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Abstract: The surface chemistry of cesium lead halide perovskite nanocrystals has been elaborately
studied in recent years and has proved the critical role of carboxylic acids and amines in the formation
and stability of the nanocrystals. Specifically, a slight change in the concentration and ratio of the
frequently used oleic acid and oleylamine critically influences the resultant phase and physical
properties. Thus, understanding the delicate surface of cesium lead halide perovskite nanocrystals
mainly relies on chemical bonding and the dynamic ligand environment of these two organic species.
In this aspect, this review summarizes experimental findings about the critical role of oleic acid
and oleylamine on the nucleation, growth, stability, phase, and morphology of cesium lead halide
perovskite nanocrystals and their effect under different circumstances.
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1. Introduction

Organic-inorganic hybrid perovskite (OIHP) and pure inorganic cesium lead halide
perovskite nanocrystals (Cs LHP NCs) possess outstanding optical properties for several
kinds of applications [1–4]. In particular, a narrow photoluminescence (PL) spectrum
width, tunable optical spectra, and easy synthesis approaches result from Cs LHP NCs
(CsPbX3 NCs, X = Cl, Br, I), positioning them as prominent candidates for optoelectronic
applications. Moreover, a tunable bandgap from 1.77 to 3.1 eV is obtained by carefully
tuning the halide composition [5]. Figure 1 shows a schematic representation of the surface
termination of the CsPbBr3 NC lattice and a representation of colloidal CsPbX3 NCs and
their PL spectra. Countless articles deal with synthesizing and fabricating Cs LHP thin
films using solution-processing methods [6–8]. The high photoluminescence quantum
yield (PLQY) of Cs LHP NCs is related to several factors, including the nature of precursors,
halide concentration in solution, synthesis methods, organic ligands used in the reaction,
and the composition of the finally formed NCs [9–11]. The synthesis of perovskite NCs
through solution-processed methods has been accelerated to explore the possibilities of
preparing them with different functionalities and morphologies. The ionic Pb-X bond,
stronger ionic interaction of Cs+ ions with a PbX6 framework, and lower lattice energy
result in Cs LHP NCs, which are very sensitive to ligand interaction [12–14]. Because
of their ionic nature, the synthesis of LHP NCs in solution is fast, but the kinetics of the
formation mechanism are less studied [15–17]. Moreover, the surface properties of Cs LHP
NCs differ from the traditional II–VI and IV–VI chalcogenide semiconductor quantum
dots (QDs). For example, unlike CdSe or PbS QDs, the surface of the CsPbX3 NCs is given
as [CsPbX3] [PbX2] {AX}, where A = oleylammonium and X = halides and/or oleate [18].
Irrespective of the defect tolerance, the freshly prepared Cs LHP NCs have surface defects
due to the deficiency of Pb2+ and halide ions. These defects must be passivated with cationic
and anionic ligands like aliphatic amines (i.e., oleylamine (OAm)) and carboxylic acids
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(i.e., oleic acid (OA)). These organic molecules bind to the surface of Cs LHP NCs, forming
a protective layer. In general, ligands play an active role in controlling the size, shape, and
polydispersity of NCs. Additionally, they provide stability and rule their surface properties
and reactivity. Moreover, the selection of solvents and ligands could influence the reaction
rate and growth of the Cs LHP NCs [5,19,20]. It is well known that OA and OAm are
suitable for preparing Cs LHP NCs using hot-injection and ligand-assisted reprecipitation
(LARP) methods. In the presence of amines and carboxylic acids, the optical properties and
phase formation of perovskite NCs are affected. Importantly, the role of carboxylic acids
and amines in the structural framework of Cs LHP NCs is being characterized by different
spectroscopy techniques by several research groups. Among others, binary ligands system
such as oleic acid (OA) and oleylamine (OAm) play a significant role in stabilizing Cs
LHP NCs and enhancing their optical properties. The ionized state of these ligands offers
multiple roles in providing surface passivation and the dissolution of precursors. Even
in NC films, it is important to understand the critical role of OA and OAm to elucidate
optoelectronic devices’ charge transport and efficiency. Although these two ligands are
extensively investigated in preparing traditional semiconductor NCs, understanding their
chemistry is essential because of the unique surface properties of Cs LHP NCs. In particular,
the binding of OA and OAm to nanocrystals (NCs) is highly susceptible to the solvent
used during the purification process. Compared with their interaction with traditional
semiconductor NCs, they are more labile on the Cs LHP NCs surface. This is also helpful in
the ligand-exchange approach [21] to improve the optical properties and the efficiency of
devices like LEDs, solar cells and photodetectors [20,22–25]. There are different strategies
used to introduce and eliminate the OA/OAm ligand pair that significantly influence
the structural and optical properties of Cs LHP NCs. For instance, an excess of OAm
could turn the CsPbBr3 NCs into the lead-depleted non-luminescent perovskite phase,
Cs4PbBr6 [26,27]. Also, the excess of ligands could induce different morphologies in Cs
LHP NCs.
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Figure 1. (a) Schematic representation of surface termination of a CsPbBr3 NC lattice. Reprinted 
from Ref. [4]; (b) CsPbX3 NCs with different emission colors under UV-light illumination; and (c) 
PL emission spectra of CsPbX3 NCs with respect to their composition. Reprinted with permission 
from Ref. [15] Copyright@ Royal Society of Chemistry. 

OA and OAm also direct the self-assembly of NCs to form well-ordered thin films 
[28,29]. The Bronsted acid–base equilibria between OA and OAm greatly influence the 
synthesis and assembly of Cs LHP NCs. Also, the presence of these ligands on the NC 

Figure 1. (a) Schematic representation of surface termination of a CsPbBr3 NC lattice. Reprinted
from ref. [4]; (b) CsPbX3 NCs with different emission colors under UV-light illumination; and (c) PL
emission spectra of CsPbX3 NCs with respect to their composition. Reprinted with permission from
ref. [15] Copyright@ Royal Society of Chemistry.

OA and OAm also direct the self-assembly of NCs to form well-ordered thin films [28,29].
The Bronsted acid–base equilibria between OA and OAm greatly influence the synthesis
and assembly of Cs LHP NCs. Also, the presence of these ligands on the NC surface plays a
key role in charge transport properties. The inclusion or removal of OA and OAm is useful
in tuning the structural and optical properties of the Cs LHP NCs. A few research groups
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have spectroscopically confirmed the specific attachment and structural transformation
of Cs LHP NCs under the influence of OA and OAm [30,31]. On one hand, these ligands
show excellent surface capping properties due to their large size. On the other hand,
large ligands strongly hinder the charge transport properties in NC films. Therefore, a
common approach used in chalcogenide QDs to enhance the performance of optoelectronic
devices is to carry out a ligand exchange with shorter ligands to improve charge carrier
mobility [22,23,32,33]. To understand more about the crucial role of OA and OAm, this
review summarizes important contributions rendered by these binary ligands to the growth,
physical, and chemical properties of colloidally synthesized Cs LHP NCs.

2. Significance of Oleic Acid (OA) and Oleylamine (OAm) in the Formation and Stabilization
of Cs LHP NCs

Capping ligands are essential for synthesizing, growing, stabilizing and fabricating
densely packed, structured, super-lattice NC films. Figure 2 shows CsPb(Cl, Br)3 NC syn-
thesis using hot injection and the ligand-assisted room-temperature precipitation method
(LARP). According to Protesescu et al., who first demonstrated the hot-injection synthesis
of Cs LHP NCs, OA and OAm are essential for dissolving the precursors and stabilizing the
resulting NCs [34]. In the LARP approach, adding OA and OAm enhances the solubility
of the precursors up to 50 times in dimethyl formamide (DMF) [5]. Also, to increase the
reaction temperature, the concentration of OA/OAm is essential for dissolving PbX2 [35].
Since ligands play a critical role in the stabilization and properties of any NC, it is essential
to know their fundamental role in remodifying the surface of Cs LHP NCs. The reactivity
of Cs LHP NCs is much larger than that of II–VI or IV–VI chalcogenide semiconductor NCs.
Therefore, the attachment of OA and OAm is more crucial in Cs LHP NCs for improving
stability. This is mainly attributed to the extreme ionic character of the LHP NCs. The ionic-
ity (difference in Pauling electronegativity) of Cs-X (~1.9–2.4) and Pb-X (~0.8–1.3) is much
larger than that of chalcogenide semiconductors like (Pb/Cd)-(S/Se/Te) (~0.2–0.9) [36].
Higher ionicity in bonds reduces the activation energy required for ion migration within
the structure, thereby increasing reactivity values. Here, ligands must be used to minimize
reactivity by avoiding ion migration, in which an LHP NC releases or captures species from
the environment.
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In the hot-injection method, the high-temperature synthesis of Cs LHP NCs is typically
carried out in the presence of OAm and OA and a non-coordinating solvent, 1-octadecene
(ODE) [37]. Here, a preheated solution of Cs-oleate is injected into the PbX2/OAm/OA
mixture, and the extremely fast crystallization leads to the formation of Cs LHP NCs. In
the LARP method, high-boiling-point solvents (i.e., DMF and dimethyl sulfoxide (DMSO))
are used as solvents of the precursors at room temperature. Here, irrespective of the type
of solvents, OAm and OA are commonly used to stabilize NCs, but they have different
roles. Generally, OAm enhances the dissolution of precursors and controls the nucleation
and growth of NCs in solution, whereas OA avoids the agglomeration of the synthesized
NCs [38]. A density functional theory (DFT)–based calculation indicates that the chain
length of OA and OAm is estimated as 24.34 and 23.85 A◦ [39]. This longer chain length
of OA/OAm pair greatly influences the structural and morphological properties of Cs
LHP NCs.

According to HSAB theory, Pb2+ is an intermediate Lewis acid, expected to interact
with hard bases like oleate (OA−) and OAm. Therefore, the interaction between OA−,
OAm and Pb2+ results in (1) the direct binding of OAm with Pb2+ through donating
lone-pair electrons from nitrogen, (2) the direct binding of OA− with Pb2+ to form a Pb-
oleate complex, and (3) the formation of Pb-oleate coordination due to the substitution of
halides [40]. However, an acid–base reaction between OA and OAm occurs during the
synthesis. Here, OAm is protonated to form an oleylammonium cation (OAm+) and OA
deprotonates to form an oleate anion (OA−), as shown in Equation (1). A dynamic acid–
base equilibrium between OAm+ and OA− occurs, forming a hydrogen-bond acid–base
pair. The equilibrium between OAm and OA can be represented by Equation (1) [27].

R-NH2 +R-COOH 
 R-NH+
3 +R-COO− (1)

Thus, the resulting OAm+/OA− ligand pair forms stable colloidal Cs LHP NCs
through this dynamic ligand binding effect [38]. In detail, the OAm+ binds with surface
halides by hydrogen bonding, whereas OA− binds with the uncoordinated surface Pb2+

or Cs+ and forms Pb-O or Cs-O bonds [41]. Later, it was observed that the OAm+/OA−

ligand pair plays a critical role in controlling the structural and optical properties of Cs LHP
NCs. Moreover, the metal–ligand interaction in Cs LHP NCs is not strong enough when
OAm and OA ligands are used separately. The experimental results from hot-injection and
LARP approaches indicate that only using OA does not lead to the synthesis of Cs LHP
NCs. In contrast, employing OAm alone leads to the synthesis of Cs LHP NCs, but these
NCs exhibit reduced stability compared to the OA/OAm-capped NCs [42–44].

2.1. Structural Modification of Cs LHP NCs Using OA/OAm Ligand Pair

The OAm/OA ligand pair plays an active role in the synthesis and passivation of Cs
LHP NCs. The OAm/OA ligand pair can be located between NCs to stabilize the colloids
sterically [30,45–47]. However, OAm and OA show a different type of interaction with LHP
NCs, which can dramatically affect the LHP stability. OAm+ cations can partially replace
the Cs+ from the structure of Cs LHP NCs or cap the Cs+ vacancies to control the phase,
morphology, and dimensions of the Cs LHP NCs. Therefore, OAm+ can reconstruct PbX4

2−

octahedra by stabilizing the {110} facet [48], which strongly influences the formation of
the perovskite phase [49]. It should be noted that the unprotonated OAm can donate
two electrons to the metal center, which also serves for passivation. Moreover, alkylam-
monium ions can also interact with halide on the surface of the LHP NCs to immobilize
them [50]. The concentration of protonated OAm+ can be mainly enhanced at lower pH by
increasing the concentration of OA [27].

While OAm+ substitutes Cs+, the carboxylate group in OA− can bind with Pb2+ by
partially removing the halides [40], leading to a loss of stability. If the deprotonation of OA
is hindered, for example, through surface-binding ligands such as ionic liquids, surface
passivation is enhanced [51]. Also, OAm+ can degrade the NCs by removing lead-oleate
from the surface through the formation of an OA/OAm ligand pair [52,53]. Due to the
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surface interaction of LHP NCs with the OA/OAm ligand pair being relatively weak,
their stability in solution is compromised. Consequently, they exhibit outstanding optical
properties over short periods.

Despite the substitution of Cs+ ions with incoming OAm+ ions, the surface termination
of Cs LHP NCs is predominantly associated with the presence of metal halides: either PbX2
or CsX termination [54]. Through experimental and theoretical model analysis, Ravi et al.
proposed that CsBr terminates the surface of the CsPbBr3 NCs. Concurrently, OAm+ ions
also participate in hydrogen bonding interactions with the surface bromide ions [55], as
confirmed by X-ray scattering and NMR [56,57]. In general, varying the concentration of
OA and OAm drastically alters the optical properties, morphology, and crystalline phase of
the Cs LHP NCs. In addition to these, the solubility of PbX2 is also affected concerning the
concentration of ligands. For example, increasing the concentration of OA/OAm in the
reaction enhances the precipitation temperature of PbBr2 up to 290 ◦C [27].

Compared with the mere addition of OA or OAm, the OA/OAm ligand pair improves
the PL properties. Here, the dynamic equilibrium between OA and OAm generates a shell
around the NCs, which enhances the PL intensity. Interestingly, when a pre-synthesized
halide salt of OAm (i.e., OAmBr) is directly used as a reactant, the resulting CsPbBr3 NCs
show a near-unity PLQY [9]. Similarly, different kinds of long-chain ammonium halides
help to promote the optical properties of Cs LHP NCs [58]. The post-addition of OAmBr
also alters the morphology and resists the phase transformation of CsPbBr3 NCs [59]. It
should be noted that the vapor pressure values of OAm and OA are ~10 and ~103 Pa
at 120 ◦C. However, this does not affect the removal or evaporation of these ligands in
films [38].

As stated before, spectroscopic observations are indeed helpful in exploring the ex-
istence of OA and OAm with Cs LHP NCs. The bonding nature of OA and OAm can
be explored through core-loss electron energy loss spectroscopy. Using this method, Ki-
rakosyan et al. found the σ* peak at 292 eV for the OAm-capped NCs and the π* feature
of the C K-edge of OAm [49]. NMR also helps to identify the interaction of OA/OAm
with the Cs LHP NCs. Because of the coordination between ligands, the corresponding
resonance appears broader and shifted compared to their spectrum in the free state [54].
Also, the condensation reaction between carboxylic acid and amine results in amide forma-
tion, which is detected from the appearance of a peak at δ~3.10 ppm [60]. The dynamic
equilibrium between OA and OAm in Cs LHP NCs is schematically given in Figure 3.
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The interaction of OA/OAm with Cs LHP NCs’ surfaces can be detected and confirmed
through 1H-NMR analysis. The OA/OAm-capped LHP NCs usually show a peak at
~1.66 ppm owing to the existence of β-CH2 groups. The free OAm on the surface reveals an
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upfield resonance at δ = 5.55 ppm, whereas the bonded OAm shows a downfield resonance
at δ = 5.68 ppm [30,49]. The protonation and deprotonation between this ligand pair could
be observed from the α1-CH2

1H signal at 12.16 ppm. Furthermore, the protonation of
OAm by OA and halo acids can be confirmed through the downward shift of the α–CH2
resonance in the NMR spectra of the OAm [61].

Figure 4 provides a schematic representation illustrating the modification of OAmBr
on the surface of CsPbBr3 NCs. Additionally, it includes images of the OA/OAm mixture,
the chemical structure of oleylammonium oleate, and their respective 1H-NMR spectra.
Although the OA/OAm ligand pair serves as a capping agent, the combination of OA and
OAm is also associated with surface Pb2+ etching when OAm and OA are protonated and
deprotonated, respectively. As a result, the acid–base equilibrium in the solution is broken
and becomes immobilized within the ligand shell. [49]. Also, OA− could coordinate with
Pb2+, but the reaction kinetics is slower than that of OAm with Pb2+ [40].
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2.2. Morphological Changes of Cs LHP NCs in the Presence of OA/OAm

The structural influence of the OA/OAm ligand pair on Cs LHP NCs also leads to the
induction of morphological changes. Apart from reaction conditions such as temperature
and precursors, the concentration of the OA/OAm ligand pair can produce different
morphologies [62]. It is well known that OA and OAm preferentially bind on the Cs-Br
and Pb-Br terminated NC surface. The concentration of OA/OAm should be optimal
to dissolve the PbBr2, but an excess of concentration could dissolve partially Cs LHP
NCs [35]. Therefore, it is essential to meticulously control the concentration and ratio
of the OA/OAm ligand pair to achieve a narrow distribution of a specific morphology.
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For example, upon reaching the optimal concentration of the OA/OAm pair ligand for
solubilizing PbBr2, a narrow size distribution of CsPbBr3 nanocubes is observed [27]. The
competition between Cs+ and OAm+ dramatically accelerates the growth of Cs LHP NCs
with different morphologies. Using halo acids such as HCl, HBr, and HI results in the
formation of nanowires (NWs) and nanosheets (NSs) [61,63]. Here, the protonation of
OAm by halo acids sterically influences the growth conditions, which direct different
morphologies. The advantage of using halo acids is that they can readily supply the
halide ions, which react with cationic species. It should be noted that the formation
of halo acids also occurs when PbX2 reacts with OA, which can also influence the NC
morphology. Additionally, the protonation of OAm by halo acid (HBr) slows down the
growth of NCs in the vertical direction, which leads to the control of the thickness of the
CsPbBr3 nanoplatelets (NPLs) [64]. This kind of thickness control in CsPbBr3 NPLs has
also been achieved by supplying halide (i.e., Br−) to the OAm+ ions in the presence of
benzoyl bromide [65]. Furthermore, with respect to the concentration of halo acids, the
phase transformation of CsPbBr3 to CsPb2Br5 is demonstrated [66].

As stated earlier, it is possible to achieve different morphologies of Cs LHP NCs by
simply varying the molar ratio of the OA/OAm ligand pair. Li et al. have observed the for-
mation of CsPbBr3 NSs with a low amount of OA, whereas the formation of NWs is favored
with a high amount of OA [67]. According to the authors, the high presence of OAm disfa-
vors the growth of NCs in the (110) plane, which directs the formation of NPL assembly. In
contrast, Almeida et al. have observed the formation of NPLs when the concentration of OA
increases [27]. With high OA concentration, the acid–base equilibrium shifts towards OAm
protonation, which directs NPL formation [36]. Ji et al. have synthesized CsPbBr3 NCs
(NSs and NWs) with different morphologies by simply varying the ratio of OA/OAm [68].
Here, uniform NW distribution is achieved using an OA/OAm ratio of 2. Interestingly,
Li et al. have synthesized ultrasmall OA/OAm-capped CsPbBr3 QDs (~4.5 nm) with high
exciton binding energy (Eb = 268.7 meV) using a high OA concentration without 1-ODE [69].
However, by varying the concentration of OA/OAm in the presence of 1-ODE, Liang et al.
achieved QDs (2.4 nm) for the ratio 0.6 mL/0.3 mL, whereas NPLs and NSs morphologies
were achieved for the ratios 0.5 mL/0.5 mL and 0.2 mL/0.8 mL [70]. Although these inves-
tigations deal with the influence of ligands, variation in the reaction temperature could
also significantly influence the morphology of Cs LHP NCs. Zhang et al. found that under
optimized experimental conditions, the formation of CsPbBr3 NWs takes place at 150 ◦C,
whereas over 180 ◦C is required to synthesize CsPbI3 NWs [71]. In this case, with respect to
the reaction time, the morphological conversion of CsPbBr3 NCs from nanocubes, NWs,
NSs and larger size crystals is observed. The formation mechanism of the NWs of Cs LHP
NCs consists of different postulates such as dipole-driven attachment, template-directed
growth, surfactant-directed growth, seed-mediated growth, etc. Additionally, the modifi-
cation in morphology can be achieved irrespective of the synthesis method followed. For
example, Seth et al. have varied the concentration of OA/OAm to synthesize CsPbX3 NCs
in toluene using the LARP method [43]. In this study, it is observed that a higher concentra-
tion of OAm (70 µL) leads to larger nanocubes, whereas a lower concentration (20 µL) leads
to the formation of NR morphology. Interestingly, under prolonged reaction time, these
NRs are converted to NWs, which clearly emphasizes the influence of solvents and ligands
on morphology transformation. Most of the synthesis protocols of the NWs of Cs LHP NCs
are accompanied by OA/OAm ligand pair in the presence of various solvents and ligands.
This includes LARP [72], hot injection [71], ultrasonication [73], microfluidic reactor [74],
etc. Moreover, this kind of NW can also be achieved through a post-synthetic treatment
approach. For example, Yang et al. have achieved ultrathin CsPbBr3 NWs (2.5 nm width)
by post-synthetically treating Cs4PbBr6 NCs with PbBr2 in short-chain ligands (hexanoic
acid, octylamine) [75]. Here, it is proposed that the PbBr2-ligand intermediate, which serves
as a lamellar template in the reaction, direct this NWs formation. Similarly, Fanizza et al.
have achieved different morphologies of CsPbBr3 NCs (nanocubes, NPLs, NWs) through
the post-synthetic addition of OA and OAm [76]. Generally, the post-synthetic surface
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modification of Cs LHP NCs is influenced by several parameters, such as ligands, the
polarity of the solvent, temperature, light, pressure, etc. [77]. The formation of different
morphologies of CsPbBr3 NCs under the post-addition of OA and OAm is schematically
provided in Figure 5. Other than this, replacing OA/OAm with short- or long-chain ligands
also critically influences the morphology of the Cs LHP NCs [78]. For instance, Pan et al.
have modified the chain length of the amine and carboxylic acids in place of OA/OAm
in the reaction [31]. In this case, at 170 ◦C, it was found that decreasing the chain length
of carboxylic acids leads to the formation of nanocubes with different sizes, while in the
case of amines, NPLs with different thicknesses are achieved. A similar kind of approach
using the solvothermal synthesis method (at 100 ◦C) results in the formation of NWs with
different aspect ratios [79]. Along with morphology variation, the thickness of the NWs
could be controlled by varying the chain length of the acid/amine in the reaction, which
results in NWs with a high PLQY (up to 77%) with significant shifts in the absorption and
emission spectra [80]. These results clearly envisage the critical role of the acid/amine
pair concerning the morphological variation of Cs LHP NCs. When OA is replaced by
a fatty acid—for example, olive oil, the nanocubic morphology of Cs LHP NCs can still
be achieved [81]. This is because, at high temperatures, the OA from olive oil produces
Cs-oleate and Pb-oleate in the reaction medium [82].
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Figure 5. Schematic representation of post-synthetic modification of CsPbBr3 NCs in the presence of
OA and OAm. Reprinted with permission from ref. [77] Copyright 2022 American Chemical Society
(The results in the image are based on ref. [76]).

The inclusion of excess OA also favors the improvement of PL properties, because the
addition of OA reduces the desorption of oleate ions, enhancing the PL characteristics [83].
Despite their equal contribution, it was found that high polar solvents such as acetone
selectively remove OAm+ from the NC surface, leaving OA− on it [31]. Thus, weakly
bounded OAm+ ions direct the structure and morphology of Cs LHP NCs. At the same
time, OA remains a dense layer on the surface and stimulates the two-dimensional (2D)
growth pattern to form NPLs with different thicknesses [17,49]. Here, the OA excess is
assumed to exfoliate the structural units, forming different monolayers. Likewise, OA’s rich
condition in the reaction favors the formation of thicker NPLs, which strongly influence
the PL spectra [65]. In addition to this, OA helps to solubilize the cesium source. The
solubilization rate depends on the value of heat of formation energy. For example, it
is observed that OA and OAm could solubilize cesium acetate (CsCH3COO (CsOAc)).
In contrast, CsBr and CsCl are only partially solubilized due to the higher heat of the
formation energy [4]. In another study, it is evidently observed that replacing Cs2CO3



Nanoenergy Adv. 2023, 3 384

with CsOAc is very helpful in achieving Cs LHP NCs with different morphologies in the
presence of OA/OAm [31]. The morphological analysis of the formation of CsPbX3 NWs
under the influence of different amounts of HX (X = Cl, Br, I) in the presence of OA/OAm
and a comparison graph of the influence of the ratio of OA/OAm on the PL spectra of the
CsPbBr3 NPLs are given in Figure 6.
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of Chemistry.

Another intriguing aspect of the OA/OAm ligand pair is its capacity for the self-
assembly of LHP NCs. The use of OAm and OA direct self-assembled super-lattice struc-
tures in NC films due to the solvent, ligand, and light-induced interaction. Self-assembly
has been carried out in the nanocubes [44,84], NPLs [85–87], NWs [88,89], and nanorods
(NRs) [90] of Cs LHP NCs. Generally, the self-assembly of Cs LHP NCs in solution takes
place when the dispersed NCs are kept for a long time. Here, together with OA/OAm, the
dielectric constant and polarity of the dispersing solvent significantly influence the rate of
the self-assembly process. In the case of NC films, with respect to the solvent and ligands,
the self-assembly is influenced. Moreover, surface treatment using smaller molecules could
also motivate self-assembly, owing to the close contact of NCs. For example, when CsPbBr3
nanocubes are treated by thiocyanate (SCN−) molecules, the oleyl molecules are partially
replaced by SCN−, which brings the nanocubes very close to each other, favoring the
self-assembly [91]. The interparticle spacing between the OA/OAm-capped NCs in such a
supramolecular assembly is approximately 11.4± 0.1 nm in the colloidal state [92]. Liu et al.
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used a solar simulator with the power of 1.7 suns (170 mW/cm2) to remove OA/OAm lig-
ands from the as-synthesized CsPbBr3 NCs (PL lifetime~2 ns) [88]. In this case, the removal
of OA/OAm accelerated the formation of NWs (PL lifetime~125 ns) through self-assembly.
Similarly, by varying the intensity of light (532 nm and 670 nm), Pramanik et al. achieved
nanobelts and nanoplatelet morphologies from OA/OAm-capped CsPbI3 QDs [87]. This
kind of UV-light irradiation on the 1-alkynyl acid-capped CsPbBr3 QDs could induce the
formation of self-assembled nanostructures through a catalysis reaction in the presence of a
reaction intermediate, CsBr [93]. It is possible to achieve self-assembly in Cs LHP NCs by
the sole use of OAm as a ligand [94]. Nevertheless, OA could support the achievement of a
long-range ordered NC assembly [95]. It is demonstrated that the high concentration of
OAm could lead from NSs to NWs through a dipole–dipole interaction in the presence of
OA [68]. Bi et al. have indicated that during the self-assembly process, OA is gradually
desorbed and under the influence of OAm, the growth of CsPbI3 NWs takes place [72].
Thus, the structural participation of OAm+ ions also influences the morphology of Cs
LHP NCs. During synthesis, the self-assembled one-dimensional CsPbBr3 NWs can be
achieved by forming lamellar structures [70,96]. Moreover, the OAm-rich synthesis reaction
at 180 ◦C could direct the formation of self-assembled CsPbBr3 NWs [97]. In this case, the
self-assembly of NWs takes place by connecting [PbBr6]4− octahedrons under a longer
reaction period. Furthermore, it is demonstrated that together with these factors, surface
halide vacancies of Cs LHP NCs could promote self-assembly [72,98]. The self-assembly
of Cs LHP NCs into NWs could be distinguished through a shift in the PL spectrum de-
pending on the aspect ratio. Interestingly, it was found that while aging CsPbBr3 NCs
under ambient conditions, the top surface of the resultant NC super-lattice is converted
to bulk-like particles through a coalescence process [99]. Along with morphology, aging
Cs LHP NCs could also induce a phase transformation. By aging the pre-synthesized
cubic CsPb(BrxI1−x)3 NCs in an equal volume of toluene and chloroform, it is possible to
achieve orthorhombic CsPb(BrxI1−x)3 NWs [100]. In this case, the spontaneous coalescence
of NCs leads to NWs through an oriented attachment process. Other than these results,
as discussed previously, the post-synthetic transformation of Cs LHP NCs to NWs is also
demonstrated. Factors such as dipole–dipole, hydrophobic and van der Waals interactions
of the NC capping agents could lead to super-lattice nanostructures in Cs LHP NCs [28,68].
As mentioned, self-assembly is also directed by solvents with different polarity. If the inter-
particle spacing between the NCs is less than twice the OA/OAm ligand length (~4 nm),
the solvent could induce self-assembly [101]. Mehetor et al. observed a polarity-dependent
self-digestive conversion of CsPbBr3 quantum wires to quantum rods [90]. In this case, the
authors observed a rapid conversion of this morphology change in chloroform (CHCl3)
but a very slow conversion in hexane. Similarly, Soetan et al. observed a one-dimensional
super-lattice nanostructure transformation of CsPbBr3 NCs when redispersed in toluene
(non-polar), whereas two-dimensional short-range nanostructures were observed in po-
lar solvents [101]. A mixed-solvent system for ex: toluene/chloroform was also found
to be useful in expediting the self-assembly of CsPb(BrxI1−x)3 nanocubes to NWs under
aging [99]. Here, along with the partial removal of ligands, the strong dipolar interaction
of nanocubes leads to the formation of NWs. Similar to these investigations, there are
different studies elucidating the role of solvents and ligands in the self-assembly of Cs LHP
NCs [102–106]. Because of polarity, alcohols play an important role in the formation of
super-lattice nanostructures of Cs LHP NCs. For instance, synthesizing CsPbBr3 NCs in
the presence of methanol/cesium cholate directs the formation of NRs through oriented
attachment [47]. Like methanol, the addition of ethanol into pre-synthesized CsPbX3 NPLs
was found to direct the formation of NWs [17]. It was also found that CsPbBr3 NPLs could
spontaneously transform into nanobelts and nanotiles under prolonged storage [107]. This
kind of spontaneous self-assembly is generally directed by NC surface ligands through
interparticle interactions [108]. In most of these investigations, the desorption of OA/OAm
under different conditions leads to super-lattice nanostructures of Cs LHP NCs. The
schematic representations of the formation of the one-dimensional super-lattice assembly
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of OA/OAm-capped CsPbBr3 NCs, the two-dimensional OA-induced long-range assembly
of CsPbBr3 NPLs, and the structural and morphological analysis of CsPbBr3 NCs and NWs
are given in Figure 7.
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2.3. Phase Transformation of Cs LHP NCs in the Presence of OA/OAm

A variation in the concentration of OA/OAm will additionally impact the resulting
phase of the Cs LHP NCs. Even a slight variation in their concentration alters the structural
arrangement of atoms and directs the phase transformation. Two kinds of perovskite phases
possibly form under the influence of OA/OAm, namely Cs4PbX6 and CsPb2Br5. Usually,
a high OAm concentration with CsPbBr3 promotes the formation of the lead-depleted
rhombohedral Cs4PbB6 phase [109–111]. This is actually a reversible transformation that
takes place between corner shared PbX6 octahedra to isolated PbX6 octahedra. It is observed
that the formation of the Cs4PbX6 occurs through forming halo-plumbate species in solution
under a high Pb2+-ligand ratio [61]. While Cs4PbBr6 itself is non-luminescent, the presence
of a small amount of CsPbBr3 introduces fascinating optical characteristics. This has been
experimentally demonstrated by different research groups [112–114]. Jing et al. have
adopted an amine-free synthesis approach to synthesize CsPbBr3 NCs [115]. In this case,
the authors have observed that adding OAm with the pre-prepared CsPbBr3 NCs leads to
Cs4PbBr6 phase transformation. This phase transformation by OAm could be accelerated
in the presence of potential organic compounds such as thiol [109]. Here, the formation
of Cs4PbBr6 NCs is confirmed through the emergence of the peak at ~315 nm in the UV-
visible spectra. This phase conversion can be achieved by increasing the concentration
of OA/OAm [27]. Furthermore, it is possible to achieve the same when the NCs are
redispersed in hexane. The mechanism behind this phase transformation is still unclear.
Accordingly, in most of the observations, it is stated that the dissolution-recrystallization
accompanied by the influence of excess OAm is the reason for converting the luminescent
to the non-luminescent phase [109,116]. Other possibilities, such as ligand environment and
soft ligand templating, are also proposed as reasons for this phase transformation. Li et al.
observed that when the synthesis reaction is carried out in an OAm-rich atmosphere,
temperature and reaction time significantly influence the formation of perovskite NCs [97].
In this case, the authors achieved Cs4PbBr6 NCs at 160 ◦C and CsPbBr3 NCs at 180 ◦C. It
was found that in contrast with CsPbBr3 NCs, where the substitution of Cs+ takes place by
OAm+ cations, Cs4PbBr6 is comprised of both OAm and OA in a bonded state as an OAm+-
OA− complex [49]. The different roles of OAm and the phase transformation of CsPbBr3
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NCs under the influence of OA/OAm with their structural, optical, and morphological
characterization are combinedly given in Figure 8.
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Structural models demonstrate the reversible transformation between luminescent 
CsPbBr3 and non-luminescent Cs4PbBr6 NCs. In general, Cs4PbBr6 NCs are obtained after 
adding an extra number of OA/OAm ligands once the CsPbBr3 NCs are synthesized. Re-
versibly, the Cs4PbBr6 NCs are transformed back to highly luminescent CsPbBr3 NCs after 
adding PbBr2. The CsPbBr3 NCs structure is characterized by corner-sharing [PbX6]4− oc-
tahedra with Cs+ ions filling the voids created by four neighboring [PbX6]4− octahedra. In 
the Cs4PbBr6 NCs structure, adjacent [PbBr6]4− octahedra do not share any corners and they 
are entirely decoupled in all directions. Thus, excess PbBr2 can be integrated into the crys-
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Figure 8. (a) Ligand control of the dynamic reversibility between CsPbBr3 and Cs4PbBr6. Reprinted
with permission from ref. [111] Copyright 2020 American Chemical Society. (b) Transmission electron
microscopy images of cubic CsPbBr3 to Cs4PbBr6 NCs (from left to right, respectively) using the
addition of an excess of OA/OAm. (c) UV-visible spectra of CsPbBr3 NCs and Cs4PbBr6 NCs under
the influence of OAm/OA. (d) X-ray diffraction (XRD) of the conversion of CsPbBr3 (red) to Cs4PbBr6

NCs (blue) and back along with the intermediates (green). Bulk XRD spectra for cubic CsPbBr3 and
Cs4PbBr6 are given as a bar plot. (e) Two complete CsPbBr3–Cs4PbBr6 NC cycles as followed by
UV–visible spectroscopy. Plotted is the wavelength of the first excitonic absorption peak. Reprinted
with permission from ref. [110] Copyright 2018 American Chemical Society.

Structural models demonstrate the reversible transformation between luminescent
CsPbBr3 and non-luminescent Cs4PbBr6 NCs. In general, Cs4PbBr6 NCs are obtained
after adding an extra number of OA/OAm ligands once the CsPbBr3 NCs are synthesized.
Reversibly, the Cs4PbBr6 NCs are transformed back to highly luminescent CsPbBr3 NCs
after adding PbBr2. The CsPbBr3 NCs structure is characterized by corner-sharing [PbX6]4−

octahedra with Cs+ ions filling the voids created by four neighboring [PbX6]4− octahedra.
In the Cs4PbBr6 NCs structure, adjacent [PbBr6]4− octahedra do not share any corners and
they are entirely decoupled in all directions. Thus, excess PbBr2 can be integrated into the
crystal structure of Cs4PbBr6 NCs to form compact CsPbBr3 NCs [117].

3. Potential Ligands and Solvents Replacing OA and OAm: A Step towards Enhancing
Optical Properties and Stability of Cs LHP NCs

Although OA and OAm are helpful for the passivation of Cs LHP NCs, their role as
ligands is limited. When highly ionic Cs LHP NCs are prepared with OA/OAm ligands,
their attachment with the surface is relatively weak, and they could easily detach even
during the first purification cycle. This purification step mainly depends on the polarity
of the solvents. For instance, solvents such as methyl acetate and ethyl acetate are much
preferred compared with acetone, ethanol, and isopropanol. Purification by suitable sol-
vents greatly assists in controlling ligand density in Cs LHP NCs. For example, purification
using an ethyl acetate/hexane solvent mixture was found to precisely regulate OA/OAm
ligand density in Cs LHP NCs with excellent PL properties [118–120]. When the prepared
crude solid Cs LHP NCs undergo multiple purification cycles, the detachment of ligands
substantially impacts the colloidal stability as well as the lifetime and PLQY of Cs LHP NCs.
The weak binding nature is also attributed to the low binding constant value (6020 M−1) of
OAm+ over short-chain amine ions [121]. Moreover, the removal of OA/OAm is also very
sensitive to thermal annealing and UV exposure [38].

Recently, this problematic issue has been solved using strong binding ligands. Com-
pared with OA/OAm, these ligands resist the antisolvents and do not detach from the
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NC surface during purification. Thus, the colloidal stability and the optical properties are
well preserved even after purification, and highly luminescent NCs are achieved. Several
kinds of non-traditional ligands and potential additives have been explored recently, and
their effect on the NC surface is documented [122,123]. For example, phosphonic ligands
are identified as potential candidates that resist solvent washing and produce smaller
NCs [124,125]. Here, the P-O bond is relatively stronger, with the Pb2+ leading to a network
with octylphosphonate molecules through hydrogen bonds. Additionally, unlike OA/OAm
reversible dynamic binding ligands, the irreversible phosphonate binding results in an
increase in PL intensity [57,126]. In addition to binding ability, it is demonstrated that
oleylphosphonic acid (pKa = 2) could effectively replace DDA+ ions from the surface of
CsPbBr3 NCs without affecting the optical properties [127]. Although these ligands provide
stability, OAm is still used to dissolve the Pb precursor, PbBr2. However, this use of OAm
can be efficiently replaced by TOPO, as demonstrated experimentally [126]. Likewise, a
complete amine-free synthesis of CsPbBr3 NCs is reported using TOP as a solvent with
HBr or 1-bromopropane as a bromide source [128,129].

Interestingly, when trioctylphosphine (TOP) is used as a solvent to synthesize Cs LHP
NCs, TOP is oxidized to TOPO and prevents the oxidation of Pb2+ [130]. Similarly, it is
observed that using a quaternary ammonium halide salt, didodecyldimethylammonium
bromide (DDAB), instead of OAm significantly improves the PLQY of Cs LHP NCs, up
to near-unity [4,127,131]. For this, DDAB in a non-polar solvent, specifically in toluene,
is used to carry out the surface modification. Here, DDAB specifically heals the CsX
surface vacancies, resulting in an impressive PLQY. Thus, DDAB enables a reduction in
the number of ligands present on the surface of Cs LHP NCs without impacting their
optical properties. This treatment is particularly useful for improving the charge transport
in optoelectronic devices like LEDs [132,133]. Because of the shorter chain length over
the OA/OAm ligand pair, DDAB specifically replaces OAm and could efficiently bind
on the surface of the Cs LHP NCs [134,135]. The efficiency of DDAB treatment could be
enhanced by the inclusion of a co-additive like ZnBr2 [134]. However, improving the PLQY
using DDAB should be carried out with careful observations, since this may lead to a
phase transformation [136,137]. Similar to DDAB, different kinds of organic and inorganic
compounds are used for the post-synthetic modification of Cs LHP NCs in solution or
in solid-state in order to regulate the density of the OA/OAm binary ligands. Ligand
exchange in perovskite NCs is a complex process that requires careful consideration of
the desired modifications and their impact on stability and performance. Researchers
continue to investigate and refine ligand-exchange techniques to unlock the full potential
of perovskite NCs for various applications in optoelectronics and beyond.

During the synthesis reaction, the formation of OAmBr frequently leads to a decrease
in surface Br− ions on CsPbBr3, leading to a deterioration in optical properties. To prevent
this, substituting OAm with HBr is a viable approach. Akhil et al. have adopted this
approach and demonstrated the completely amine-free synthesis of CsPbBr3 NCs through
the hot-injection method [129,138]. Here, it is observed that an increase in Br− concentration
results in the formation of CsPbBr3 NCs. The authors have observed that excessive halide
concentration in the reaction helps to achieve CsPbBr3 NCs with high stability. Furthermore,
the NC films demonstrated enhanced stability over a three-month period, suggesting the
potential of halo acids as a promising alternative to the OA/OAm ligand pair for achieving
highly stable and luminescent Cs LHP NCs.

Recently, zwitterionic ligands have been delivering promising results in the stabi-
lization and maintenance of the optical properties of Cs LHP NCs. Zwitterionic ligands
are molecules featuring both positively charged groups (e.g., ammonium) and negatively
charged groups (e.g., carboxylates, sulfonates, and phosphonates). These bidentate lig-
ands demonstrate a more robust interaction with the surface of NCs and exhibit a lower
detachment rate when compared to the OA/OAm ligand pair. Consequently, this allows
for the long-term stability of optical properties [139]. In particular, zwitterionic ligands
possess strong chelating ability and can stand several purification cycles with different
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solvents—for example, ethyl acetate (EtOAc) [140,141]. The existence of acidic and basic
functional groups in the same molecule helps to maintain the acid–base equilibria and
stabilize the Cs LHP NCs with high durability. An ideal zwitterionic ligand should have
a lower diffusion coefficient value and should possess higher binding energy. Moreover,
zwitterionic ligands have a different electrokinetic potential value (ζ) to the OA/OAm
ligand pair, which derives interesting results in surface passivation [25]. For example,
OAm/OA-capped CsPbBr3 QDs show a ζ potential of 9.17 meV, whereas a zwitterionic
ligand betaine (BT)-capped QDs show 25.8 meV [142].

Krieg et al. first used different kinds of zwitterionic ligands (sulfobetaine, phospho-
choline, soy lecithin and γ-aminoacids) to stabilize orthorhombic CsPbBr3 NCs [140,143].
It is also possible to synthesize zwitterionic ligands through an in-situ chemical reaction
in the presence of OAm [144]. Among these, sulfobetaine is the most used zwitterionic
ligand and is characterized by both a quaternary ammonium group (positively charged)
and a sulfonate group (negatively charged). The sulfobetaine ligand is quite efficient in
passivating Mn2+-doped alloyed Cs LHP NCs with a high PLQY and could minimize
the reabsorption effect [145]. Lee et al. used a sulfobetaine ligand, 3-(dodecyldimethyl-
ammonio)-propane-1-sulfonate (12-SBE), to passivate CsPbBr3 NCs [146]. In this case, the
12-SBE modified NCs showed a near-unity PLQY, long PL lifetime, less agglomeration,
and high stability. Although sulfobetaine efficiently binds to the Cs LHP NCs, TOPO is
necessary to achieve monodispersed, highly stable CsPbBr3 NCs [147]. Unfortunately,
the sulfobetaine-capped CsPbBr3 NCs show worse charge transport properties and a lack
of electronic coupling compared to the DDAB-capped CsPbBr3 NCs [139,148,149]. This
highlights the need for the molecular engineering of zwitterionic ligands. Various kinds of
zwitterionic ligands such as aromatic [141], polymeric [150–152], photo-crosslinkable [153],
amino acids [154], modular zwitterion functionalized polymers [155], carbazole [156], and
quaternary ammonium halide-based zwitterionic ligands [157] show an important role in
stabilizing highly luminescent Cs LHP NCs are explored. Interestingly, Zhu et al. have
proposed that both surface-selective and non-selective ligands are necessary to control
the morphology and stability of CsPbBr3 NCs [157]. The authors have demonstrated that
zwitterionic ligands are surface-selective to achieve anisotropic nanostructures (nanocubes,
NPLs and NRs), and didecylamine (DDA)-based surface non-selective ligands could as-
sist for it along with stability. In most cases, the OA/OAm ligands of Cs LHP NCs are
post-synthetically exchanged by zwitterionic ligands via a partial ligand exchange, and
the resultant NC properties are analyzed. Figure 9 provides a schematic overview of the
interaction between OA/OAm and zwitterionic ligands with the perovskite NC surface.
It also highlights the properties of zwitterionic ligands in solution and in the solid state.
Additionally, the figure offers a collective representation of the chemical structure, syn-
thesis process, and key findings related to the PLQY and the ligand-exchange ratio for
12-SBE-capped CsPbBr3 NCs.

Similar to zwitterionic ligands, multidentate ligands are also helpful in stabilizing Cs
LHP NCs with improved robustness. Multidentate ligands strongly coordinate with the Cs
LHP NC surface, forming a shell to protect the moisture-sensitive Cs LHP NCs. For example, a
silane-based branched ligand such as n-propyltrimethoxysilane-dimethyloctadeyclammonium
bromine (PDB) was found to polymerize on the surface of the CsPbBr3 QDs and impart high
stability [158]. Similarly, 3-mercaptopropyltrimethoxysilane (MPTMS) in 1-octanethiol could
induce a hybrid polymerization for the stabilization of CsPbBr3 NCs [159]. Also, growing
CsPbBr3 NCs in the micelles of a polymeric multidentate ligand, polystryrene-block-poly-2-
vinyl pyridine (PS-b-P2VP), was found to be useful in reducing the polar solvent diffusion
into the Cs LHP NCs [160]. Multidentate ligands such as ethylenediamine tetraacetic acid
(EDTA) [161,162], trithiocarbonate terminated polymeric ligand [163], poly-ethylene glycol
(PEG)-based polymeric molecule [151,164], polyethyleneimine [165], quaternary ammonium-
or imidazolium-based polysalt ligand [166,167], picolinate [168], sulphur-tributylphosphine
(S-TBP) bidentate ligand [169], tetramethylthiuram disulfide (TMTD) [170], etc., have
proven their strong binding ability with the surface of Cs LHP NCs. Zeng et al. used
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bis(2,4,4-trimethylpentyl) phosphonic acid to protonate a multidentate amine ligand, N′-
(2-aminoethyl)-N′-hexadecylethane-1,2-diamine (AHDA) [171]. These protonated AHDA-
capped CsPbI3 NCs showed lower diffusion coefficient (66 ± 3.4 µm2 s−1) and higher
binding energy value (2.36 eV) over traditional OAm-capped NCs. This shows that novel
ligands with a higher binding energy value could be resistant to traditional washing
solvents of Cs LHP NCs and retain long-term optical properties. From the application point
of view, the surface-modified Cs LHP NCs using zwitterionic and multidentate ligands
are beneficial for photocatalysis applications, as evidenced by their high stereoselectivity
in C-C oxidative coupling reactions [152,172] and also in the fabrication of light-emitting
diodes (LEDs) [146,165,170].
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Other than these systems, several kinds of post-treatment approaches using a wide
variety of compounds have been demonstrated to strip the native OA/OAm ligand pair
and/or to passivate the surface defects of Cs LHP NCs [11,46,173]. These surface treatment
processes impressively enhance the PLQY of Cs LHP NCs. All these findings clearly
indicate the emergence of potential, alternative anchoring ligands for designing surface-
tailored Cs LHP NCs by replacing the OA/OAm ligand pair. Figure 10 presents three
key aspects: the surface ligand content of AHDA− and OA/OAm-capped CsPbI3 NCs
with respect to purification cycles; a schematic illustration depicting the interaction of
capping ligands with the surface of perovskite NCs; and diffusion coefficient values for
OA/OAm- and AHDA-capped CsPbI3 NCs. Additionally, it shows the chemical structure
and a schematic representation of picolinate capping on the surface of perovskite NCs.
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Figure 10. (a) Comparison graph of surface ligand content of AHDA- and OA/OAm-capped CsPbI3

NCs with respect to purification cycles. (b) Schematic representation of AHDA and OA/OAm
stabilization of CsPbI3 NCs. VA represents a ligand vacancy. (c) Diffusion coefficient values of
OA/OAm- and AHDA-capped CsPbI3 NCs, determined by diffusion-ordered spectroscopy (DOSY).
Reprinted with permission from ref. [172] Copyright 2022 American Chemical Society. (d) Crystal
structure of strongly bound picolinate ligand and schematic representation of its passivation on
the perovskite NC surface. Reprinted with permission from ref. [169] Copyright 2021 American
Chemical Society.

In general, improving the photostability and thermal stability of perovskite NCs is
indeed a crucial area of research and development. However, their stability issues have
been a significant challenge that needs to be addressed for widespread commercialization.
Apart from the use of ligands, there are some strategies and recommendations to enhance
the stability of Cs LHP NCs:

(i) Encapsulation and passivation: One of the primary reasons for perovskite instability
is exposure to moisture, oxygen, and light. Encapsulation techniques involving pro-
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tective coatings or capping ligands can shield Cs LHP NCs from these environmental
factors. The passivation of surface defects can also improve stability [22].

(ii) Composition engineering: Modifying the chemical composition of Cs LHP NCs by
incorporating elements with higher stability, such as lead-free perovskites or mixed-
halide perovskites, can enhance their resistance to degradation.

(iii) Structural modifications: Researchers have explored alternative perovskite structures,
such as double perovskites and 2D perovskites, which may exhibit improved stability
compared to traditional 3D perovskites.

(iv) Doping: Introducing suitable dopants into Cs LHP NCs can improve their stability
and performance. For example, incorporating small amounts of certain metal ions
can passivate defects and reduce degradation.

(v) Stabilizing additives: The use of stabilizing additives or polymer matrices in per-
ovskite NC films can improve their resistance to environmental factors and enhance
long-term stability [174].

Overall, addressing the stability challenges of perovskite NCs is a critical step toward
unlocking their full potential for various applications. Research and development efforts fo-
cused on stability enhancement will play a pivotal role in the successful commercialization
of perovskite-based technologies.

4. Conclusions and Summary

This discussion narrates the crucial role of OA/OAm in synthesizing Cs LHP NCs.
These binary ligands help to fabricate highly crystalline, highly ordered nanostructures
and films of Cs LHP NCs. All the existing analyses show that it is essential to understand
the reaction chemistry to explore other possible roles of these binary ligands. It is possible
to obtain all kinds of phases and morphologies of Cs LHP NCs by cleverly tuning the
concentration and ratio of the OA/OAm in the reaction. The experimental findings also
reveal the critical role of OAm in the structural framework of perovskite NCs, a decisive
factor in achieving highly luminescent characteristics. Although OA/OAm plays an
essential role in the synthesis, a clear understanding should be established to invest the
knowledge of this into other types of perovskite NCs. Also, the active role of these binary
ligands is not much studied for lead-free perovskite NCs and requires timely exploration.

Furthermore, multidentate ligands that could couple with OA and OAm to contribute
strong binding ability should be developed. Also, promising ligands that help to avoid
morphology and phase transformation in the presence of OA/OAm are helpful for long-
term applications. In this view, zwitterionic ligands can be considered to develop Cs
LHP NCs with excellent stability and superior optical properties. Replacing OA and
OAm with alternative bidentate ligands is a relatively reasonable effort in stabilizing
highly luminescent perovskite NCs. Moreover, it is essential to analyze the spectroscopic
characteristics of NCs synthesized using OA- and OAm-free solvents to understand the
nature of bonding. Still, the role of OA and OAm impart better control of the morphology
and phase, as seen in this discussion. Future accomplishments in this view would reveal
many interesting findings in determining the structure and phase of perovskite NCs, which
is helpful for several promising applications.
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