the
evaluation of the closed kinematic chain (CKC) system configuration was based on the
manipulability index. Firstly, the condition number is used as an index to describe the
accuracy/dexterity of the robot. Secondly, it is used to describe the closeness of the pose to
the singularity [8,27]. The condition number for manipulators is calculated in [25,28], and
for parallel manipulators, it is presented in [27,29].

The condition numbers in robotics manipulator are widely used in optimization proce-
dures. In [24], Shabnam Khatami used the global condition number in a minimax optimiza-
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tion problem. In his work, the genetic algorithm was used to optimize the minimax problem
and to find the optimal design parameters such as the link lengths of the best isotropic robot
configurations at optimal working points of the end-effector; it has since been implemented
globally to optimize the entire robot workspace. In [30], condition number minimization
was presented for functionally redundant serial manipulators. In [31], a new global condi-
tion number was presented in order to quantify the configuration-independent isotropy
of the robot’s Jacobian or mass matrix. A new discrete global optimization algorithm was
proposed to optimize either the condition number or some local measure, without placing
any conditions on the objective function. The algorithm was used to choose the optimum
geometry for a 6-DOF Stewart Platform. In [32], Ayusawa et al. proposed a novel method
for generating persistently exciting trajectories by using optimization together with an
efficient gradient computation of the condition number, with respect to the joint trajectory
parameters. Their method was validated by generating several trajectories for the hu-
manoid robot HRP-4. An approach to the parameterization of robot excitation trajectories
was presented in [33]. This approach allowed for the generation of robot experiments
that were robust with respect to measurement inaccuracies. This corresponded to small
condition numbers for a regression matrix, defined by the set of dynamic equations.

From this discussion, we can conclude that the condition number is a well-known
metric used in robotics. In addition, the best configuration for both the human arm and the
manipulator based on a condition number, as well as its effect on improving the HRI, have
not yet been researched.

1.2. The Main Contribution

This manuscript proposes an approach to improve the performance in the human–
robot co-manipulation task. This manuscript is considered an extension of our previous
work [34], which showed only the simulation part of the work. In this task, the human
operator grasped the robot handle, which formed a closed kinematic chain (CKC) comprised
of the human arm and the admittance-controlled manipulator. The human arm was
modeled as a 7-DoF combined with the 7-DoF manipulator; therefore, the system was
modeled as 14-DoF CKC. A task-based measure was formulated for this CKC by minimizing
the condition number of the CKC along the path. This task-based measure was maximized
using a genetic algorithm (GA) to determine the suboptimal location of the path in the
workspace of the CKC considered here. The co-manipulation performance was evaluated
experimentally using four criteria related to the ergonomics criteria, where the human arm
was not free as it usually is in ergonomics studies, but it guided the manipulator via an
admittance control.

The KUKA LWR robot was used to execute the experiments and the proposed ap-
proach was investigated and evaluated with the help of 15 subjects. The results prove that
the proposed approach effectively improved HRI and, particularly, ergonomics. Finally, a
comparison between the current proposed approach and the previous approach where the
task performance criterion was based on the CKC manipulability index [26] was included.

This manuscript is organized as follows. In Section 2, an overview of the proposed
approach is presented, as well as its following main steps. In Section 3, the closed kinematic
chain of the human arm and the manipulator is presented. Section 4 introduces the
formulation of the proposed task-based measure as well as the variable constraints of the
considered optimization problem that was solved using GA. In Section 5, the experimental
work and an evaluation of the performance using the proposed criteria are presented.
Finally, Section 6 provides concluding remarks and some future works.

2. The Condition Number-Based Approach

This paper presents an approach to evaluate and improve the performance of the HRI
in a co-manipulation task. The robot base as well as the human operator are in a fixed
relative position/orientation and have a common workspace. The main steps followed for
the procedure in our proposed approach are discussed as follows.
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(1) Modeling the human arm and manipulator in a co-manipulation task as a CKC.

In this step, the human arm and the manipulator in the co-manipulation task are
modeled as a CKC, where either the human arm or the manipulator is modeled as a 7-DOF
open kinematic chain. The Denavit–Hartenberg (DH) parameters of the human arm are
determined based on the anthropometric data of the male 95th percentile. In addition,
the human arm motion constraints depend on the ergonomic limitations for the marginal
comfort range of joint motions [35]. In the case of the manipulator, the DH parameters and
the constraints are determined by the specifications of the robot. This step is discussed in
detail in Section 3.

(2) The suboptimal location of the task is determined.

In this step, the proposed method starts to determine the best location of the task.
The task’s best location is found by determining the location in the common workspace,
where the minimum value of the condition number of the CKC is maximized by taking
into consideration the constraints of both robot and human arm using a GA. This step is
discussed in detail in Section 4.

(3) Experimental evaluation of the proposed approach.

In this step, the determined task location of the best configuration of both the human
arm and the robot are defined in the experimental set-up. The KUKA LWR robot, which is
a collaborative robot, is used for the experiments. The human hand guides the robot end-
effector via the admittance controller along three straight-line segments; one straight-line
segment is the determined best direction, whereas the other two are randomly directed.
This is performed for comparison. The tasks are executed by 15 subjects and the motion
measurements are obtained by KUKA robot controller (KRC) and by an external force
sensor attached to the robot end-effector. Criteria are used related to the ergonomics criteria
for evaluating the task performance as follows: the required human effort to guide the robot
end-effector, the task completion time, the position error between the straight-line segment,
and the actual position of the robot end-effector; and finally, the oscillations occur during
the movement. In addition, a questionnaire is given to each subject to collect qualitative
information about the required human effort, the oscillations/accuracy experienced, and
finally, the human comfort level. This step is discussed and presented in detail in Section 5.

3. Modeling of the Closed Kinematic Chain—Step 1

The human operator grasps the robot handle, which is attached to the robot end-
effector. Therefore, a CKC is formulated, and its kinematic model is developed. In this CKC,
the human arm is modeled as a 7-DOF manipulator, consisting of revolute joints, as follows:
three-DOF for the shoulder, one-DOF for the elbow, and 3-DOF (spherical wrist) for the
wrist. Figure 1 presents the model of the human arm in a fully extended case. The DH
parameters used for modeling the human arm are determined based on the 95th percentile
of the males [36]. The DH parameters for the human arm as well as the KUKA LWR are
presented in Table 1. In the table, d is the link offset, a is the link length, α is the twist angle,
and θr ∈ R7×1 and θh ∈ R7×1 are the joints angle vectors, respectively, for the KUKA LWR
and for the human arm.
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Table 1. The DH parameters of the human arm and the KUKA LWR robot.

Joint
Human Arm KUKA Robot

θhi d (m) a (m) α θri d (m) a (m) α

1 θh1
0 0 pi/2 θr1 0.3105 0 pi/2

2 θh1
0 0 −pi/2 θr1 0 0 −pi/2

3 θh1
0.4 0 pi/2 θr1 0.4 0 −pi/2

4 θh1
0 0.41 0 θr1 0 0 pi/2

5 θh1
0 0 −pi/2 θr1 0.39 0 pi/2

6 θh1
0 0 −pi/2 θr1 0 0 −pi/2

7 θh1
0.1 0 pi/2 θr1 0.078 0 0

The joints’ limits (θrmin, θrmax) for the KUKA LWR model as referred in [37], in terms
of the radians’ angles. These limits are given as:

θrmin =

[
− pi

1.06
− pi

1.5
− pi

1.06
− pi

1.5
− pi

1.06
− pi

1.5
− pi

1.06

]

θrmax =

[
pi

1.06
pi
1.5

pi
1.06

pi
1.5

pi
1.06

pi
1.5

pi
1.06

]
The human arm model respects the ergonomic limitations for the marginal comfort

range [35]. The marginal comfort level is located between the slightly poor comfort level
and the moderate comfort level. These ergonomic limitations are obtained as:

θhmin = [−0.52 − 0.44 − 0.24 0 − 0.87 − 1 − 1.85]

θhmax = [1.57 1.27 1.5 2.5 0.5 1.3 1.52]

The CKC is formulated since the human operator grasps the robot handle, where the
common Cartesian velocity v =

( .
r, ω

)
∈ R6×1 can be obtained by [28]:

v = Jh
.
θh = Jr

.
θr

v ≡ vr = vh
(1)

In Equation (1), r and h express the KUKA LWR model and the human arm, respec-
tively. Jr ∈ R6×7 and Jh ∈ R6×7 are the Jacobian matrix for the KUKA LWR and the human
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arm, respectively.
.
θr,

.
θh ∈ R7×1 are the joints’ velocities for the KUKA LWR and the human

arm, respectively.
The Jacobian matrix of the CKC model

(
JCKC ∈ R12×14) by combining the two Jaco-

bians (Jr, Jh) [38] is given by:[
Jr 0
0 Jh

][ .
θr.
θh

]
= JCKC

[ .
θr.
θh

]
=

[
I6
I6

]
v (2)

Detailed information about the kinematics of the closed kinematic chain is presented
in Appendix A.

4. Suboptimal Task Location Determination—Step 2

The desired task of the operator is guiding the robot end-effector along the straight-line
segment within the workspace of the human arm and the manipulator, given the fixed base
locations of both. For simplicity, the robot’s base coordinates are selected to be as (0, 0, 0),
whereas the human arm base coordinates are located at (0.15m, 0.6m, 0.4m) with respect
to the inertial frame. Both base frames have the same orientation. For safety reasons, the
human arm base should not be placed very close to the KUKA LWR model.

In this work, the straight-line segment is located on the x–y plane and defined by its
first endpoint with x f , y f , z f coordinates as well as its direction represented by an angle,ϕ,
with respect to the positive x axis of the inertial frame and its length.

4.1. Justification of Using Condition Number

The evaluation of the configuration of the CKC system that executes the motion
can be based on well-known dexterity indices [25] such as the manipulability index, the
condition number, the minimum singular value (MSV), and MVR. The manipulability
index presents the ability of the system for performing the high TCP velocity motion
with low overall joint velocity. In the previous paper [26], the evaluation of the CKC
system configuration was based on the manipulability index. The MSV presents the
minimum kinematic ability of the system, whereas the MVR index shows the kinematic
ability of the system in certain directions. The condition number shows the kinematic
isotropy of the manipulator and is considered as a measure of the accuracy of the system
as well as avoiding the singularity [8,27,39–41]. The condition number is widely used
with optimization procedures in robotics [24,30–33]. In this paper, the evaluation of the
configuration of the CKC system is based on the condition number. The condition number
of the Jacobian matrix is calculated as the ratio of the maximum singular value of the
Jacobian matrix to the minimum singular value of the Jacobian matrix [25,28]. The condition
number for the CKC is obtained by [25]:

CN(θh, θr) =
σmax(JCKC)

σmin(JCKC)
(3)

The condition number is a better measure of the degree of ill-conditioning of the
manipulator than the manipulability index [25]. When the Jacobian loses its full rank,
the minimum singular value σmin is equal to zero; therefore, the condition number (CN)
becomes infinity. In other words, the condition number is the measure of the kinematic
isotropy of the Jacobian [41–43]. In [44], Asada and Granitio presented that isotropic
configurations can be obtained by minimizing the condition number. The condition number
does not have an upper bound, CN ∈ [1, ∞]. Finally, the condition number is a good
measure of the Jacobian matrix invertibility [45].

4.2. The Optimization of the Task Location

Determining the suboptimal task location is carried out by calculating the condition
number during the motion of the hand along the path. The same procedures followed in
our previous paper [26] were carried out in the current work. To define the motion, two
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velocities’ profiles are used in this work; the constant velocity profile and the minimum
jerk velocity profile [46], which better approximates the human arm motion. As presented
and discussed in detail in the previous paper [26]: both profiles produce similar results
in the formulation of the task measure. Therefore, the constant velocity profile is used to
obtain the best location of the task for reasons of simplicity. This velocity is given by:

v = [cosϕ− sinϕ 0 0 0 0]T cm/s (4)

The joints’ velocities are obtained by solving Equation (2) as:[ .
θr.
θh

]
= J†

CKC

[
I6
I6

]
v (5)

In Equation (5), the J†
CKC represents the pseudo-inverse of the Jacobian matrix of the

CKC model. The joints’ angle vectors θk
r and θk

h are derived, respectively, as follows,

θk
r =

.
θ

k
r Ts + θk−1

r

θk
h =

.
θ

k
hTs + θk−1

h

(6)

where Ts is the fixed time-step.
The robot end-effector orientation remains constant through the entire motion. The

initial joint angles θ0
r and θ0

h are derived by solving the inverse kinematic problem given the
first endpoint coordinate x f , y f , z f and taking into account the joint limits
(θrmin, θrmax, θhmin, θhmax) that were previously discussed in Section 3. Since the handle
orientation is fixed and it is known that both the human arm and the manipulator are
not redundant, the inverse kinematic solution is therefore analytically obtained. Both the
Cartesian and the configuration space are discretized and the condition number of the
CKC is calculated using Equation (3) for every iteration “k” during the motion along the
fixed-length line segment.

The main objective is finding the coordinates of the first endpoint
(

x f , y f , z f

)∗
of the

straight-line segment and the ϕ∗ angle that maximizes the following objective function (in
our case, the objective function is equal to the fitness function):

Obj = f itness f unction = f un
(

x f , y f , z f , ϕ
)
= min

k=1...n

(
CN
(

θk
h, θk

r

))
(7)

In Equation (7), the condition number CN
(

θk
h, θk

r

)
is obtained using Equation (3),

while its minimum value along the path is based only on the straight-line segment location,
which is defined by

(
x f , y f , z f , ϕ

)
.

The GA is utilized to find the best task location. The GA has many advantages [24,47–49],
as follows. The GA can work with discrete or discontinuous functions. The objective
function in the GA can be numerical or logical because the variables are coded. This
provides the GA with great application flexibility for a wide range of systems. The GA
evaluates a population of possible solutions instead of a single point. Therefore, it can avoid
being trapped in local optimal solutions. The GA deals with the objective function itself
when exploring the search space and has no need for derivative computation/secondary
functions. Finally, the GA is applicable in the optimization of many systems because of no
restrictions for the objective function definition. The GA has both operation simplicity as
well as the precision of the results.

The best task location given by the GA is:(
x f , y f , z f , ϕ

)∗
= argmax

x f ,y f ,z f ,ϕ
f un

(
x f , y f , z f , ϕ

)
(8)
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As presented in the previous paper [26], in the GA terminology, the first endpoint
coordinates of the task x f , y f , z f and the angle ϕ are defined as genes, whereas the whole
set composes a chromosome. A visual explanation for that process is shown in Figure 2.
For these optimization parameters, real-time encoding is used. Their constraints in the
workspace are chosen for the motion along the straight-line segment to be feasible for both
the human and the robot. The optimization parameters’ constraints with respect to the
inertial frame are:

x f ∈ [−0.5,−0.3]m,
y f ∈ [−0.15, 0.2]m,

z f ∈ [0.1, 0.4]m,
ϕ ∈ [−pi, pi] rad.
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These constraints are found experimentally by moving the robot end-effector and
the human arm model to their limits and selecting a subset of the cross-section of their
workspaces. An overview of the proposed genetic algorithm used in the presented work
with its inputs and outputs is illustrated as shown in Figure 3.

The one-point crossover and adapt feasible mutation operations are presented in
Figure 4. The operations are applied upon chromosomes. During the crossover, two differ-
ent chromosomes exchange some of their genes, resulting in creating two new chromosomes
in the next generation. In the mutation, one or more genes of a chromosome are changed
randomly, resulting in a new chromosome in the next generation.

The GA terminates when the number of generations exceeds the generation limit
(No. of generations > the generation limit) or when the specific number of consecutive
generations finds the same chromosome as the best-fit chromosome, which is referred as a
stall generation limit. In this work, the selected generation limit is equal to 200, the stall
generation limit is equal to 15, and the population size is equal to 35. The probabilities of
mutation and one-point crossover operation are 0.2 and 0.8, respectively.
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The pseudo-code summarizing the proposed procedure for determining the best
location of the task is the same, which is presented in [26], but in the current work, the
manipulability index is changed by the condition number index.

The Results from the Optimization Procedure

The resulting results from the proposed procedure to determine the suboptimal loca-
tion of the considered path based on the condition number are presented in Figures 5–7.
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As shown in Figure 5, the manipulator with the blue color represents the human arm
and the manipulator with the orange color represents the KUKA LWR robot. The axis of
the handle movement along the determined best task location is marked in red. The motion
starts from these configurations, which are presented in Figure 5, and in the direction of the
positive x axis (with respect to the coordinate system attached to the robot end-effector),
and the robot handle travels for 32 cm.

In Figure 6, the determined path (marked in red) as well as the first and the second end-
points are presented. The first point of the task is located at (−0.4999 m, 0.1637 m, 0.3453 m)
with respect to the inertial frame and the angle ϕ of the path direction is equal to −77.5 deg.
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We should point out that these results obtained from the proposed procedure are close to
the directional preference obtained from ergonomics and in the introduced approach, the
proposed task-based condition number measure represents the dexterity of the CKC formu-
lated by the human arm grasping the manipulator handle. As shown from Figures 5 and 6,
the obtained configuration of both the human arm and the manipulator in the current
work (based on the condition number) is different from the configuration obtained in the
previous paper [26], which was based on the manipulability index. This is normal since
the equation used for calculating the condition number is different from the one used for
calculating the manipulability index. The condition number is calculated from (3), whereas

the manipulability index is calculated using
√∣∣JCKC JT

CKC

∣∣. In addition, the motion in the
current work starts from the obtained configurations in the direction of the positive x axis,
whereas in the previous work, the motion started from the obtained configurations in the
direction of the negative x axis.

The variation of the condition number index along the path in the determined subop-
timal location is shown in Figure 7. The maximum value of the condition number occurs at
the beginning (signified by a small red circle) and is equal to 15.22. The minimum value of
the condition number is given after 13.5 s after the beginning of the motion and is equal
to 8.907. In contrast, in our previous work [26], the minimum value of the manipulability
index occurred at the beginning, whereas the maximum value of the manipulability index
occurred after 23 s after the beginning of the motion.

An arbitrarily chosen task location is presented in Figure 8 with its condition number
in Figure 9 to be compared with the results obtained by the proposed procedure (presented
in Figures 6 and 7). This arbitrary task location is chosen after many trials with the GA
until the best case is found. Although the condition number in the case of the arbitrarily
chosen task (Figure 9) is lower during the motion than the corresponding one obtained
by the proposed procedure (Figure 7), the comfort of the human hand in the case of the
arbitrarily chosen task is the worst, and we found that joint 5 of the human hand model is
out of the marginal comfort range [35].
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At the end of this section, we summarize that a high performance of the task location
for both the human arm and the manipulator is achieved, in which the minimum value of
the condition number of the CKC is maximized, taking into consideration the constraints
of both the robot and human arm using a GA. The characteristics of the motion along this
path and along the other two paths are investigated and evaluated experimentally in the
next section.

5. Experimental Evaluation of the Proposed Approach—Step 3

This section presents the experimental set-up and the performed experiments. The
experimental results are evaluated by using the proposed evaluation criteria and the
questionnaire, which are related to ergonomics. The movement along the straight-line
segment in the determined suboptimal location is compared with the movement along
the other two randomly selected directions of the straight-line segments with the help of
15 subjects.

5.1. The Experimental Set-Up

KUKA LWR robot is used for the experimental part. The KUKA LWR collaborative
robot [50,51] has an extremely light anthropomorphic structure, using 7 revolute joints.
In addition, it is driven using compact brushless motors through harmonic drives. The
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presence of such transmission elements introduces a dynamically time-varying elastic
displacement at each joint, between the angular position of the motor and that of the driven
link. All joints of the robot have position sensors on the motor and link sides as well as
a joint torque sensor. The KR C5.6 lr robot controller unit with the fast research interface
(FRI) can provide, at a 1 millisecond sampling rate: (1) the link position; (2) the velocity
and (3) measurements of the joint torque; and (4) the estimation of the external torques [52].
The KUKA LWR robot, which is equipped with an external force/torque sensor mounted
at its end-effector, is presented in Figure 10.
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Figure 10. (a) The experimental set-up using the KUKA LWR robot and (b) the three straight-line
segments proposed for the movement.

As shown in Figure 10, the blue line (line 2) presents the direction where the human
operator guides the robot handle with the task-based condition number index given by the
proposed method as the best location-line (BL-line). During the experiment, the human
operator is asked for moving the robot handle along this line (BL-line) and along other
two random straight lines (line 1 and line 3, red color in Figure 10). The coordinates of
the endpoints of the considered three straight-line segments are presented in Table 2. A
laser pointer is attached to the handle to project the robot position to the table, where the
initial point (the midpoint of the lines) as well as the targets’ points (the endpoints of the
lines) are marked visually for assisting the human operator with visual feedback. For ease,
the human operator is asked to begin the task from the centers of the lines (black point
in Figure 10b) and travel back and forth to the endpoints of the line and then stop at the
center point.
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Table 2. The coordinates of the three lines’ segments, where the human operator moves the robot
end-effector.

Line
Center Point
(Initial Point)
Coordinates

Angle ϕ with the
x Axis (deg)

Line Segment Path Endpoints

The First Endpoint The Second Endpoint

x y z x y z

Line 1
x = −0.4622
y = 0.00024
z = 0.34371

71.9 −0.4154 0.1528 0.3491 −0.5139 −0.1485 0.3410

Line 2
(BL) −77.5 −0.4999 0.1637 0.3453 −0.4289 −0.1561 0.3398

Line 3 −63.2 −0.5346 0.1419 0.3459 −0.3924 −0.1398 0.3391

The human operator moves the robot end-effector via an admittance controller. It
is suggested that the dynamics of the motion along the x and y axes are uncoupled. The
admittance controller equation is given by [53–55][

Fx
Fy

]
=

[
mx
0

0
my

][ .
Vax.
Vay

]
+

[
cx
0

0
cy

][
Vax
Vay

]
(9)

where the velocities Vax and Vay are the outputs of the admittance controller in x and y
directions, respectively. mx and my are the virtual inertia coefficients in x and y directions,
respectively. cx and cy are the virtual damping coefficients in x and y directions, respectively.
Fx and Fy are the applied forces by the operator in x and y directions, respectively, and they
are the inputs to the admittance controller.

In the current work, the constant admittance controller (constant parameters; vir-
tual damping and inertia) is chosen for simplicity. The virtual damping and the vir-
tual inertia are selected as in our previous paper [26]. The virtual damping is equal to
cx = cy = 10.0 Ns/m, whereas the virtual inertia is equal to mx = my = 3.0 kg. These
values achieve the stability of the system during the experiment [26,53]. The singularity
during the experiments is avoided and this is normal since the condition number is used
to show the kinematic isotropy of the manipulator; and one advantage from the isotropic
configuration is avoiding singularity [8]. As discussed in detail in the previous paper [26],
the proposed procedure for the best location determination, where a constant velocity is
used, does not contradict with the experimental work, where the velocity of the robot
handle depends on the human hand motion. According to [46], the velocity profile of the
free motion of the human hand follows the minimum jerk trajectory profile, but the error
between this velocity and the actual velocity of the robot handle guided by the subject is
high since the constant admittance controller is used (see Figure 11 and Appendix B).

5.2. The Experimental Results

The performance of the movement along line 2 (the BL-line) is compared with the
movement along the two randomly directed straight-line segments (lines 2 and 3). The
movement is carried out by fifteen (15) subjects aged 21 to 48 years old, thirteen of whom
are male, two females, and all are right-handed. Each subject is asked to sit in the specific
position and then grasp the robot handle from the initial position (the midpoint of the line),
guide it to the target position (one endpoint of the line), then back to the initial position,
continue to the other endpoint of the line, and complete the motion by guiding it once
again back to the initial position. Before executing the experiments, the subject is asked to
perform the movement as a trial to be familiar with the robot handle movement.
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5.2.1. The Evaluation Criteria

The performance of each subject is measured using criteria adapted from ergonomics
studies for comparative reasons. The task completion time, the achieved accuracy, the
trajectory smoothness, and the force smoothness, as well as the interaction force are the
five criteria proposed in [56]. In the current work, the performance is evaluated based the
following criteria, which were also used in the previous work [26]:

(1) The position error (distance discrepancy): It is defined as the absolute value of the
difference between the straight-line segment and the actual position of the robot
end-effector. The average/mean of the position error obtained by each subject is
calculated, and then the mean value for the 15 subjects is calculated. Indeed, the
position error expresses the achieved accuracy. In [56], the arc-length was used as
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the accuracy measure, and the smoothness by measuring the number of peaks in the
trajectory was used for evaluating the precision in task execution.

(2) The applied effort by the human operator to the robot handle during the movement:
The effort is calculated as the integration of the applied forces over the travelled dis-
tance. The human effort in the x direction by each subject is calculated as Ex =

∫
|Fx|dx,

whereas the effort in the y direction by the subject is Ey =
∫ ∣∣Fy

∣∣dy. Afterward, the

total effort by each subject is calculated as E =

√(
E2

x + E2
y

)
. Finally, the mean value

from the required efforts by the 15 subjects is obtained. In [56], the interaction force is
used to show how much effort the user needed for task completion.

(3) The task completion time required for completing the above specific movement:
The task completion time for every subject is obtained, then the mean value for the
15 subjects is calculated and is the same criterion to the one used in [56].

(4) The oscillations during the movement: The 1D Fourier Transform of the applied force
by the subject is calculated while considering frequencies less than 100 Hz. The mean
value of the frequencies for each subject is calculated, and then the mean value for the
15 subjects is obtained. This criterion shows the quality of the motion, and it is similar
to the force smoothness as well as the trajectory smoothness criteria measured in [56].

5.2.2. The Results from Measurements

The obtained results by the subjects from the executed experiments are presented in
Figures 11 and 12, and in Table 3.
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Figure 12. The actual position of the robot handle and the considered straight-line segments (the
blue color is the BL-line, whereas the red color is line 2 and line 3). (a) The results obtained by all
15 subjects. (b) The results obtained by only 3 subjects to show the position error more clearly.

Figure 11 presents the actual velocity of the robot handle obtained by only two out of
the overall fifteen subjects. As shown in the figure, the robot handle velocity is higher along
line 3 and line 2 (the BL-line) compared with the velocity along line 1. The smoothness of
the movement along line 2 (BL-line) is better compared with the other two random lines.
In addition, the oscillations during the movement along the BL-line are lower. This leads
us to determine that the achieved accuracy along the BL-line is the best. However, this
figure shows only the results from two subjects, so the results from all 15 subjects should be
compared for a better description, as in Table 3. The actual velocity of the robot end-effector,
shown in Figure 11, follows the pattern of the minimum jerk trajectory profile as presented
in detail in Appendix B.
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Table 3. The mean values and standard deviations for the position error, the required human effort,
the task completion time, and the oscillations during the movement along the three straight-line
segments (lines 1, 2, and 3), considering the performance of the 15 subjects. The colored column
represents the results along the BL-line.

Line Drawing Task Performance
Line

Line 1 Line 2
(BL-Line) Line 3

mean 0.521 0.425 0.463
Position Error (cm) Std. 0.153 0.187 0.195

mean 0.4073 0.574 0.586
Applied Effort (Nm)

Std. 0.19 0.267 0.238
Task Completion

Time (s)
mean 14.810 12.613 12.39
Std. 4.83 4.91 4.76

Oscillations (Fourier Transform of the
Applied Force) (Hz)

mean of freq. 37.54 29.01 33.633
Std. 19.814 19.025 14.943

In Figure 12, the actual position of the robot end-effector and the considered three
straight-line segments are presented/drawn. As shown from the figure, the position error
during the movement along line 3 and the BL-line (line 2) is lower (better) than the one
along line 1, which represents the worst case. Although the position error along line 3 is
low, the error at its target points (endpoints) is high. Indeed, the position error is expected
to be lower (the accuracy is higher) in the case of the BL-line, since the condition number is
considered as a measure of the accuracy of the system.

As presented in Table 3, the obtained results from the 15 subjects during the movement
along line 1, line 2 (BL-line), and line 3 are compared. The required human effort for
the movements along line 1 is lower compared with the required human effort for the
movements along the BL-line and line 3. Approximately, the human required effort during
the movement along the BL-line is the same with line 3.

In the case of the position error, the position error obtained along the BL-line (line 2) is
the lowest compared with line 1 and line 3. This means that the achieved accuracy obtained
along line 2 is the best (highest). The position error obtained along line 1 is the highest,
which means that the accuracy along line 1 is the worst.

The required time for completing the movement along line 3 is shorter compared with
the time required for line 2 and line 3. This means that the velocity along line 3 is the
highest. The required time for completing the movement along line 1 is the longest, which
means that this movement is the slowest one.

The oscillations of the robot end-effector during the movement are also compared.
The average number of frequencies was lower along line 2 compared with lines 1 and 3.
This means that the stability of the robot and the accuracy achieved during the movement
along line 2 are the best. The average number of frequencies was the highest along line 1.

From the above discussion, we deduce that the line drawing in different directions has
an opposite effect in terms of the speed and the accuracy. This occurs when the subjects’
task performance between lines 2 (BL-line) and 3 are compared. Specifically, line drawing in
the movement direction of line 2 (BL-line) favors a smooth pace of movement, which results
in a better task performance in terms of accuracy and stability, but at the expense of lower
speed and longer completion time. Instead, drawing along the direction of line 3 favors a
rather rough movement of the robot end-effector (as it is indicated by the average number
of oscillations), which is considered time-saving, but with low accuracy and stability. It
should be noted that none of the above pros and cons are clear in the movement along
line 1. The reason is that task performance is characterized by very rough movements,
which in turn increase both the number of corrections and the time required for task
completion. Therefore, the results of the present study provide evidence in support of two
movement directions based on the desired end; that is to say, line 2 (BL-line) results in a
better performance of the robot end-effector in terms of accuracy and stability, whereas line
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3 results in a better performance in terms of speed. This is expected since the condition
number used with the proposed approach is considered as a measure of accuracy.

5.2.3. The Subjective Results

The questionnaire is given to each subject during the experiments to evaluate the
proposed approach. Each subject is asked to rate the movement along the three straight-line
segments, line 1, line 2 (BL-line), and line 3, in terms of the following three questions:
(1) What type of effort is required to move the robot handle? (2) What is the level of
oscillations during the experiment? (3) What is the human comfort level during the
movement along each line? The subject answers each question by selecting one answer
from the following: low, medium, or high. After all subjects finish the experiments, their
answers are processed/evaluated. These subjective results are presented in Figure 13.

As presented in Figure 13, most subjects (93.33%) expressed that their required effort
to move the robot handle along the BL-line (line 2) was low. Also, the subjects (60% of
them) responded that their required effort was low during the movement along line 1. In
the case of movement along line 3, the subjects (60% of them) recorded medium effort.

In the case of the oscillations during movement, the oscillations felt by the subjects
during the movement along line 2 (the BL-line) were low (53.33% of the subjects), whereas
the oscillations along lines 1 and 3 were medium (46.67% of the subjects).

The best (highest) human comfort level was recorded during the movement along
line 2 (86.67% of the subjects). This highest comfort level comes from the fact that the
subject’s hand felt more comfortable during his guidance of the robot end-effector to move
in this configuration (line 2), and that it was easier to move his hand in this direction with
high accuracy.

From these results, we conclude that the performance during the movement along
line 2 (the BL-line) is very good and achieves the lowest oscillation with high comfortability.
These subjective results support/advocate the results from the measurements, which are
presented in Table 3. Moreover, these results prove the success and the effectiveness of the
proposed approach.

A video presenting some of the experiments is attached in the Supplementary Materials
of this paper.

5.3. Discussions of the Results

As shown from the obtained results, the proposed approach, which is based on
the condition number index, contributes in improving the HRI in terms of the achieved
accuracy and the stability as well as the human comfort, but at the expense of the task
speed. Accuracy is a very important and crucial factor in HRI [57–59], particularly in
some robotic applications such as surgical tasks, assembly tasks, transferring objects, and
welding processes. The results from the current approach are compared with the previous
approach [26] based on the manipulability index in Table 4.

As shown in Table 4, the resulting position error obtained during the movement along
the BL-line based on the condition number index is higher compared with the BL-line based
on the manipulability index. In addition, the task completion time is lower in the case of
the BL-line based on the condition number index. This means that the robot end-effector
velocity along the BL-line based on the condition number is higher. Indeed, we were
expecting that the robot end-effector velocity along the BL-line based on the manipulability
index would be higher; however, our results prove the contrary. This because of the
following: when the condition number is closer to unity, the manipulability ellipsoid
almost becomes a sphere [60]. In the case of the sphere, the robot end-effector can move
in all directions uniformly (see the red arrows in Figure 14), whereas in the case of the
ellipsoid, the robot end-effector movement is different in all directions (see black arrows
in Figure 14). In the direction of the major axis of the ellipsoid, the robot end-effector
can move at high speed, whereas in the direction of the minor axis of the ellipsoid, the
robot end-effector can move at low speed. In our current case, when the minimal of the
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condition number is maximized, the obtained sphere is larger (see Figure 14, orange sphere)
compared with the obtained manipulability ellipsoid (see Figure 14, blue ellipsoid) when
the minimal of the manipulability index is maximized in [26]. Therefore, this is why the
robot end-effector velocity in our results is higher (the position error is higher, and the
task completion time is lower) along the BL-line based on the condition number index
compared with the one along the BL-line based on the manipulability index.
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Table 4. The performance comparison during the movement along the BL-line is based on the
manipulability index and along the BL-line based on the condition number index.

Line Drawing Task Performance
Line

BL-Line Based on
Manipulability Index

BL-Line Based on
Condition Number

Position Error (cm)
mean 0.24 0.425

Std. 0.20 0.187

Applied Effort (Nm)
mean 0.588 0.574

Std. 0.321 0.267

Task Completion
Time (s)

mean 16.98 12.613

Std. 5.56 4.91

Oscillations (Fourier Transform of the
Applied Force) (Hz)

mean of freq. 52.51 29.01

Std. 20.69 19.025
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Another reason that can also be considered is that, in the case of the manipulability
index-based approach, the human hand as the subject is different from the actual subjects’
hands in the case of the condition number-based approach.

As is also presented in Table 4, the oscillations (average number of frequencies) in the
case of the BL-line based on the manipulability index (52.51 Hz) are higher compared with
the current approach (BL-line based on the condition number (29.01 Hz)), which means
that the movement of the robot end-effector along the BL-line based on the manipulability
index is less stable than the one along the BL-line based on the condition number.

Depending on the comparison, between the BL-line and the two other randomly
directed line directions presented in the current work and in [26], we can say that that the
results obtained from our previous approach [26], which was based on the manipulability
index, prove that the previous approach contributes to improving the HRI in terms of
task speed as well as human comfort, but at the expense of the achieved accuracy. On
the contrary, the current condition number-based approach improves the HRI in terms
of the achieved accuracy as well as human comfort. We can conclude that both our
approaches yield to the finding, which reflects a speed–accuracy trade-off, predicting that
faster movements are executed with lower accuracy, and vice versa [18,19].

Both our current results and the previous results [26] are in line with the works related
to ergonomics, which are presented in [56,61] for improving the HRI. In [61], the robot
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used the dynamic model of the whole-body of the human for optimizing the position of the
co-manipulation task within the workspace constrained by the human arm manipulability.
This approach thus leads to reducing the work-related strain and increasing the productivity
of the human co-worker. In a similar way, our proposed approaches (based on condition
number/manipulability indexes) increased human comfort levels. In addition, in [56], a
manipulability-based online manipulator stiffness adaptation was presented; the results
from this approach proved that the task completion time was low, and the force profile was
smooth, as is presented in our work.

6. Conclusions and Future Work

This manuscript proposes an approach to improve the performance in human–robot
co-manipulation. The system of the human arm grasping the robot handle is modeled as
a closed kinematic chain (CKC). Then, a task-based measure is formulated for this CKC
by determining the minimum value of the CKC condition number along the path. This
task-based measure is maximized to determine the suboptimal path location.

KUKA LWR robot is used for the experiments and the movement along the BL-
straight-line segment and is compared with the other two straight-line segments with
random directions with the help of fifteen subjects.

The obtained results from the experiments prove that the human hand moves the
robot end-effector along the BL-line with the highest achieved accuracy (the position error
is the lowest) compared with the other two randomly directed line directions. Therefore,
the velocity of the robot end-effector during the movement along the BL-line is low. The
oscillations during the movement along the BL-line are the lowest compared with along the
other two lines, which means that the stability of the robot end-effector along the BL-line is
the best. Human comfort level records the highest score along the BL-line.

Comparing the results obtained by the current proposed approach with the results
obtained from our previous approach [26], which was based on the manipulability index,
we can summarize that the current proposed approach improves the HRI in terms of the
achieved accuracy, stability, and human comfort level, but at the expense of the task speed
and completion time. The previous approach [26] improved the HRI in terms of the task
speed as well as the human comfort level, but at the cost of the achieved accuracy. Indeed,
these results follow the finding which reflects a speed–accuracy trade-off, predicting that
faster movements are executed with lower accuracy, and vice versa [18,19].

The promising results obtained by the current proposed approach and the previous
approach [26] motivate us to further investigate the performance of human–robot co-
manipulation by introducing performance measures based on other indices rather than
manipulability and condition number.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/automation4030016/s1; A video is attached with the paper to show
some experiments with the proposed approach.
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Abbreviations

HRI Human–robot interaction
HRC Human–robot cooperation
LWR Lightweight robot
DOF Degree of freedom
GA Genetic algorithms
DH Denavit–Hartenberg
CN Condition number
MSV Minimum singular value
Obj Objective function
CKC Closed kinematic chain
BL-line Best location line

Appendix A. Kinematics of the Closed Kinematic Chain

When the human operator grasps the manipulator handle, a CKC is formulated. In this
Appendix, the transformation matrices of the robot and the human arm and the Jacobian
matrix of the closed kinematic chain (CKC) are presented.

Appendix A.1. The Transformation Matrices

In our case, the transformation matrices for the human arm and the KUKA robot are
presented as follows:

(1) The human arm:

0
1Th =


cos θh1 0 sin θh1 0
sin θh1 0 −cos θh1 0

0 1 0 0
0 0 0 1



1
2Th =


cos θh2 0 − sinθh2 0
sin θh2 0 cos θh2 0

0 −1 0 0
0 0 0 1



2
3Th =


cos θh3 0 sin θh3 0
sin θh3 0 −cos θh3 0

0 1 0 0.4
0 0 0 1



3
4Th =


cos θh4 − sinθh4 0 (0.41 ∗ cos θh4)
sin θh4 cos θh4 0 (0.41 ∗ sin θh4)

0 0 1 0
0 0 0 1



4
5Th =


cos θh5 0 − sinθh5 0
sin θh5 0 cos θh5 0

0 −1 0 0
0 0 0 1



5
6Th =


cos θh6 0 − sinθh6 0
sin θh6 0 cos θh6 0

0 −1 0 0
0 0 0 1
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6
7Th =


cos θh7 0 sin θh7 0
sin θh7 0 − cosθh7 0

0 1 0 0.1
0 0 0 1


Therefore, 0

2Th = 0
1Th ∗

1
2Th, 0

3Th = 0
1Th ∗

1
2Th ∗

2
3Th, 0

4Th = 0
1Th ∗

1
2Th ∗

2
3Th ∗

3
4Th,

0
5Th = 0

1Th ∗
1
2Th ∗

2
3Th ∗

3
4Th ∗

4
5Th, 0

6Th = 0
1Th ∗

1
2Th ∗

2
3Th ∗

3
4Th ∗

4
5Th ∗

5
6Th,

0
7Th = 0

1Th ∗
1
2Th ∗

2
3Th ∗

3
4Th ∗

4
5Th ∗

5
6Th ∗

6
7Th.

(2) The KUKA robot:

0
1Tr =


cos θr1 0 sin θr1 0
sin θr1 0 −cos θr1 0

0 1 0 0.3105
0 0 0 1



1
2Tr =


cos θr2 0 − sinθr2 0
sin θr2 0 cos θr2 0

0 −1 0 0
0 0 0 1



2
3Tr =


cos θr3 0 − sinθr3 0
sin θr3 0 cos θr3 0

0 −1 0 0.4
0 0 0 1



3
4Tr =


cos θr4 0 sin θr4 0
sin θr4 0 − cosθr4 0

0 1 0 0
0 0 0 1



4
5Tr =


cos θr5 0 sin θr5 0
sin θr5 0 − cosθr5 0

0 1 0 0.39
0 0 0 1



5
6Tr =


cos θr6 0 − sinθr6 0
sin θr6 0 cos θr6 0

0 −1 0 0
0 0 0 1



6
7Tr =


cos θr7 −sin θr7 0 0
sin θr7 cos θr7 0 0

0 0 1 0.078
0 0 0 1


Therefore, 0

2Tr = 0
1Tr ∗

1
2Tr,

0
3Tr = 0

1Tr ∗
1
2Tr ∗

2
3Tr,

0
4Tr = 0

1Tr ∗
1
2Tr ∗

2
3Tr ∗

3
4Tr,

0
5Tr =

0
1Tr ∗

1
2Tr ∗

2
3Tr ∗

3
4Tr ∗

4
5Tr, 0

6Tr =
0
1Tr ∗

1
2Tr ∗

2
3Tr ∗

3
4Tr ∗

4
5Tr ∗

5
6Tr, 0

7Tr =
0
1Tr ∗

1
2Tr ∗

2
3Tr ∗

3
4Tr ∗

4
5Tr ∗

5
6Tr ∗

6
7Tr.

As all the previous calculations are complex, MATLAB software was used to perform
these computations.

Appendix A.2. The Jacobian Matrix

The common Cartesian velocity for the human arm and the manipulator is
v =

( .
r, ω

)
∈ R6×1, which is obtained by [28]
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v = Jh
.
θh = Jr

.
θr

v ≡ vr = vh
(A1)

where r and h represent the KUKA LWR model and the human arm, respectively. Jr ∈ R6×7

and Jh ∈ R6×7 are the Jacobian matrix for the KUKA LWR and for the human arm, respec-
tively.

.
θr,

.
θh ∈ R7×1 are the joints’ velocities for the KUKA LWR and for the human arm,

respectively.
The Jacobian matrix J (either Jh or Jr) is determined as

J = [J1 J2 J3 J4 J5 J6 J7] (A2)

Ji, where i is the column of the Jacobian, is determined by,

Ji =

[
0
i k ×

(
0
7 p − 0

i p
)

0
i k

]
(A3)

The vector k ∈ R3×1 represents the rotation about the z axis, and p ∈ R3×1 represents
the translation vector obtained from the transformation matrix:

0
i T =

[0
i i 0

i J 0
i k 0

i p
0 0 0 1

]
(A4)

Therefore, it is easy then to calculate the Jacobian matrices Jh and Jr from
Equations (A2) and (A3).

The Jacobian matrix of the CKC model
(

JCKC ∈ R12×14) is written by the following
equation by combining the two Jacobians [38]:[

Jr 0
0 Jh

][ .
θr.
θh

]
= JCKC

[ .
θr.
θh

]
=

[
I6
I6

]
v (A5)

As all the previous calculations are complex, MATLAB software was used to perform
these computations.

Appendix B. The Comparison between the Actual Velocity of the Robot End-Effector
and the Velocity of the Minimum Jerk Trajectory Profile

As we stated previously in Section 5, Figure 11 presents the actual velocity of the

robot end-effector
(

V =
√

V2
x + V2

y

)
obtained from two subjects only, out of fifteen subjects,

during the movement along lines 1, 2 (BL-line), and 3. This movement tends to approximate
the minimum jerk trajectory profile. To prove this concept, the actual velocity of the robot
end-effector shown in Figure 11 is compared with the reference velocity of the minimum
jerk trajectory. For this comparison, e.g., the first loop of the movement (starting from the
initial position to the first endpoint of the line) along each line (1, 2, 3), from Figure 11, is
used for a comparison with the minimum jerk trajectory velocity profile. This comparison
between both velocities’ profiles is presented in Figure A1.

As shown in Figure A1, even if the tendency of the robot’s actual velocity is to follow
the minimum jerk trajectory profile, high error appears between both of the two velocities
compared to the results obtained from the variable admittance controller (VAC) presented
in [53,54]. The constant admittance controller is chosen in our work for simplicity, and it
is the reason for such a discrepancy, which does not affect the calculation of the proposed
measure. From Figure A1, it is also clear that the approximation between both two velocities
is better along line 2 (BL-line) compared with the other two straight-line segments. In
addition, the results obtained along line 2 are smoother and with less oscillations. This
means that the achieved accuracy along line 2 (BL-line) is the best. From the figure, the
worst case occurs with line 1.
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