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Abstract: The stick–slip phenomenon is a jerking motion that can occur while two objects slide over
each other with friction. There are several situations in which this phenomenon can be observed:
between the slabs of the friction dampers used to mitigate vibrations in buildings, as well as between
the components of the base isolation systems used for seismic protection. The systems of this kind
are usually designed to work in a smooth and flawless manner, but under particular conditions
undesired jerking motions may develop, yielding complex dynamic behavior even when only a
few degrees of freedom are involved. A simplified approach to the problems of this kind leads to
the mechanical model of a rigid block connected elastically to a rigid support and at the same time
with friction to a second rigid support, both the supports having a prescribed motion. Despite the
apparent simplicity of this model, it is very useful for studying important features of the non-linear
dynamics of many physical systems. In this work, after a suitable formulation of the problem, the
equations of motion are solved analytically in the sticking and sliding phases, and the influence of
the main parameters of the system on its dynamics and limit cycles is investigated and discussed.
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1. Introduction

Elastic elements undergoing stick–slip motion in the presence of friction can be found
in many physics and engineering systems in a range of length scales from micrometers [1]
to kilometers [2]. In the civil engineering field, for instance, various solutions proposed
for protecting buildings from earthquakes, e.g., devices for controlling the amplitude
of oscillations or isolating buildings from the ground [3–8], undergo stick–slip motions.
Among the damping devices, a common solution exploits the friction force that develops
between elements forced to slide with friction over each other, as in the slotted bolted
connection (SBC) [4] represented in Figure 1. As for isolation systems, a typical solution
is based on interposing sliding elements between the foundation and the base of the
superstructure [5,6]. Figure 2 reports, by way of example, the case of a structure fitted
with a friction pendulum system (FPS). The shear force transmitted to the superstructure
via the isolation system is usually limited by keeping the coefficient of friction as low as
practical to cope with strong winds and minor earthquakes without associated sliding,
while sliding displacements due to significant seismic events are controlled by either high-
tension springs, or laminated rubber bearings, or by the means of curved sliding surfaces,
which provide the restoring force to return the structure to its equilibrium position [9].
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brakes, or drill bits [10]) and may exhibit complex dynamic behavior even when only a 
small number of degrees of freedom are involved. 

 
Figure 1. Example of structure fitted with a slotted bolted connection (SBC) with steel–brass sliding 
surfaces. 

 
Figure 2. Example of structure fitted with a friction pendulum system (FPS adapted from [6]). 

In addition to examples from the civil and industrial engineering sectors, other ex-
amples of dynamic responses in which the stick–slip phenomenon may play an important 
role can be drawn from the physics of earthquakes. The Burridge–Knop, off fault model 
[1] clearly highlights stick–slip dynamics during the fault movement that gives rise to seis-
mic waves (Figure 3). The instability of such motion can be triggered in simple models 
like this by assuming velocity-decreasing friction forces [11,12]. 

 
Figure 3. Schematic representation of the Burridge–Knopoff model (figure drawn from [1]). 

Over the years many studies have been conducted to better understand the dynamics 
of systems in which components are forced to slide with friction over other components, 
the ultimate objective being to identify the conditions that may disrupt their smooth, effi-
cient functioning. The body of literature on the topic may be subdivided into two main 
categories. The first is represented by numerical methods, usually based on finite element 
models [13]. The second (which includes the present work) is represented by analytical 
approaches [7,14], in which simplified models based on a small number of degrees of 

Figure 1. Example of structure fitted with a slotted bolted connection (SBC) with steel–brass sliding
surfaces.
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Figure 2. Example of structure fitted with a friction pendulum system (FPS adapted from [6]).

Seismic protection devices for buildings are a particular example of the systems
containing components forced to slide with friction over other components. The systems
of this sort can also be found in industrial engineering applications (e.g., wiper blades,
brakes, or drill bits [10]) and may exhibit complex dynamic behavior even when only a
small number of degrees of freedom are involved.

In addition to examples from the civil and industrial engineering sectors, other exam-
ples of dynamic responses in which the stick–slip phenomenon may play an important role
can be drawn from the physics of earthquakes. The Burridge–Knop, off fault model [1]
clearly highlights stick–slip dynamics during the fault movement that gives rise to seismic
waves (Figure 3). The instability of such motion can be triggered in simple models like this
by assuming velocity-decreasing friction forces [11,12].
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Figure 3. Schematic representation of the Burridge–Knopoff model (figure drawn from [1]).

Over the years many studies have been conducted to better understand the dynamics
of systems in which components are forced to slide with friction over other components,
the ultimate objective being to identify the conditions that may disrupt their smooth,
efficient functioning. The body of literature on the topic may be subdivided into two main
categories. The first is represented by numerical methods, usually based on finite element
models [13]. The second (which includes the present work) is represented by analytical
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approaches [7,14], in which simplified models based on a small number of degrees of
freedom are employed to describe the behavior of the system, whose equations of motion
are solved analytically or semi-analytically with reduced computational effort.

The paradigmatic case of the single-degree-of-freedom system subjected to elastic
and friction forces has been studied extensively over the last century. After Den Hartog’s
study [15], many researchers have addressed similar problems. Among the various contri-
butions, some works addressing the forced oscillations of the mass–spring system are worth
recalling. In 1984, Parnes [16] and Marui and Kato [17] studied a single-degree-of-freedom
system subjected to ground motion or external forces and analyzed the influence of impor-
tant parameters on the system dynamics. In 1986, Shaw [18] discussed the stability of the
long-term response of a damped system. Numerical analysis dealing with discontinuity
between static and kinematic friction forces is illustrated by Leine [19], and Hong and
Liu [20]. The chaotic response that friction can cause is outlined in the works of Popp
and Stelter [21], and is further investigated by Andreaus and Casini [22], and Licskó and
Csernák [23]. More recent works addressed the evolution of the stick and slip phases in the
system limit cycles as a function of the system parameters (see, e.g., the works of Csernák
and Stépán [24], and Butikov [25]), or performed bifurcation analyses [26].

This paper presents a mathematical model that enables providing a simplified descrip-
tion of the dynamics of the systems like those mentioned in the foregoing. By virtue of
its simplicity, the model may be used to study the dynamics of many physical systems
undergoing a stick–slip motion in the presence of friction, such as structures fitted with
seismic protection systems subjected to a ground motion or faults undergoing relative slip.
We begin by considering the simple scheme depicted in Figure 4, in which a rigid block (G)
is connected elastically to a first rigid support (A) and is in frictional contact with a second
rigid support (B). Preliminary results concerning this one degree-of-freedom model have
been presented by the authors in [11,27,28].
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2 for Coulomb-like friction forces between the rigid block and moving support B. An 
event-driven solution scheme is adopted, consisting of identifying the transition times (if 
any) between the stick and slip phases and assembling the analytical expressions that hold 
in such phases. A description of the different types of long-term motions that such systems 
may undergo is provided in Section 3. We investigate the role played by three dimension-
less parameters: the ratio between the oscillation frequency of the moving support B and 
the natural frequency of the mass–spring system; the ratio between the kinematic and 

Figure 4. Scheme of a single-degree-of-freedom system that is connected elastically to a first rigid
support (A) and can slide with friction over a second rigid support (B): m is the mass of the rigid
block; k and c are the elastic constant of the spring and the constant coefficient of the linear dashpot
between rigid block and rigid support A; µs and µd are the static and dynamic friction coefficients
that model the tangential interaction between rigid block and rigid support B; N is the normal contact
force between rigid block and rigid support B.

The analytical description of the system’s stick and slip phases is outlined in Section 2
for Coulomb-like friction forces between the rigid block and moving support B. An event-
driven solution scheme is adopted, consisting of identifying the transition times (if any)
between the stick and slip phases and assembling the analytical expressions that hold in
such phases. A description of the different types of long-term motions that such systems
may undergo is provided in Section 3. We investigate the role played by three dimensionless
parameters: the ratio between the oscillation frequency of the moving support B and the
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natural frequency of the mass–spring system; the ratio between the kinematic and static
friction forces; and finally, the ratio between the amplitude of oscillations of the moving
support B and a reference length. Once such parameters are known, it is possible to foresee
some features of the system’s long-term dynamic response. In this regard, reference maps
are presented to provide indications of the main characteristics of the possible long-term
dynamic responses of the system. Finally, in Section 4, we illustrate numerical results that
confirm the analytical findings of the present study.

2. The Mechanical Model

Finding the exact solution to non-linear dynamic problems like those mentioned in
the foregoing is not a simple matter. For example, an actual building, fitted with various
energy dissipation mechanisms and subjected to external actions such as those due to an
earthquake may be considered as an elastic structure with an infinite number of degrees of
freedom. Viscous–elastic and friction-based mechanisms are two relevant examples and
make the dynamic problem non-linear and difficult to solve analytically.

In this work, we investigate some features of the non-linear dynamic response of a
single-degree-of-freedom system that is connected elastically to a rigid support A and can
slide with friction over a rigid support B, as represented in Figure 3.

The system is formed by a rigid block of mass m attached to a spring with elastic
constant k. The other end of the spring is connected to point A of a rigid support, whose
position with respect to a suitable inertial reference frame is xA(t). The rigid block is free to
slide with friction over a second rigid support, whose reference point B moves according to
a prescribed law, xB(t). The friction force between this second rigid support and the rigid
block is Fa. The position of the block’s center of gravity (G) with respect to the inertial
reference frame is x(t). The following equation of motion holds

m
..
x + c

( .
x − .

xA
)
+ k(x − xA) = Fa. (1)

The condition of null relative motion between the rigid block and rigid support moving
with point B is expressed as

.
xrel =

.
x − .

xB = 0.
In the following, we focus attention on the case in which c = 0, point A is fixed with

respect to the inertial reference frame, and point B moves with respect to it. Moreover, we
set the origin of the inertial reference frame at a point O, between point A and point G, in
such a way that the distance between O and A is the length of the unstrained spring. In
such case, the equation of motion takes the form

m
..
x + kx = Fa, (2)

where x(t) represents the position of the block’s center of gravity G with respect to O.
A simple harmonic motion is assumed for point B, such that xB = Asin(ωbt), where

A and ωb are the positive amplitude and angular frequency that define the motion of the
point B. Note that B is at the origin O at time t = 0.

2.1. The Friction Law: A Modified Version of the Coulomb’s Formulation

When dealing with a specific application, the friction law depends heavily on the
physical properties of the materials involved, as well as on the conditions of the contact
surfaces, which can vary widely. Consequently, different laws have been proposed in the
literature to describe the experimental evidence via state-dependent and rate-dependent
approaches (Sampson [29], Rabinowicz [30], Pennestrì [31]). Our aim is to investigate some
features of the non-linear dynamic response of the elastic system described in the foregoing
without focusing on a specific material or timescale. To this end, we assume a simple
friction law which is a modified version of Coulomb’s formulation.

Let us denote by Fs and Fk the static and kinematic friction forces, respectively. In
order to account in a simplified way for the short time the system needs to return to the
sticking condition at the end of a sliding phase, we assume that a sticking phase following
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a sliding phase can only begin if the friction force does not exceed Fk at the first instant the
relative velocity vanishes,

.
xrel = 0. In other terms, we assume following:

|Fa(t)| ≤ Fs = µsN, if
.
xrel = 0 on finite time interval [t0, t), (3)

Fa(t) = −sgn
( .
xrel

)
Fk = −sgn

( .
xrel

)
µk N, if

.
xrel ̸= 0, (4)

|Fa(t)| ≤ Fk = µk N, otherwise. (5)

Hence, a sticking phase may begin only if a friction force no greater than Fk is required
at the first instant the relative velocity vanishes, otherwise the sliding phase will continue, as
also discussed in [27,28]. According to the rule introduced here, a sticking phase following
a sliding phase may begin at any time t∗ at which the relative velocity vanishes only if the
following condition holds: ∣∣m ..

xb(t∗) + kx(t∗)
∣∣ ≤ Fk. (6)

2.2. Event-Driven Solution of the Equation of Motion

In the following, we assume the observation of the block motion begins at an initial
time t0. The block’s initial position and velocity are x(t0) = x0 and

.
x(t0) =

.
x0, respectively.

In the general case, the system’s motion may involve both sticking phases, during which
the block follows the motion of the moving support B, and sliding phases, during which
the block moves with respect to it. In each phase, the equation of motion may be formally
written as (2), where Fa is the non-smooth friction force (3–5).

Any sticking phase following a sliding phase will begin at a time t∗ if both the block
and the moving support have the same velocity and if the magnitude of the friction force
required to start sticking at t = t∗ does not exceed Fk. Depending on the values of the
system parameters, the sticking phase may last indefinitely. In such a case, the modulus of
the friction force Fa remains lower than Fs for t > t∗. Vice versa, any sliding phase following
a sticking phase may begin at a time t∗∗ if and only if the magnitude of the friction force on
the block reaches the static value Fs and a friction force greater than Fs would be required
to extend sticking to t > t∗∗. Under appropriate conditions, the sliding phase may also
last indefinitely. In the next sections, both the sticking and sliding phases are discussed in
detail. Here, as in [27,28], we only recall that during any sticking phase, the velocity of the
rigid block coincides with that of the moving support B, while during any sliding phase,
the explicit expression of the block’s motion is the following:

x(t)= c1cos(ωt)+c2sin(ωt)± xk, (7)

where constants c1 and c2 depend on the conditions holding at the beginning of the sliding
phase and xk = Fk/k.

2.3. End Time of Sticking Phases

Let us assume that the rigid block is going through a sticking phase, and let C denote
the block position at the beginning of this phase. Let us also introduce the dimensionless
initial position λ = C/xs, with xs = Fs/k. Simple calculations, omitted here for brevity,
show that the end time t1 is a solution of one of the two following equations:

sin(ωt) = −(1 + λ)/α, (8)

sin(ωt) = (1 − λ)/α, (9)

where α = a
(

1 − Ω2
)

, Ω = ωb/ω, ω =
√

k/m, and a = A/xs, this latter denoting the
dimensionless amplitude of the oscillations of the moving support B.

Equations (8) and (9) can be obtained by determining the time instant t1 (if any) at
which the dimensionless form of the sticking condition, i.e., |αsin(ωt) + λ| ≤ 1, may no
longer be satisfied.



CivilEng 2024, 5 425

With reference to Figure 5, the time instant t1 is determined according to Equation (8)
in regions A1 and A1′, by Equation (9) in regions A3 and A3′, and is the lower of the
two solutions to (8) and (9) in regions A2 and A2′.
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As is apparent, the duration of any sticking phase can be inferred by checking the
dimensionless initial position, λ, of the rigid block and the dimensionless amplitude and
frequency of the oscillations, a and Ω, of the moving support B. A sticking condition
will last up to a certain time if the corresponding point (λ, α) in Figure 5 belongs to the
yellow-shaded regions A1, A2, and A3 (or A1′, A2′, and A3′). On the contrary, sticking
will last indefinitely if the point falls within the central diamond-shaped region. Lastly, the
lateral unshaded regions are incompatible with sticking conditions.

2.4. End Time of Sliding Phases

Let us assume that the block is sliding. The necessary conditions for the sliding phase
to stop at a certain time t2 require that the relative velocity between the block and the
moving support B become zero and the additional condition (6) be fulfilled, which can be
expressed by the following:∣∣∣−αΩ2sin(ωbt2

)
+ x(t2)/xs

∣∣∣ ≤ η ≤ 1, (10)

where η = Fk/Fs is the kinematic–static friction ratio.
Condition (10) ensures that the magnitude of the friction force on the block needed

to start a sticking phase is not greater than Fk. If condition (10) is not satisfied, then the
friction force on the block remains greater than Fk, a sticking phase cannot begin, and the
block continues sliding with respect to the moving support.

3. Remarks on the System Limit Cycles

Limit cycles are periodic solutions to the equation of motion characterized by a net
balance between the amount of energy dissipated by and supplied to the mass–spring
system over each period. Different types of limit cycles may be observed for systems like
those considered here [17,24,25]. By following the evolution of the system, starting with
different initial conditions and considering different values of its characteristic parameters,
a, Ω, and η, it can be observed that the system trajectories may tend towards periodic
motion. Specifically, after an initial transient phase, the system may approach limit cycles
during which the block keeps sliding indefinitely, other limit cycles where it keeps sticking
indefinitely, and yet others where it passes from sliding to sticking in a periodic way. In
this section, we consider these three types of motion.
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3.1. Sticking Limit Cycles

Once a sticking phase has begun, the motion of the block is expressed as x = xB + C,
where C is a constant. The block will go on sticking if the friction force transmitted from
the moving support does not exceed the maximum static value, Fs. Hence, endless sticking
is possible if the following necessary condition is fulfilled

a
∣∣∣1 − Ω2

∣∣∣ ≤ 1. (11)

Moreover, it is straightforward to conclude that the stability of endless sticking will be
assured if the following more stringent condition is fulfilled

a
∣∣∣1 − Ω2

∣∣∣ ≤ η, (12)

where η = Fk/Fs is the kinematic–static friction ratio. In this regard, let it suffice to recall
that if small perturbations start the block sliding, its oscillatory motion will be described by
(7). Inequality (12) ensures that as soon as the relative velocity between the block and the
moving support B returns to zero, the friction force needed to restore sticking will surely
be lower than Fk, and sticking will take place again.

3.2. Sliding Limit Cycles

This section takes up a particular set of sliding limit cycles discussed in a preliminary
investigation by the authors of [27,28]. More precisely, we consider a block that is under-
going periodic motion and assume the block slides over the moving support B without
ever sticking to it. We consider a generic time interval [0, Tb] and, counting the time from
the beginning of the period, we restrict our attention to periodic motions satisfying the
following constraints:

x(0) = x(Tb/2) = x(Tb) = 0, (13)
.
xrel(0) =

.
xrel(Tb/2) =

.
xrel(Tb) = 0, (14)

accordingly rewriting the law of motion of the moving support as

xB = Asin(ωbt + φ), (15)

where angle φ accounts for the phase shift between the oscillations of the block and those
of the moving support.

During each period two conditions are assumed: (i) first, the component of the friction
force along the x-axis has a prescribed sign (e.g., it is positive) over one-half of the period
and the opposite sign over the other half of the period (this is referred to here as relative
velocity sign condition); (ii) in addition, at the beginning of any half-period, when the
relative velocity is zero, the sticking condition (10) must not be fulfilled.

In order for this kind of sliding motion to take place the phase angle φ must satisfy
the condition

cos(φ) = − η

aΩ
tan

( π

2Ω

)
, (16)

in which the reciprocal of Ω cannot be an odd integer number. It is worth noting that
critical values of Ω = 1/3, 1/5, . . . have previously been cited for other systems analogous
to the one considered here (e.g., [24,25]).

Simple calculations enable concluding that the conditions imposed on the periodic
sliding motion can be summarized through the single inequality

a > ηg(Ω), (17)

where

g(Ω) =

√
M2

Ω

Ω4 +
1

Ω2 tan2
( π

2Ω

)
, (18)
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MΩ = max
{

1; supz∈(0,1)|hΩ(z)|
}

, (19)

hΩ(z) =
Ω

sin(πz)

[
tan

( π

2Ω

)(
cos

(πz
Ω

)
− cos(πz)

)
− sin

(πz
Ω

)]
. (20)

The stability of the periodic sliding motion considered here can be evaluated by
considering the superposition of small perturbances, xp(t), to the sliding motion. From
Equation (2), we observe that xp(t) is the solution to the homogeneous equation

m
..
xp + kxp = 0. (21)

In other terms, small perturbances can cause the small oscillations of the system to
appear around the periodic sliding motion, which may not be unconditionally stable.

3.3. The Influence of the System Parameters on Its Long-Term Response

The motion of systems like those considered in this study can be determined if the
values of their characteristic parameters, such as a, Ω, and η, are known, together with
the system’s initial conditions. Conversely, it appears reasonable to assume that given the
values of such parameters, it should be possible to determine some features of the system’s
long-term response. In other words, given a, Ω, and η, it should be possible to predict the
evolution of the system and the existence of the limit cycles to which it may tend.

In this paper, we have demonstrated that conditions (11) and (17) enable making
predictions about characteristic solutions, e.g., continuous sticking or continuous sliding,
that may be observed. Therefore, if the system parameters a, Ω, and η are assigned, it
is possible to forecast some features of the system’s long-term response. For instance, if
such parameters do not satisfy inequality (11), then the system cannot undergo continuous
sticking and a sliding phase will ensue. Moreover, if condition (17) is not verified, the
system cannot undergo the sliding motion defined in Section 3.2. Instead, if the system
verifies the conditions introduced in Section 3.2 and its parameters are compliant with (17),
then it may undergo the periodic sliding motion discussed in Section 3.2.

Figure 6 shows a partition of the a-Ω plane in terms of long-term system responses, for
three cases, namely, η = 1/3, η = 2/3, η = 1. The partition is based on conditions (11) and (17).
Indefinite sliding motions are allowed in the pink regions. Indefinite sticking may take
place in the blue regions. Regions not colored allow for stick–slip motions.

The dashed green line bounds from below, albeit approximately, the set of indefinite
sliding motions for Ω ≤ 1 in the logarithmic plots (Figure 6). The analytical expression for
this lower bound locus, for the three cases considered here (η = 1/3, 2/3, 1), is

aΩ2 = c(η) (22)

where c(η) is a coefficient depending on η, which for the three cases η = 1/3, 2/3, 1 can
be approximated as c(η) = 9η/8 − 1/8. It is worth observing that Equation (22) for η = 1
is similar to a condition found in Shaw [18] for the forced sliding oscillations of a system
analogous to the one studied here.

It should be cautioned that the present investigation is not conclusive. Further studies
are needed which will be conducted in subsequent works to carry out an exhaustive or, at
least, a wider examination of the possible limit cycles and the relevant existence conditions
for systems such as those considered here. However, the results obtained, and the reference
maps introduced within this work, already provide some important information.
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3.4. Bifurcation Diagrams

Figures 7–10 show bifurcation diagrams for the system at hand. The motion of the
system is examined for the prescribed values of a, Ω, and η. Homogeneous initial conditions
are assumed, i.e., x(0) = 0,

.
x(0) = 0. The diagrams report the positions,

∼
x, at which the

relative velocity between the block and the moving support B vanishes, divided by the
characteristic length xs = Fs/k. If a sticking phase starts, the corresponding points on the
diagram are colored in blue, otherwise, if the block keeps on sliding, they are red.

Figures 7 and 8 focus on the systems having the same dimensionless amplitude as
the imposed oscillation, a = 10. The diagrams show the change in the system response
produced by the variations in the parameter Ω (the ratio between the frequency of the
moving support B and that of the mass–spring system). In the case of η = 1/3, a chaotic
response is observed for Ω < 1/5. The critical values for Ω separating smooth slip motions
from irregular stick–slip responses are in close agreement with the predictions that can be
made using the corresponding reference map in Figure 6. When η = 1 the system highlights
a smoother response. Once again, the critical values for Ω are in close agreement with the
predictions based on the relevant reference map in Figure 6. Chaos in stick–slip systems
analogous to the system considered here is discussed in [21,23], amongst other works. As
was expected, the lower values of Ω promote chaotic motion. Nevertheless, it is worth
observing that for η = 1, irregular stick–slip motions are observed close to Ω = 1, where
regions of indefinite sticking and indefinite sliding overlap.
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diagram correspond to sticking phase, red points are associated with sliding phase.
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Figure 10. Bifurcation diagrams in the domain a − ∼
x/xs for Ω = 1/3 and η = 1. Blue points on the

diagram correspond to sticking phase, red points are associated with sliding phase.

The bifurcation diagrams shown in Figures 9 and 10 highlight the effects produced by
the parameter a (dimensionless oscillation amplitude). In both cases, the frequency ratio
Ω is set equal to 1/3. The stick–slip response predicted by using the reference maps in
Figure 6 for a > 1 is confirmed. In addition, a transition from smooth to chaotic motion
is observed when the dimensionless oscillation amplitude a exceeds the threshold value
which depends on η. In this regard, it is worth recalling that the chosen value for Ω
(Ω = 1/3) is a critical value that separates the two regions where indefinite sliding is
allowed. The distance between the two regions narrows for the increasing amplitude of
oscillations (Figure 6) and this could trigger a chaotic system response.

4. Numerical Examples

In this section, we report the results of the numerical simulations that confirm the
analytical findings of the previous sections. Many simulations have been performed,
starting with different initial conditions and for different values of the system parameters,
a, Ω, and η. By way of example, three paradigmatic cases are shown in Figures 11–16.

Figures 11 and 12 illustrate the steady state of a system whose parameters are a = 10,
η = 1/3, and Ω = 0.09. Specifically, Figure 11 reports the last 60 s of the time history of the
system position and velocity, while Figure 12 shows the phase portrait of the system, i.e.,
its two-dimensional representation from the beginning (t = 0) to the end (t = 1000 s) of the
simulation, along with a three-dimensional view of the last 60 s. As expected, the system’s
steady state is characterized by sticking and sliding phases. Figures 13 and 14 illustrate
similar results for a system with parameters a = 10, η = 1/3, and Ω = 0.6, whose steady
state coincides with a sliding limit cycle. Finally, Figures 15 and 16 show the numerical
results obtained for a system whose parameters are a = 10, η = 1/3, and Ω = 0.99. In this
case, the system’s steady state coincides with a sticking limit cycle.
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To sum up, the motion of the systems examined numerically agrees fully with the
predictions that can be made via the reference maps shown in Figure 6. Specifically,
Figures 11 and 12 confirm the stick–slip long-term response for Ω = 0.09, Figures 13 and 14
confirm the continuous sliding long-term response for Ω = 0.6, and Figures 15 and 16
confirm the continuous sticking long-term response for Ω = 0.99.

5. Conclusions

This paper has addressed the dynamics of an elastic system that can slide with friction
over a moving support. In particular, it has investigated the case of a rigid block connected
elastically to a fixed support and with friction to another support which is moving according
to a sinusoidal law. The contact between the block and the moving support is described by
a modified version of Coulomb’s law to account for the short time needed to restore the
sticking contact condition after a sliding phase. Although the system dynamics is highly
non-linear due to the non-linear friction law, the system equation of motion can be solved
analytically in each phase of sticking and sliding. The exact sequence of the sticking and
sliding phases given the initial conditions can be predicted by the means of two simple
criteria that allow for identifying the transition time (if any) between the two phases.

A simulation campaign has been carried out to verify the outcomes of the event-
driven analytical approach presented in the paper and to highlight the effects of the main
system parameters on its long-term dynamic response. The influence on the solution of
three dimensionless parameters has been discussed. They are the ratio Ω between the
frequency of the oscillations of the moving support and the system’s natural frequency, the
ratio η between the kinetic and static friction forces, and finally, the ratio a between the
maximum amplitude of the oscillations of the moving support and a reference length.

Some limit cycles corresponding to continuous sliding or continuous sticking have
been analyzed. The conditions ensuring their existence have also been discussed. In this
regard, we have introduced reference maps showing the partition of the a-Ω plane for the
given values of η into regions corresponding to different expected or possible long-term
system responses. According to the results obtained, it is possible to conclude that once the
system parameters, a, Ω, and η, are known, some characteristics of the system’s long-term
dynamic are foreseeable. The regions in the a-Ω plane for which a continuous sticking
motion or a particular periodic sliding motion can be excluded or may be possible have
been determined. The numerical results have confirmed the analytical predictions.

The analysis of the non-linear dynamics of the elastic systems undergoing frictional
stick–slip motions via reference maps and the event-driven analytical solution presented
in the paper makes it possible to achieve a better understanding of some features of the
long-term dynamic response of such systems. The outcomes obtained may also be useful
for applications, such as those requiring the definition of design criteria to avoid undesired
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jerking motions between components of important safety systems (e.g., seismic protection
systems), with the objective of optimizing their performance.

Future investigations will address the more general case in which forced oscillations
are imposed on both the base and the elastic spring. The influence of a linear dashpot
on the stick–slip dynamics of the considered system will also be investigated. Moreover,
hysteretic models will be considered to study the evolution of the stick–slip phenomenon
in more complex non-linear systems. In addition, future analytical studies will address the
existence of limit cycles other than those considered in this work, as well as the conditions
under which other limit cycles may become possible.
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