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Abstract: The chief goal of the Blood Profiling Atlas in Cancer (BloodPAC) consortium is to pro-
mote collaborative efforts that support the development and implementation of liquid biopsy tests.
Here, we report the results of a pilot study conducted by three BloodPAC members that aimed to
demonstrate a multisite liquid biopsy testing framework using longitudinal blood specimens from
38 patients with metastatic breast cancer. Three laboratories receiving identical samples from two
clinical sites each applied a different targeted sequencing platform to analyze mutations in cell-free
DNA (cfDNA). The resulting mutational profiles reflected common breast cancer alterations, includ-
ing clinically actionable mutations for 40% of hormone- receptor-positive patients. In 12 genes with
shared target regions across sequencing panels, perfect inter-assay concordance was also observed for
mutations detected above the lowest common assay limit of detection. Whole-genome copy number
profiling of cfDNA and circulating tumor cells (CTCs) further revealed marked heterogeneity in copy
number alterations and cfDNA tumor fractions across patients. Additionally, comparison of tumor
fraction and CTC abundance demonstrated the complementary nature of cfDNA and CTC analyses.

J. Mol. Pathol. 2024, 5, 199–214. https://doi.org/10.3390/jmp5020013 https://www.mdpi.com/journal/jmp

https://doi.org/10.3390/jmp5020013
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmp
https://www.mdpi.com
https://orcid.org/0000-0003-3236-8929
https://orcid.org/0000-0003-4597-4901
https://orcid.org/0000-0002-5501-2039
https://orcid.org/0000-0001-8993-5811
https://orcid.org/0000-0001-5353-4338
https://orcid.org/0000-0003-2629-4505
https://doi.org/10.3390/jmp5020013
https://www.mdpi.com/journal/jmp
https://www.mdpi.com/article/10.3390/jmp5020013?type=check_update&version=2


J. Mol. Pathol. 2024, 5 200

Overall, the framework described in this study may serve as a resource for future trials aiming to
identify multimodal liquid biopsy biomarkers to guide clinical care.
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1. Introduction

The ability of cancer cells to seed distant sites and evolve under treatment pres-
sure is widely regarded as a key challenge to effective disease management in breast
cancer [1,2]. Understanding the biological and therapeutic consequences of this spatiotem-
poral heterogeneity is important to developing an appropriate treatment strategy; however,
tissue biopsies provide only a limited view of global tumor characteristics and require
invasive procedures [3,4]. In contrast, liquid biopsies (LBxs) are minimally invasive and
provide the opportunity for repeatable testing as well as the potential to capture tumor-
associated analytes from multiple lesions [5,6]. As such, LBxs are an attractive complement
to guide precision medicine approaches and are the subject of many active pre-clinical and
clinical investigations.

Multiple LBx analytes such as circulating cell-free DNA (cfDNA), circulating tumor
cells (CTCs), and extracellular vesicles (EVs) have displayed clinical relevance in breast
cancer. For example, sequencing of cfDNA has produced mutational profiles reflective
of primary and metastatic lesions [5,7,8] and is being applied to detect ESR1 and PIK3CA
mutations corresponding to FDA-approved targeted therapies [9,10]. The fraction of cfDNA
that is tumor-derived (ctDNA) has also been associated with tumor burden and explored
as both a prognostic and predictive biomarker [11–13]. Similarly, CTC abundance of
5 CTCs per 7.5 mL of blood is associated with both decreased overall and progression free
survival in metastatic breast cancer (MBC) [14]. Molecular profiling of CTCs has further
been applied to assess therapeutically relevant disease features such as endocrine resistance
and an epithelial to mesenchymal transition state [15,16]. Finally, approaches incorporating
multiple analytes are also being tested to overcome limited quantities of tumor-associated
circulating species and maximize the information obtained from a LBx sample [17,18].

With the growing number of LBx platforms in development, generating robust an-
alytical and clinical evidence to demonstrate their validity and utility will be critical for
clinical adoption [19]. However, despite considerable research efforts, only one CTC enu-
meration test and three cfDNA-based tests for ESR1 or PIK3CA mutations have obtained
FDA-approval for indications in MBC [20–22]. A key challenge to bringing more LBx
tests to the clinic has been the lack of standardized guidance to inform appropriate study
designs to support clinical utility, reproducibility, regulatory approval, and reimburse-
ment [23,24]. The increasing complexity of emerging applications, such as characterizing
cfDNA fragment features and CTC phenotypes, could further accentuate the issue.

In response to challenges like this, the Blood Profiling Atlas in Cancer (BloodPAC)
consortium was established in 2016, bringing together stakeholders across academia, pri-
vate foundations, industry, and the government with the goal of aiding the development
and approval of LBx assays to improve patient outcomes [23]. One of the early outcomes of
the consortium was the BloodPAC Data Commons, created as a standardized and secure
repository for LBx data that could provide evidence to bring more LBx tests into routine
clinical practice [25]. To support this effort, BloodPAC members initiated this pilot study to
collect MBC patient samples and perform a multiplatform blood profiling analysis, with
the aim to accumulate real-world data and experience to inform further development of
the Data Commons and guide future clinical development of LBx assays to impact patient
care. Here, we describe a framework for multicenter LBx testing and report genomic
findings from analyses of cfDNA and CTCs in longitudinal blood samples from 38 patients
with MBC.
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2. Materials and Methods
2.1. Patient Population

From 2018 to 2020, the BloodPAC-007 study enrolled patients with breast cancer at
the Walter Reed National Military Medical Center Murtha Cancer Center (WRNMMC
MCC) and Anne Arundel Medical Center (AAMC). Approval for this study was granted
by both the WRNMMC IRB (WRNMMC-2018-0130) and AAMC IRB (AAMC-1109045),
and written informed consent was obtained from all study participants. Eligibility criteria
included individuals aged 18 or older with a diagnosis of breast cancer with metastatic
disease who were starting a new line of therapy at enrollment. Both chemotherapy- and
hormone-therapy-treated patients were eligible.

2.2. Sample Collection

Blood collection was scheduled for cycle 1, day 1 and cycle 2, day 1 of a new therapy.
Additional draws could occur if there was a disease progression or change in treatment
for any reason. These were also collected prior to the first dose in cycles 1 and 2 of each
subsequent therapy, for up to 48 months from study enrollment. At each study visit, three
peripheral blood samples were collected and distributed to laboratories at Foundation
Medicine (FMI), Novartis Institutes for Biomedical Research (NIBR), and the University
of Southern California (USC). Whole blood collected in 10 mL Streck tubes was shipped
at room temperature to FMI and USC. For NIBR, whole blood in a 10-mL EDTA tube was
processed within three hours of blood collection to isolate plasma via centrifugation at
room temperature at 1600× g for 10 min followed by 3000× g for 10 min. The plasma was
then frozen at −80 ◦C in 2 mL cryogenic vials and shipped on dry ice.

2.3. FMI FoundationACT Assay

Sample processing, library preparation, and sequencing analysis were performed
in accordance with the FoundationACT assay (previous generation of FMI’s current on-
market liquid CGP assay, FoundationOneLiquid CDx [26]) by Foundation Medicine’s
CAP, CLIA laboratory [27]. A minimum of 20 ng of extracted cfDNA was used for library
construction and adaptor-ligated libraries were created using custom molecular and sample
barcodes. Solution hybrid capture was performed using a set of biotinylated oligonucleotide
baits designed against 62 genes. Captured libraries were purified and normalized to
1.05 nmol/L prior to being pooled and sequenced using the Illumina HiSeq platform
(Illumina, San Diego, CA, USA) with 150 bp paired-end reads to a depth of >5000× unique
coverage. Sequencing reads were processed using a previously described computational
pipeline [27], utilizing custom methods to correct errors <0.05%, and designed to detect
base substitutions (down to 0.1% allele frequencies), short insertions and deletions (down
to 1%), rearrangements/fusions (down to 1%), and copy number amplifications (>20%).
Filtered variants were annotated as known or likely functional driver alterations based
on presence in the Catalogue Of Somatic Mutations In Cancer (COSMIC) [28] or general
knowledge in the scientific literature, while all other uncharacterized alterations were
classified as variants of unknown significance.

2.4. NIBR PanCancer ctDNA Assay

Plasma processing, library preparation, and sequencing analysis for the cfDNA Pan-
Cancer assay were performed as previously reported [29]. cfDNA was extracted from
approximately 4 mL of plasma (QIAamp Circulating Nucleic Acid Kit, QIAGEN, German-
town, MD, USA) per the manufacturer’s instructions. Sequencing libraries were constructed
(TruSeq Nano Library Preparation Kit, Illumina, San Diego, CA, USA) and enriched using
a custom designed set of biotinylated oligonucleotide baits designed for the exons and
selected introns of 567 genes (2.9 Mb). Capture libraries were normalized, pooled, and
sequenced on the Illumina HiSeq platform (Illumina, San Diego, CA, USA) to a target
depth of >1000× unique coverage. The sequencing data were aligned to the hg38 reference
human genome and variant calling was performed using MuTect v1.1.7 [30] for single
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nucleotide variants (SNVs), Pindel v1.0 [31] for short insertion/deletion (indel) events,
and PureCN v1.16.0 [32] for copy number alterations (CNAs). SNVs and indels were
compared to reference databases to remove germline events and sequencing artifacts and
then annotated using dbSNP v146 [33], COSMIC v70 [28], and the SnpEff tool v4.3c [34].

2.5. USC High-Definition Single Cell Assay (HDSCA) and Thermo Fisher Oncomine Breast
cfDNA Assay v2

Blood processing, cfDNA extraction, and CTC detection were carried out using the
previously published HDSCA workflow [6,35]. In brief, blood tubes were centrifuged to
separate the plasma and cellular fractions. The plasma was stored for cfDNA extraction
using the QIAamp Circulating Nucleic Acid Kit (QIAGEN, Germantown, MD, USA). The
cellular fraction underwent erythrocyte lysis to obtain nucleated cells, which were plated onto
glass slides. Slides were stained and imaged using a four-channel immunofluorescence assay
consisting of DAPI, pan-cytokeratin, vimentin, and CD45/CD31. The immunofluorescence
images were segmented and clustered to identify rare cell candidates for review. CTCs were
manually enumerated by a trained analyst and defined as nucleated, cytokeratin positive cells.
For patient 12, CTCs that were also positive in the CD45/CD31 channel were included in the
total CTC count based on the presence of clonal alterations in these cells.

Copy number alteration (CNA) profiling was performed using a low-pass whole-
genome sequencing (lpWGS) method [6,36], with 5 ng of extracted cfDNA and 50 ng of
single cell whole-genome amplification product used as the input for library preparation for
cfDNA and single cells, respectively. Libraries were sequenced on an Illumina instrument
(NextSeq 500 or HiSeq platform, Illumina, San Diego, CA, USA) using single-end 50 bp or
paired-end 150 bp reads to achieve approximately 0.04× coverage. Sequencing reads were
aligned to the hg19 reference genome, PCR duplicates were removed, binned read counts
were normalized for GC-content, and bin counts across the genome were segmented and
represented as ratios to the genome-wide mean. The ichorCNA package [7] was used to
estimate the fraction of ctDNA based on the whole-genome copy number profiles. This tool
has a reported 91% sensitivity and 100% specificity to detect ctDNA at the tumor fraction
threshold of 0.1.

For SNV detection, targeted sequencing libraries were prepared with 20 ng of extracted
cfDNA as the input and using the Oncomine Breast cfDNA Assay v2 (Thermo Fisher
Scientific, Waltham, MA, USA) according to the manufacturer’s protocol. Due to extracting
only 1 mL of plasma at a time, we were not able to obtain sufficient cfDNA from certain
samples. Libraries were quantified using the Qubit High-Sensitivity dsDNA Assay (Thermo
Fisher Scientific, Waltham, MA, USA) and Ion Library TaqMan Quantitation Kit (Thermo
Fisher Scientific, Waltham, MA, USA), and library quality was assessed using the Agilent
2100 Bioanalyzer with High-Sensitivity DNA assay (Agilent Technologies, Santa Clara, CA,
USA). Libraries were diluted to the recommended 100 pM, pooled for templating using
the Ion 540 kit and Ion Chef instrument (Thermo Fisher Scientific, Waltham, MA, USA),
and sequenced on the Ion S5TM system (Thermo Fisher Scientific, Waltham, MA, USA).
Sequencing data were analyzed using the Torrent Suite Software v5.6.0 and Ion Reporter
v5.6. The Oncomine Breast Liquid Biopsy w1.3 DNA Single Sample workflow was used
with default parameters for variant calling.

2.6. Data Analysis

Variant calls provided by each laboratory were aggregated and matched by sample iden-
tifier. Cancer-related genes were obtained from COSMIC [28]. Clinically actionable variants
were defined as those considered FDA Level 2: Cancer Mutations with Evidence of Clinical
Significance and were obtained from OncoKB v4.2 [37] (Supplementary Table S1). Pearson cor-
relation was used to compare variant allele frequencies (VAFs) reported for pairwise concordant
variants. Plots were generated in R v4.1.2 using the ggplot2 v3.3.6 [38] and ComplexHeatmap
v2.10.0 [39,40] packages.
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3. Results
3.1. Study Workflow

The BloodPAC-007 study enrolled 38 patients from the WRNMMC MCC and AAMC
clinical sites and a total of 107 blood samples were collected and analyzed (Table 1,
Supplementary Table S2). At each testing site, samples were assayed for cfDNA SNVs
and CNAs with FMI using the CLIA-certified FoundationACT assay, NIBR utilizing a
laboratory-developed PanCancer ctDNA assay for both SNV and CNA detection, and USC
using a combination of the Oncomine Breast cfDNA Assay v2 for SNV detection with a
previously published lpWGS method for CNA profiling (Methods, Figure 1). In addition to
cfDNA, USC also applied the enrichment-free HDSCA platform to identify CTCs, which
were subjected to the same lpWGS method for CNA analysis. Each laboratory carried out
the analysis of sequencing data for their own set of samples using the pipeline developed
for the assay used. A final list of variants detected by each laboratory together with patient
clinical data elements, assay protocols, and preanalytical data elements were subsequently
uploaded to the BloodPAC Data Commons.

Table 1. Study-level clinicopathological information.

Title 1 AAMC WRNMMC MCC Total

Patients 18 20 38

Blood draws 51 56 107

Receptor status *
HR+/HER2− 10 11 21
HR+/HER2+ 0 3 3
HR−/HER2+ 0 1 1
HR−/HER2− 7 4 11

Histological subtype
Ductal 13 18 31

Lobular 3 2 5
Other 2 0 2

* One patient excluded from counts due to DCIS and prior mastectomies. One HR+ patient with HER2 status not
available was also excluded. Abbreviations: AAMC, Anne Arundel Medical Center; WRNMMC MCC, Walter
Reed National Military Medical Center Murtha Cancer Center; HR, hormone receptor; HER2, human epidermal
growth factor receptor 2.
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cfDNA and CTC DNA (c).
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3.2. cfDNA Mutational Profiles via Targeted Sequencing

Targeted sequencing was performed on 107 cfDNA samples from 38 patients, with
98 samples analyzed by FMI, 96 analyzed by NIBR, and 23 analyzed by USC
(Supplementary Table S3). Amongst samples, the most commonly detected mutations
in COSMIC genes included SNVs and indels in TP53, FAT3, BRCA2, CDH1, PIK3CA, ESR1,
ARID1A, and RB1, amplification and SNVs in ERBB2, and amplification of MYC (Figure 2a).
Mutations in DNMT3A, TET2, and ASXL1 were also detected at high frequency; however,
these genes have been associated with clonal hematopoiesis (CH) [41] and the analysis
methods used in this study were not set up to exclude variants of hematopoietic origin.
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Figure 2. cfDNA genomic variants detected via targeted sequencing. (a) SNVs, indels, and CNAs in
the 25 most frequently altered COSMIC genes reported by any of the FMI, NIBR, or USC targeted
sequencing assays. Plot displays the collective mutation profile of all samples from each patient. Bar
graph on the right represents the proportion of patients with each type of mutation for individual
genes. Patient ID and receptor type are annotated below the plot. (b) Breakdown of clinically
actionable PIK3CA mutations detected across samples from HR+ patients. Labels denote the number
of samples (patients) with the indicated mutation. (c) Similar to (b), breakdown of samples with
single, multiple, or no clinically actionable ESR1 mutations with additional pie chart showing the
prevalence of each variant amongst total variants detected.

Clinically actionable mutations in PIK3CA and ESR1 were detected across 27/76
(35.5%) samples from 10/25 (40%) HR+ patients. Actionable PIK3CA mutations were found
in twenty-one samples from eight patients, with H1047R being the most common variant,
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followed by E545K and E542K (Figure 2b). Actionable ESR1 mutations were found in nine
samples from four patients, with five out of nine samples harboring multiple mutations
(Figure 2c). Of the total actionable ESR1 mutations detected, those affecting codon Y537
were most common (Y537N, Y537C, and Y537S), followed by mutations encoding the
D538G variant.

3.3. Concordance of Cross-Platform cfDNA SNV Detection

Inter-assay concordance was assessed for 22 samples from 13 patients, which were
analyzed by all three laboratories. In twelve genes with shared target regions across
sequencing panels, nineteen (59%) variants were detected by all three platforms, two (6%)
were detected by two out of three, and eleven (34%) were detected by one out of three
(Figure 3a). All 13 variants detected by only one or two platforms were reported at VAFs
below 0.5% (Figure 3b), which is the lowest common limit of detection (LoD) across assays,
with only the Oncomine Breast cfDNA Assay v2 having an LoD below this at 0.1% VAF.
The 19 three-way concordant variants spanned a wide range of VAFs (0.28–77.80%) and
16/19 were detected above the 0.5% VAF level (Figure 3b). Concordant VAFs reported by
each platform were highly correlated with mean absolute differences ranging from 1.94
to 2.18% VAF (USC and FMI: Pearson r = 0.994, mean difference = 1.94%; USC and NIBR:
Pearson r = 0.993, mean difference = 2.18% VAF; FMI and NIBR: Pearson r = 0.997, mean
difference = 2.04%) (Figure 3c).
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0.5% VAF. (c) Correlation between VAFs reported by each laboratory for pairwise concordant variants.
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3.4. cfDNA Whole-Genome CNA Profiles

In addition to cfDNA mutational profiling via targeted sequencing, copy number
profiling via lpWGS was also performed for 105 samples from 38 patients at USC. Lon-
gitudinal samples from the same patient generally exhibited similar alteration patterns,
while considerable interpatient heterogeneity was observed (Figure 4). Copy number gains
on chromosomes 1q and 8q were amongst the few alterations found in multiple patients.
The whole-genome copy number profiles were also used to estimate the fraction of ctDNA
in each sample. This value varied widely with 38/107 (36%) of samples having a ctDNA
fraction > 0.1. For some patients (e.g., 20, 25, and 3), fluctuations in ctDNA fraction from
>0.1 to <0.1 were observed across visits (Supplementary Table S4).
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while regions of copy number loss are shown in blue. Bar plot displays the ctDNA fraction estimated
from each profile, where the dashed line indicates the 0.1 threshold. Samples from the same patient
are grouped and arranged in chronological order (shown as clinic visits). Patient ID number and
receptor type are also annotated below the plot.

3.5. CNA Profiling in CTCs and cfDNA

Matched cfDNA and CTC CNAs were assessed by lpWGS for thirteen samples from
eight patients (Figure 5a–d, Supplementary Figure S1a–d). Overall, cfDNA whole-genome
profiles closely reflected alterations shared amongst CTCs (Figure 5a–c, Supplementary
Figure S1c,d). In two patients with CTCs and cfDNA from multiple timepoints, alterations
were also consistently detected across samples (Figure 5b, Supplementary Figure S1d).
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We observed cases where CTCs were complementary to cfDNA for CNA profiling.
For instance, subclonal CNAs observed in CTCs, such as losses on chr 3p and 9p in patient
31 and losses on chr X in patient 12, were absent in the corresponding cfDNA profiles
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(Figure 5c,d). Samples from patients 12, 10, and 14 were also cases where CTCs displayed
clonal alterations while cfDNA profiles lacked detectable CNAs (Figure 5d, Supplementary
Figure S1a,b). Along these lines, when comparing CTCs and ctDNA in 37 samples from
the first study visit (cycle 1, day 1 of the initial therapy at enrollment, except for one
patient where the first study visit occurred at cycle 2, day 1), 4/37 (11%) samples contained
detectable CTCs but not ctDNA, while the opposite was true for 5/37 (14%) samples
(Figure 5e).

3.6. Longitudinal LBx Profiles

A longitudinal analysis was performed on 11 patients for whom three consecutive
blood draws were collected at cycle 1, day 1 (C1D1) and cycle 2, day 1 (C2D1) of the initial
therapy at enrollment and at C1D1 of the next line of therapy, typically following a disease
progression event (Supplementary Figure S2). The interval between C1D1 of the first
therapy and subsequent therapy ranged from 44 to 223 days (Figure 6a, Supplementary
Figure S2). Although the absolute levels of ctDNA and CTCs varied across patients and
time, relative changes in ctDNA abundance exhibited a consistent pattern with 10/11
of patients showing a decrease between C1D1 and C2D1 and 9/11 patients showing an
increase between C2D1 and the progression/C1D1 timepoint of the next line of therapy.
CTC levels also followed a similar pattern, although to a lesser extent (5/11 patients showed
decreasing levels between C1D1 and C2D1; 6/11 patients showed increasing levels between
C2D1 and C1D1 of the next line of therapy).
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are shown at the top. VAFs of ESR1 mutations detected in cfDNA are plotted in the middle section.
CTC and ctDNA levels are plotted at the bottom. (PD, progressive disease).

There was one patient in which LBx results revealed therapy-related changes near the
time of disease progression. Patient 20 was an HR+/HER2− patient who was enrolled with
de novo metastatic disease and had targeted sequencing of five consecutive cfDNA samples
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throughout treatment (C1D1 and C2D1 of treatment 1, C1D1 and C2D1 of treatment 2, and
C1D1 of treatment 3). Clinically actionable mutations in the ESR1 ligand-binding domain
were detected at C1D1 of treatment 2, occurring 223 days after starting first-line endocrine
therapy and in all samples thereafter (Figure 6b). Comparison of LBx results with the
clinical timeline further showed the coincidence of ESR1 mutations, rise in ctDNA fraction,
and rise in CTCs in this sample with an initial disease progression event determined via
positron emission tomography (PET) imaging 42 days prior (Figure 6b). A second disease
progression event was also determined using PET imaging after 105 days of second line
therapy (328 days from the first study draw). In samples collected during this period, the
levels of ESR1 mutations, ctDNA fraction, and CTCs were maintained (Figure 6b).

4. Discussion

This pilot study by institutions from academia, industry, and the defense health
agency is aligned with the goals of the BloodPAC consortium and the Cancer Moonshot
Initiative [23]. Execution of the study design demonstrates the feasibility of multicenter
collaborations to collect and distribute clinical samples as well as generate and harmonize
LBx data from different platforms. Though a small number of prior studies have brought
together various groups to conduct non-competitive, cross-platform comparisons [42,43],
this is one of few studies performed using clinical specimens [44]. Our ability to obtain
multiple blood tubes at each study visit enabled testing on identical samples across labora-
tories, thereby reducing variability in the starting material and allowing the use of standard
protocols for individual tests. Ultimately, the results reflect the collective findings of these
platforms in the context of real-world application to heterogeneous MBC patient samples.

It is well accepted that mutational profiling of cfDNA can provide information on
variants harbored by a tumor, including clinically actionable variants, and has led to cfDNA
testing becoming more prevalent for treatment selection in MBC [9,10]. Our targeted se-
quencing results were consistent with this notion, with several recurrently altered breast
cancer genes [45] commonly mutated across samples and actionable mutations correspond-
ing to FDA-approved therapies detected in 40% of HR+ patients. Although the concordance
analysis encompassed a limited number of shared target regions amongst the three se-
quencing panels, we observed perfect inter-assay agreement for variants detected above
the 0.5% VAF level, which was the lowest common LoD across assays. All variants detected
by only one or two of the three platforms were reported below this level, which is consis-
tent with results from prior studies showing higher discordance rates in low frequency
(<0.5–1% VAF) variants [44,46]. Meanwhile, the close agreement between VAFs reported by
each platform for concordant variants has not explicitly been examined in similar studies
with patient samples. Together, these results are encouraging as they demonstrate high
concordance across a wide range of mutant VAFs found in MBC specimens.

Few groups have performed parallel analyses of CTCs and cfDNA in MBC [47,48],
let alone genomic analyses from the same blood tube [6,49,50]. The cases analyzed in this
study exemplify the complementary nature of CTC and cfDNA profiling, particularly in
terms of overcoming low CTC or ctDNA abundance and capturing subclone heterogeneity.
While both CTCs and cfDNA were available in most samples at the first study visit, 24%
only contained one analyte, with similar proportions of samples having either CTCs or
ctDNA. The relationship between CTCs and ctDNA is potentially interesting given the
current understanding of their biological and clinical relevance. CTCs are hypothesized
to drive seeding of new metastatic sites, possibly enabled by enhanced capabilities for
entering and/or surviving in the circulatory environment [51], and are an established
prognostic biomarker in MBC [52]. On the other hand, ctDNA is largely attributed to DNA
fragments released by apoptotic tumor cells, theoretically those from the therapy-sensitive
tumor population during treatment [53], and is also associated with prognosis and tumor
burden [11,47]. Despite different driving factors being associated with the presence of
CTCs and ctDNA in the blood, their levels seem to somewhat correlate [11,47] and the
significance of discordant cases remains to be elucidated.
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The longitudinal analysis included a subset of 11 patients with varying receptor
subtypes and therapeutic regimens but identified a consistent pattern of acute decrease
between the first two cycles of therapy followed by an increase in ctDNA and CTCs near the
time of disease progression. A small number of prior studies have attempted to correlate
early changes in CTCs and ctDNA with treatment response, but complexities associated
with the dynamics of these species have hampered validation of such an approach [54–56].
Serial blood collection at regular intervals throughout the duration of treatment could
better assess changes relevant to therapeutic response and is being adopted by some newer
clinical trials [57,58].

The index case illustrates the feasibility of a multianalyte LBx approach for disease
monitoring and therapy selection. Increases in actionable ESR1 mutation VAFs, ctDNA
fraction, and CTC abundance all coincided with the timing of the first disease progres-
sion and levels of these analytes were also sustained between the start of second-line
endocrine therapy and a second disease progression event. The most abundant ESR1
mutation detected, Y537S, confers constitutive, ligand-independent activation of the ER
and has been associated with exposure to aromatase inhibitor (AI) therapy [59–61]. The
BOLERO-2 trial, which demonstrated benefit from exemestane plus everolimus compared
to exemestane alone, also showed decreased progression-free survival for patients with
the Y537S mutation compared to those with wild-type ESR1 in the combination arm
(8.48 vs. 4.17 months) [62]. More recently, ESR1 mutation status was FDA approved to
guide the use of the oral selective ER degrader, elacestrant, following progression on at
least one line of endocrine therapy [21,63]. Taken together, the LBx results in this ex-
ample would suggest the emergence of AI-based therapy resistance and benefit from an
alternative second-line regimen. As LBx tests for clinically actionable biomarkers gain
approval, optimizing the timing of testing for therapeutic decision making will become
increasingly important.

A limitation of this study was the lack of matched WBC sequencing or the use of
bioinformatic methodologies to identify CH variants. At study inception, standardized
approaches to deal with these variants in cfDNA mutational analyses were not widely
established. However, given recent evidence [41,64,65], groups such as the BloodPAC con-
sortium have created formal guidance on handling CH variants [24]. Newer bioinformatic
methodologies are also being developed to classify tumor-derived versus WBC-derived
variants without the need for WBC sequencing [29,66]. The high prevalence of alterations
in DNMT3A, TET2, and ASXL1 observed in this study further underscores the importance
of accounting for CH variants in cfDNA mutational analyses. We also acknowledge that
the use of assays with sequencing panels ranging from 12 to 600 genes limited an extensive
concordance assessment and more focused studies for specific variants of interest should
consider the appropriate assays and patient population needed to conduct such compar-
isons. Other limitations of this study include the lack of matched tissue sequencing for
comparison with detected plasma variants, which could have aided in resolving discordant
calls and allowed exploration of tissue-plasma concordance across longitudinal samples.
Lastly, the relatively small and heterogeneous patient population did not enable meaningful
associations with clinical outcomes.

In conclusion, this study demonstrates a cooperative framework for conducting multi-
center LBx studies on clinical samples. Our findings describe the different types of hetero-
geneity observed in MBC patients using multianalyte, multiplatform testing and could be
leveraged for future trial designs to identify comprehensive LBx biomarkers to guide clini-
cal care. Integration of newer LBx assessments, including cfDNA fragmentomics [67,68]
and analyses of cancer-associated Evs [69,70], could also be explored to harness addi-
tional disease-related information contained in samples collected from patients with MBC.
This evolving landscape of novel approaches to study diverse LBx analytes and biofluids
should continue to enable progress towards minimally invasive, multidimensional, and
personalized cancer profiling.
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