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Abstract: The preservation of The Great Mosque of Córdoba (Spain) as a carrier of Andalusian
collective memory requires innovative approaches to assess and maintain its structural health. This
research centers on two non-destructive methods: direct ultrasound testing and rebound hammer.
Laboratory tests were performed on natural stone provided by the primary material supplier for the
Mosque’s restoration and rehabilitation works. Non-destructive and destructive tests were carried
out over 10 ashlars and 100 cubic and prismatic specimens, which were cut from the ashlars. Tests
were conducted in multiple directions to investigate stone anisotropy. Destructive testing indicated
isotropy, but ultrasound test results disagreed. Sensitivity analysis of specimen dimensions affected
result dispersion, but not average properties.
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1. Introduction

The Great Mosque of Córdoba is an architectural masterpiece dating back to the 8th
to the 10th centuries, and it stands as a symbol of Islamic cultural heritage in the Iberian
Peninsula. In 1984, UNESCO designated it as a World Heritage Site [1]. Natural stone,
present in its construction, requires meticulous evaluation and characterization to ensure
its structural integrity and longevity.

Due to the impracticality of extracting specimens from the building, non-destructive
testing (NDT) emerges as a viable alternative for material characterization. However, the
existing literature lacks the strong correlations necessary to interpret the non-destructive
testing results for this specific material. This research centers on two commonly used
non-destructive methods: direct ultrasound tests (USTs) and rebound hammer tests (RHTs).

The primary goal is to validate the UST and the RHT as reliable tools for comprehend-
ing the mechanical attributes of the natural stone present in the Great Mosque. The former
assesses elastic ultrasonic wave propagation velocity, while the latter reflects the stone’s
superficial strength through a rebound index, both of which can be potentially correlated
with the stone’s compressive properties [2].

In this study, the natural stone present in the monument is characterized using NDT
and the resulting values are correlated with the compressive strength obtained through
destructive testing (DT) on the same material [3].
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2. Materials and Methods

The construction of the Mosque was accomplished by repurposing architectural el-
ements from other notable structures, including Roman marble columns and Byzantine
capitals. However, the predominant material used in the majority of the Mosque’s structure
is Córdoba’s freestone, sourced from nearby quarries. This particular stone, known as
biocalcarenite, has a rich historical utilization in the Córdoba region. Several varieties of
biocalcarenites, such as biomicrite, biosparite, and biorudite [4], can be identified, originat-
ing from the Tortonian marine marginal facies within the Guadalquivir Depression. These
varieties consist of amalgamated carbonate deposits with a sandy matrix, notable for their
abundance of fossils and sedimentary microfauna.

Due to the impracticality of procuring samples directly from the Mosque of Córdoba,
10 ashlars of 40× 30× 10 cm3 were provided from one of the region’s quarries, Mármoles y
Piedra Gutierrez [5] (Figure 1a,b), a primary supplier of natural stone for restoration projects
within the Mosque. These ashlars were quarried with the grain orientation intact. As a
result, a hypothesis was formulated suggesting that the stone could display anisotropic
mechanical properties related to the direction of natural compression, specifically the
direction perpendicular to plane A as shown in Figure 1c. To simplify, ‘direction A’ will
be the reference henceforth. The perpendicular directions to planes B and C, denoted
as ‘directions B and C’, also named as ‘⊥ to A’, were initially considered to present an
isotropic behavior.
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1800 kg/m3 to 1850 kg/m3 of dry density was observed for ashlar samples. 
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Figure 1. Ashlars provided by the quarry: (a) an ashlar sample; (b) detail of natural stone surface; and
(c) nominal dimensions of ashlar and specimens (units in cm). The direction of natural compression
is perpendicular to plane A, and both plane B and plane C are oriented perpendicular to plane A.

The experimental campaign utilizing non-destructive tests comprised two
sub-campaigns. The first sub-campaign involved conducting ultrasonic and rebound
hammer tests directly on the ashlars themselves. In the second sub-campaign, various
specimens were obtained via a cutting process, and they were tested with UST and three
different destructive tests: uniaxial compression, three points bending, and split or indi-
rect tensile test. These specimens included both cubic and prismatic shapes with varying
dimensions, as depicted in Figure 1c.

Dry density is a parameter closely linked to porosity, as both metrics assess the
quantity of voids within a given volume. The real and apparent densities were determined
in accordance with the specified technical standard [6]. In the present study, a range from
1800 kg/m3 to 1850 kg/m3 of dry density was observed for ashlar samples.

Three different destructive tests, uniaxial compression, three points bending, and a
split or indirect tensile test, were carried out. A monoaxial testing machine was used and
the tests were conducted following the appropriate technical produce in each particular
test. A summary of the results from the destructive tests is presented in Table 1.
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Table 1. Results from the destructive tests for each test type.

Mech. Prop. Dim. [mm] Direction Mean Value [MPa] STD [MPa]

Compressive strength
( fc)

50 × 50 × 50
A 6.06 0.66

⊥ to A 5.61 1.09

70 × 70 × 70
A 6.33 0.85

⊥ to A 6.00 1.48

Flexural strength ( f f ) 50 × 50 × 300
A 1.9 0.30

⊥ to A 2.0 0.20

Tensile strength ( ft) 50 × 50 × 100
A 0.70 0.08

⊥ to A 0.70 0.08

Furthermore, flexural strength ( f f ) and tensile strength ( ft) exhibit a noteworthy
correlation with compressive strength ( fc). Statistical analyses were conducted to determine
the significance of these correlations, resulting in linear relations (Equations (1) and (2)).

f f = 0.32 fc (1)

ft = 0.11 fc (2)

For the UST, the determination of the propagation velocity of volumetric type P
elastic waves involves initiating an excitation at one point on one side of the specimen and
measuring the time it takes for the elastic wave to reach the opposite side, where a sensor
is placed to detect its arrival. This testing method, commonly referred to as a direct test,
was carried out following the technical recommendation [7]. The velocity is calculated
by dividing the distance between the source and the receiver by the time-of-flight. It is
important to note that in the presence of voids, cracks, defects, etc., the wave may not
travel in a straight path between the source and the receiver. Consequently, the velocity
determined in such cases is considered an ‘apparent’ velocity rather than the actual velocity
value [8]. The equipment provides the receiver signal after the excitation pulse is generated
(Figure 2).
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Figure 2. Illustration of the receiver signal from ultrasonic equipment.

A Pundit Lab system by Proceq was used. Two 54 kHz piezoelectric sensors were
employed, capable of functioning as either the excitation or the receiver probe. These
sensors were chosen to enable inspection over the possible distances. For the ashlar
samples, the direct propagation velocities were determined in three directions, ‘direction A’
and ‘direction B and C’ (‘⊥ to A’), as shown in Figure 3. Due to practical considerations, and
the notably larger surface area in direction A compared with B and C, it allowed for a more
extensive distribution of measurement points: points A, B, C, D, and E in ‘direction A’; point
F in ‘direction B’; and point G in ‘direction C’ (Figure 3b). After the cutting process, the USTs
were conducted on all cubic and prismatic specimens in the three designated directions.

The RHT, often referred to as the Schmidt hammer test, is utilized for assessing the
compressive strength of ashlar surfaces. The tests were conducted in compliance with
the concrete technical standard [9]. This method involves impacting the surface under
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examination with a spring-loaded hammer and then measuring the rebound value or
rebound index (RI) of the hammer to determine the surface’s hardness [10]. The RI is
correlated with the compressive strength of the material. The RIs were determined at
15 points distributed on two opposite faces of ashlar samples (Figure 4), and, from these,
compressive strength of the material was computed.
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3. Results and Discussion

The results of the non-destructive testing (NDT) performed are presented below. Ini-
tially, an evaluation of ultrasonic velocities for both ashlar samples and cubic and prismatic
specimens extracted from ashlar origin is provided. Subsequently, a statistical analysis of
propagation velocities is conducted for cubic and prismatic specimens, considering each
measurement direction. Finally, an analysis of rebound values is carried out to establish a
correlation between a reference value and the material’s compressive strength.

Table 2 shows the mean values and standard deviations of ultrasonic velocities for
the 10 ashlars, organized by measurement direction. These values collectively indicate
an isotropic or low-anisotropy behavior, as observed from both the mean and standard
deviation values. However, the standard deviations indicate that this observation must be
considered with caution.

Table 2. Mean values and standard deviations of direct USTs for each measurement direction.

Direction Mean Velocity (m/s) Standard Deviation

A 2393.2 198.4
B 2312.9 123.8
C 2245.0 121.3

For 100 cubic and prismatic specimens, the velocities of USTs were categorized based
on specimen dimensions and the testing direction, as shown in Table 3. Some notable
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phenomena are discernible. Firstly, these velocities exhibit higher mean values when
compared with the ashlar samples. This can be attributed to a greater concentration of
internal heterogeneity, resulting in increased resistance for the elastic wave pulse to traverse
from the initial point to the final destination. Secondly, the variations in velocities across
different directions raise questions about isotropic behavior. However, it is evident that no
predominant direction exists.

Table 3. Mean values and standard deviations of direct USTs for each measurement direction and for
each size of specimen.

Ashlar Dim. [mm] Direction A Direction B Direction C

50 × 50 × 50 2730.1 (64.6) 2610.4 (103.6) 2506.9 (88.4)
1 70 × 70 × 70 2501.4 (80.6) 2766.7 (56.9) 2739.2 (59.8)

50 × 50 × 300 2617.6 (57.0) 2521.2 (37.9) 2590.2 (108.8)

50 × 50 × 50 2482.0 (100.1) 2426.0 (101.3) 2490.6 (108.4)
2 70 × 70 × 70 2400.7 (59.1) 2544.6 (53.0) 2567.2 (81.7)

50 × 50 × 300 2586.5 (109.0) 2596.3 (31.9) 2506.38 (36.8)

50 × 50 × 50 2453.5 (41.7) 2542.5 (69.7) 2540.8 (85.6)
3 70 × 70 × 70 2384.0 (63.6) 2558.7 (96.2) 2558.1 (78.4)

50 × 50 × 300 2470.4 (65.0) 2547.6 (73.0) 2511.8 (94.6)

In order to compare different measurement directions, Figure 5 shows a statistical
analysis of the results for all specimens. The diagram includes key statistical measures, such
as the median value (indicated by the red line), the 25th and 75th percentiles (represented
by the lower and upper edges of the box, respectively), the extreme values (illustrated as
whiskers), and any outliers (denoted by red crosses). Notably, the dispersion of median
values is significantly lower when contrasted with the range of extreme values for each
measurement direction.
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On the other hand, the results of the RHTs exhibit a degree of consistency in terms of
the compressive strength, even though the RHTs were carried out on different ashlars than
those employed in compression tests of cubic specimens (Table 4). Due to limitations in
the measurement range of the rebound hammer, to determine the compressive strength,
the linear correlation fc = 0.8·RI − 5.017, with an R2 value of 0.76, provided by [11] was
employed, which was developed for a natural stone with similar characteristics.
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Table 4. Results of rebound hammer test and compression strength values.

Mean Value Standard Deviation

Rebound Index (RI) 12.19 1.96

fc from [50 × 50 × 50] mm3 specimens (DirA) 6.06 MPa 0.66
fc from [70 × 70 × 70] mm3 specimens (DirA) 6.33 MPa 0.85
Compression strength from correlation [11] 4.73 MPa 1.57

4. Conclusions

A mechanical characterization based on non-destructive tests of the natural stone
used for the construction of Córdoba’s Mosque (biocalcarenite) was performed, including
ultrasonic tests and rebound hammer tests.

The results presented here can be regarded as a preliminary step toward developing
valid correlations for material inspection and damage detection in The Great Mosque of
Córdoba. These results indicate a consistent mechanical behavior for different specimen
dimensions (ashlars, cubic, and prismatic specimens) and a lack of determined anisotropic
behavior in the tested directions, according to [12,13].

As future work, the authors suggest assessing the mechanical properties associated
with material rigidity, such as Young’s Modulus or G Modulus, and establishing correlations
with wave propagation velocity. Additionally, investigating the impact of surface roughness
and moisture on external surfaces is an interesting aspect to be explored in forthcoming
non-destructive experimental campaigns.
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