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Abstract: Concrete stands as the most widely used construction material globally due to its versatility,
encompassing applications ranging from pavement, multifloor structures, and bridges to dams.
However, these concrete structures endure structural stress and require close monitoring to prevent
accidents and ensure sustainability throughout their complete life cycle. In recent years, artificial
intelligence (AI) and computer vision (CV) have demonstrated considerable potential in diverse
applications within construction engineering, including structural health monitoring (SHM) and
inspection processes such as crack and damage detection, as well as rebar exposure. While it
is undeniable that CV and deep learning models are transforming the construction industry by
offering robust solutions for complex scenarios, there remain numerous challenges pertinent to
their applications that require attention. This paper aims to systematically and critically review the
literature of the past decade on the application of deep learning models in the construction industry
for SHM purposes in concrete structures. The review delves into proposed methodologies and
technologies while identifying opportunities and challenges associated with these applications in
practice. Additionally, the paper provides insights to bridge the gap between theory and application.

Keywords: concrete; artificial intelligence (AI); computer vision (CV); structural health monitoring
(SHM); deep learning

1. Introduction

Concrete is the most important and demanding construction material [1], and concrete
structures have been influencing the construction industry for decades [2]. However, an
ever-growing number of concrete structures worldwide are entering the aging phase [3].
Due to various factors, such as weather and environmental conditions, chemical reactions,
and external and internal stresses, concrete structures are often subject to defects such as
cracks, efflorescence, spalling, bar exposure, etc., and fail to meet the expected life cycle,
aging earlier than expected [2].

The idea of structural health monitoring (SHM) first emerged in the early 2000s.
Although initially, the sole focus of SHM was to monitor concrete bridges, in present
times, it is defined as the method of continuously evaluating and assessing the condition
and performance of any concrete structures, such as buildings, bridges, dams, pipelines,
and other infrastructure, throughout their operational lifespan [4–6]. The objective of
SHM is to detect any damage, deterioration, or changes in structural properties that could
potentially compromise the safety, functionality, or longevity of the concrete structure and
is crucial in maintaining structures in optimal condition [2]. The traditional methods for
the SHM process primarily involve manual inspection, which is heavily dependent on the
expertise of the inspector. However, these methods present various challenges, including
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time-consuming operation, varying subjectivity, or difficulties in inspecting components at
elevated heights in tunnels/road pavement in busy traffic conditions [2,7]. Therefore, there
is a pressing need for an innovative and precise inspection approach to effectively monitor
the health condition of structures that can overcome the mentioned limitations.

The advancement of artificial intelligence (AI) and computer vision (CV) has enabled
their various applications in the construction industry, ranging from automatic surface crack
detection to tunnel lining defect detection [8,9]. In recent years, there has been a notable
progression in the application of AI methodologies, particularly machine learning and
deep learning techniques, for activities such as data diagnostics, data interpretation, and
feature extraction in the realm of SHM for infrastructure systems. Recent advances in deep
learning technologies have allowed for state-of-the-art performance in visual recognition
problems such as image classification, object detection, and object segmentation. Thus, such
technologies hold significant promise, with an extensive array of practical applications in
the SHM area [10].

Boccagna et al. [10] stated that the primary challenges in the application of deep-
learning-based technologies for automated SHM processes pertain to the establishment
of a resilient framework that encompasses all the intervening stages, from data collection
to result generation and analysis. Therefore, the objective of this study is to conduct a
comparative analysis of existing and proposed deep-learning-based models and convolu-
tional neural network (CNN) techniques in the field of SHM. This comparison considers
various factors, including the type of concrete structure, the type of input data, the size of
the data; the type of damage, and the accuracy achieved by each proposed model, as well
as their limitations in certain applications and suggestions for future research. The aim is
for this study to serve as a foundational reference for the selection of deep-learning-based
approaches in future SHM problem-solving scenarios. Particularly, it can guide researchers
and practitioners in choosing appropriate deep learning methodologies when encountering
situations similar to those reported in prior studies and can assist in identifying systems
that have demonstrated notable performance in structural defect detection in those cases.

To accomplish these goals, only studies published after 2017 were meticulously ar-
ranged to incorporate the most up-to-date developments and cutting-edge technologies.
The selection process adhered to specific criteria established by prior review articles in
the field of construction engineering research that employed CV and deep learning tech-
niques [11]:

1. The chosen studies were centered on deep-learning- and CV-based applications,
irrespective of their outcomes, including aspects like visualization or quantification;

2. The studies were focused on the SHM domain, spanning various construction stages
and varying physical and environmental conditions.

Studies utilizing alternative methodologies like machine learning techniques such as
artificial neural networks (ANNs), genetic algorithms (GAs), or support vector machines
(SVMs) [12], as well as those emphasizing sensor-based approaches [13], were not included
in the selection process. Figure 1 shows an outline of the research methodology. This
study focuses solely on SHM application to concrete structures; hence, steel structures
and other types are not considered. The chosen studies underwent a systematic analysis
based on their methodologies and technologies, as well as their respective applications.
Subsequently, a more in-depth examination identified those studies that warranted further
exploration, guided by their methodological frameworks and specific areas of application.
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2. Overview of Artificial Intelligence and Deep Learning

In 1955, one of the pioneers of AI, John McCarthy, defined AI as a means to develop
machines that behave intelligently [14]. In present times, artificial intelligence is character-
ized as the “exploration and creation of intelligent agents” [1]. AI empowers computers to
achieve human-like capabilities such as perception, knowledge representation, reasoning,
problem solving, and planning. This enables them to address intricate and ambiguous
problems in a purposeful, intelligent, and adaptable manner.

Investment in AI is experiencing swift expansion, with branches like machine learning
and deep learning notably playing a significant role [15]. According to a study by Purdy
and Daugherty [16], AI is in the process of reshaping all aspects of society, and this trans-
formation might increase employee productivity by 40% and can increase annual economic
growth rate by two times by the year 2035.

Although AI still lacks appropriate applications in the construction industry compared
to other sectors [15], researchers have been attempting to implement different AI technolo-
gies in different areas of construction, such as cost prediction in the real estate business [17],
SHM at construction sites [18], and supply chain management [19]. Chu et al. [20] carried
out studies to investigate the applications of robotics in the construction industry. Chen
et al. [21] proposed a fuzzy cognitive map model that can assess risk casualties and predict
risk for construction projects. Zaira and Hadikusumo [22] adopted a knowledge-based
AI approach and conducted structural equation modeling (SEM) to identify the factors
with the most significant impact in terms of improving workers’ safety behavior. Artificial
neural networks, and other machine learning approaches such as random forest, SVM, etc.,
are also popular AI techniques in the construction industry [23].

CV-based AI applications were initially constrained in the construction domain due
to the complexity of data acquisition process and the requirement for computers with
high levels of computing power. Nevertheless, as the prevalence of such devices and
high-performance computing resources has grown, CV technologies have find applications
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in various construction domains, such as labor and asset monitoring, progress assessment,
quality control and assurance, etc. [24]. Advancements in CNN architectures are currently
revolutionizing the CV field. Convolutional neural networks (CNNs), which represent
an essential part of deep learning techniques, are widely renowned for their excellence in
top-tier CV projects.

History and Development of Deep Learning

Convolutional neural networks (CNNs) are advanced feedforward neural networks.
A feedforward neural network operates by transmitting information from the input layer
to the output layer in a unidirectional manner, without forming cyclic connections among
its neurons [25,26]. When an image is introduced as input to the network, it traverses
a sequence of convolutional and pooling layers before reaching the final stage of fully
connected layers, usually concluding with a SoftMax layer, which yields the output [25]
(Figure 1).

The concept of convolutional neural networks (CNNs) first came to light in the late
1990s, thanks to the work of LeCun et al. [27]. As noted by Sultana et al. [28], the success of
LeNet-5 sparked researchers’ interest in exploring the vast potential of CNNs, particularly
in tasks that involve pixel-level operations like detection and segmentation. Object classifi-
cation by CNNs has found applications in categorizing various elements at construction
sites, including workers, risk zones, and machinery, as well as safety measures or accident
risk [29,30]. These classifications are typically conducted using images collected from
sources like CCTV footage, unmanned aerial vehicles (UAVs), mobile robots, etc. [30–32].
Classifying workers with or without personal protective equipment is another popular
application of CNNs in the construction engineering area. Such classification is achieved
using histogram of oriented gradients (HOG) features extracted from hardhats, which
efficiently describe detailed shape information [33].

CNNs excel over traditional machine learning techniques due to their adaptive nature,
learning feature representations through end-to-end training, thereby eliminating the
necessity for hand-engineered features and expert knowledge [34]. Additionally, deep
learning models can fine tune themselves, making deep learning algorithms and CNNs
popular in various sectors of computer vision, including image segmentation [35,36].

Image segmentation, a fundamental technique in computer vision, involves the par-
titioning a digital image into distinct sections based on various pixel characteristics [37].
Given the critical role of spatial information in semantically segmenting different regions
of an image, image segmentation is typically considered a detail-level or pixel-level vision
task, in contrast to tasks like classification and object recognition [28]. The primary ob-
jective of image segmentation is to extract specific information for further analysis. This
process involves separating specific regions in an image in such a way that all pixels within
each area share common attributes such as color, intensity, texture, etc. [38,39]. Chi and
Caldas [40] were among the first to apply object segmentation in identifying equipment
and workers at construction sites using a background subtraction algorithm. Recently,
segmentation techniques were applied to the detection of workers around a fall pit in an
attempt to reduce fall-induced hazards among workers, as well as to the detection of risk
zones such as elevated edges or roofs [41,42].

In practice, there are three primary types of segmentation, as depicted in Figure 2:

1. Semantic segmentation: This involves labeling image pixels with object categories [43];
2. Instance segmentation: Here, the goal is to separate and identify all instances of

objects within an image individually and independently [44,45];
3. Panoptic segmentation (PS): Panoptic segmentation, as defined by Kirillov et al. [46],

combines both semantic and instance segmentation, offering a comprehensive view
of the scene by identifying object categories and individual instances.
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The applications of convolutional neural networks (CNNs) in image segmentation
are incredibly diverse. Farabet et al. [47] introduced a multiscale CNN designed for scene-
labeling tasks. They trained and tested their model on three distinct datasets: Sift flow [48],
the Barcelona dataset [49], and the Stanford background dataset [50]. Girshick et al. [51]
proposed region-based CNN (R-CNN) in the PASCAL VOC semantic segmentation chal-
lenge, which was part of the Pascal Visual Object Classes Challenge in 2007. This approach
employs region proposals in a CNN to localize and segment individual objects.

The concept of a fully convolutional network (FCN) was introduced by Long et al. [52]
to address semantic segmentation tasks. For the generation of region proposals, Faster
R-CNN utilizes a CNN-based region proposal network (RPN) that employs bounding
boxes—a technique shared with instance segmentation models. Mask R-CNN, introduced
by He et al. [53], closely resembles Faster R-CNN but includes a binary mask prediction
branch to facilitate instance segmentation in addition to object detection. Huang et al. [54]
presented Mask Scoring R-CNN, which enhances Mask R-CNN by incorporating a network
block to improve the qualitative aspect of predicted masks. In later development, Kirillov
et al. [46] introduced a cutting-edge instance segmentation model that utilizes point-based
rendering within the framework of Mask R-CNN.

The application of such instance segmentation models has promising implications in
construction science research; for example, Teizer and Vela [55] proposed a segmentation-
based tracking system for workers at construction sites. Wang et al. [56] employed a
two-level approach that combines Faster R-CNN and Mask R-CNN to identify the morpho-
logical aspects of damage. This includes recognizing features such as damage topology,
area, and ratio.

3. SHM System Based on Deep Learning Models

Researchers in the construction engineering field have recognized the immense po-
tential and innovative technological strides resulting from the utilization of deep learning
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methods [57,58]. Consequently, numerous initiatives have been undertaken to apply deep
learning techniques to structural health monitoring (SHM) of concrete infrastructure [59]. In
this section, we delve into deep-learning-based research in the SHM domain, with a specific
focus on two facets: (1) damage identification and (2) concrete condition assessment.

3.1. Damage Identification

At the heart of any SHM system lies its capacity to conduct damage identification.
Damage refers to alterations in a material’s physical characteristics caused by ongoing
deterioration or a singular event affecting a structure. Such changes have the potential to
compromise the performance and structural integrity of the concrete [60]. One limitation
of applying deep learning techniques is that they require a large and annotated database,
which is not always available, especially in the concrete research area. However, the
application of transfer learning can eliminate this problem, allowing an existing deep
learning model to be retrained with smaller amounts of new data [61]; accordingly, an
increasing number of applications of deep learning models in concrete research and SHM
have been reported.

For example, Gopalakrishnan et al. [62] applied transfer learning to a pretrained
VGG-16 model for crack detection in hot-mix asphalt and Portland cement concrete-based
pavement. Kolar et al. [63] also applied transfer learning to VGG-16 model to detect safety
guardrails to promote on-site safety inspection.

Real-world scenarios often limit the applications of deep learning models at actual
construction sites because of lighting and shadow issues. Cha et al. [64] trained a CNN
with a large database of 40k images under various lighting conditions and achieved 98%
accuracy in detecting concrete cracks. The authors later compared the performance of
the proposed CNN using Canny and Sobel edge detection methods. Tong et al. [65]
integrated three CNNs to perform recognition, localization, and feature extraction tasks,
enabling the 3D reconstruction of hidden pavement cracks with images of cracks collected
using ground-penetrating radar (GPR). Figure 3 demonstrates the proposed pipeline of
3D reconstruction pavement cracks with GPR data. Gibert et al. [66] combined multiple
detectors for automatic inspection of railway tracks.
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Assessment of post-disaster damage in concrete to provide valuable insights for
necessary follow-up actions is another application of deep learning in the SHM area.
Davoudi et al. [67] applied image segmentation to determine the state of the damage in
reinforced concrete beams and slabs. Lattanzi et al. [68] also applied image segmentation
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via the MATLAB Image Processing Toolbox for the extraction of features from images of
damaged reinforcement columns to estimate the maximum lateral displacement using a
regression model. Spalling, a common type of damage in concrete structures, is another
area of application of deep learning in SHM practice. For example, Dawood et al. [69]
presented a hybrid model combining image processing and machine learning techniques
to identify spalling distress in subway stations. Yeum et al. [70] applied AlexNet to both
collapse classification and spalling detection in post-disaster analysis of concrete structures.

Kim and Cho [71] introduced a method utilizing unmanned aerial vehicles (UAVs) and
R-CNN to detect cracks in old concrete bridges. They applied transfer learning to R-CNN,
using crack images to enhance crack detection, and later, image processing was employed
to quantify the identified cracks. Kang and Cha [72] also applied UAV-based damage
detection with deep learning; however, they addressed one important issue, which is that
UAVs often require a skilled pilot and autonomous flight with GPS in certain complex
locations of structures, such as indoors or beneath bridges. The authors proposed an
ultrasonic beacon for UAV navigation in GPS-incompatible environments.

Xue and Li [73] devised a three-tiered deep learning framework including an FCN,
RPN, and position-sensitive region of interest pooling for identification of damage in tunnel
linings. Hoang et al. [74] also compared the performance of a CNN with Sobel and Canny
edge detection algorithms, as previously reported by Cha et al. [64], for a cyclic survey
of pavement cracks. Similarly, Dorafshan et al. [75] compared the performance of four
edge detection methods with CNNs in detail for crack detection in concrete. Four common
edge detection methods in the spatial domain (Roberts, Prewitt, Sobel, and Laplacian
of Gaussian) and two in the frequency domain (Butterworth and Gaussian), as well as
the AlexNet model in three modes of training (trained, transfer learning, and without
training), were compared, and the authors concluded that AlexNet showed superiority
over other methods.

AlexNet was used by Wang et al. [76] as well. The authors utilized both AlexNet
and GoogLeNet for the detection of various types of damage to masonry walls in historic
structures, using sliding-window techniques to pinpoint concrete damage. Motivated
by the ImageNet Challenge, Gao and Mosalam [77] proposed the concept of Structural
ImageNet, with four intended tasks: component identification, spalling detection, damage
condition evaluation, and damage type determination in concrete through the application
of transfer learning in VGGNet (Visual Geometry Group).

Wu et al. [78] applied transfer learning to VGG16 and ResNet18 to detect two types of
prevalent concrete surface defects, namely cracks and corrosion. Zhang et al. [79] proposed
Faster R-CNN to determine the spatiotemporal information of the vehicles on bridges in
order to determine the stress state and traffic densities. Wang and Cheng [80] proposed
DilaSeg-CRF by integrating a CNN with a dense conditional random field (CRF) to improve
the segmentation accuracy in sewer pipe defect detection, whereas Li et al. [81] addressed
the issue of data imbalance in sewer damage detection by introducing a hierarchical clas-
sification approach to supervise the learning process at different levels. Zha et al. [82]
applied transfer learning to ResNet (deep residual neural network) for eight types post-
disaster concrete damage detection: scenario classification, damage detection, spalling
detection, material identification, collapse detection, effected component identification,
and damage level and type determination, which were categorized into binary or mul-
ticlasses according to the conditions. The authors used the 2018 PEER Hub ImageNet
Challenge distributed by the Pacific Earthquake Engineering Research Center to evaluate
the proposed methodology.

Jang et al. [83] used transfer learning in GoogLeNet with hybrid images, combining
vision and infrared thermography images to enhance crack detection in concrete structures.
The authors suggested the use of a UAV-mounted hybrid system comprising a vision
camera, an infrared camera, and a continuous-wave line laser to capture images, particularly
for large-scale structures, then used them for inspection of the respective structures. U-Net,
which is famous for applications in biomedical image segmentation, was first applied by
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Liu et al. [84] to concrete crack detection and later compared with FCN using evaluation
metrics such as precision and the size of the training set. The authors applied U-Net for
localization of concrete cracks under various lighting and background conditions. Khani
et al. [85] investigated the impact of preprocessing on a concrete crack detection pipeline
based on a CNN trained with 700 labelled gas turbine images. The authors concluded
that bilateral filtering improves the generalization ability of the suggested framework in
cases with cracks on complex structures. Zhang et al. [86] argued that two-stage detectors
such as Faster R-CNN and ResNet-101 have limited practical applications due to their slow
speeds. The authors used a single-stage detector (SSD), YOLOv3 (You Only Look Once),
to detect multiple types of concrete bridge damage, such as cracks, pop-outs, spalling,
exposed rebar, etc.

Liu et al. [87] argued that the motion blur from excessive vibration in UAVs limits the
accuracy of crack detection in high-rise buildings. The authors introduced a generative
adversarial network (GAN) that incorporates the concept of localized skip connections
that recognize the correlation between blurred and sharpened crack images. The proposed
method was validated through experiments involving the investigation of skip connections
in deblurring and compared with a state-of-the-art deblurring model. Kim et al. [88]
applied transfer learning to Mask R-CNN for automatic concrete damage detection and
localization in four classes—cracks, efflorescence, rebar exposure, and spalling—using an
instance segmentation approach.

Mondol et al. [89] applied Faster R-CNN to detect post-disaster damage like surface
cracks, exposed rebar, and buckled rebar using image data collected from concrete struc-
tures damaged during past earthquakes in Nepal (2015), Taiwan (2016), Ecuador (2016),
Erzincan (1992), Duzce (1999), Bingol (2003), Peru (2007), Wenchuan (2008), and Haiti
(2010). Deng et al. [90] introduced LinkASSPNet (LinkNet with atrous spatial pyramid
pooling) and conducted a performance comparison with U-Net and LinkNet in the context
of concrete bridge surface damage detection. Notably, this study stands out, as the models
were trained on a relatively small dataset. It purports to address the challenge of variations
in labeling areas among labelers in pixel-wise image segmentation tasks.

Zheng and Zhang [91] proposed a crack detection model for concrete based on image
segmentation tasks and the FCN, R-CNN, and RFCN (Richer Fully Convolutional Net-
works) models. The training included a wide range of image data, including images of
buildings, bridges, dams, roads, etc. Karaaslan et al. [92] proposed a combination of an
SSD-based VGG-16 model and a modified SegNet, where the former detects regions of
interest related to damage, such as cracks or spalling, upon verification by the respective
inspector, and the latter then applies segmentation to the damage for further analysis. Miao
et al. [93] proposed U-Net-based Damage-Net for semantic segmentation of seismic damage
in reinforced concrete structures, where the authors adjusted the padding size and stride
size to ensure that the input and output size were the same, which is usually not the case in
U-Net. The proposed Damage-Net receives its encoder from the convolutional layers of
VGG-16, allowing it to adapt transfer learning and to be trained on a comparatively smaller
dataset. Based on this architecture, two individual models were proposed: Crack-Net for
detecting cracks, and 4Category-Net for identifying four additional damage categories,
namely concrete spalling and crushing, reinforcement exposure, buckling, and fracture.

Qiao et al. [94] proposed EMA-DenseNet, a combination of densely connected con-
volutional networks (DenseNet) integrated with an expected maximum attention (EMA)
module in the last pooling layer for the detection of surface damage in concrete bridges
in a set of images collected from multiple bridges located in Zhejiang (China). The au-
thors claimed that the proposed model performs better than FCN, SegNet, DeepLab v3+,
and SDDNet. Huang et al. [95] proposed a software system for damage detection in sub-
way tunnels by integrating four separate functions: image fusion to splice the images
acquired by different cameras, image preprocessing to remove background noise and other
preprocessing tasks, damage identification performed by the R-CNN model and a data
platform for evaluation by the respective personnel. Arya et al. [96] proposed a concrete
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pavement damage dataset consisting of 26,620 data point from multiple countries and
investigated how the demographics of the damage data affect the model performance
based on a YOLO-v5/YOLO-v4/cascade R-CNN-based ensemble model. Cui et al. [97]
proposed an improved YOLO-v3 model for the detection of erosion damage that achieved
up to a 75% mean average precision value.

Pozzer et al. [98] compared the performance of different models, i.e., VGG-16, ResNet-
18, ResNet-50, MobileNet-V2, Xception, etc., in detecting concrete defects such as delam-
ination, cracks, spalling, and patches in thermographic and regular images at varying
distances and under varying conditions using semantic segmentation. Andrushia et al. [99]
implied that most research on damage detection in concrete structures does not consider
the complex background or environmental effects and therefore proposed a U-Net with an
encoder–decoder framework for thermal damage detection in concrete structures in the
event of fires.

Munawar et al. [100] introduced a cycle generative adversarial network (CycleGAN)
with 16 convolution layers, providing additional support to refine predictions through
guided filtering (GF) and conditional random fields (CRFs). The authors applied this
model to inspect mid- to high-rise concrete structures constructed during the 2000s using
segmentation techniques and drones. Zou et al. [101] proposed a YOLOv4-based approach
to the detection of multiple types of damage, including both fine and wide cracks, spalling,
exposed and bucking rebars, etc., that was integrated in a graphical user interface (GUI)
to streamline the assessment of structural damage in reinforced concrete (RC) buildings
following an earthquake. Han et al. [102] proposed the use of a transfer-learning-based
AlexNet and threshold segmentation to precisely locate cracks in concrete structures.

Tanveer et al. [103] compared and analyzed the performance of five semantic seg-
mentation models (ENet, CGNet, ESNet, DDRNet-Slim23, and DeepLabV3+ (ResNet-50)).
These models were categorized as lightweight and heavyweight based on the parameter
count. The evaluation focused on on-site damage detection in concrete structures using
edge computing devices such as smartphones, tablets, etc. Bai et al. [104] proposed an
EfficientNet-V2-based model for component damage recognition, serving both structural
health monitoring (SHM) and post-disaster assessment purposes. They also investigated the
relationship between damage type, component damage level, and the structural safety state.
Crognale [105] compared four different image processing techniques, namely Otsu-method
thresholding, Markov random field segmentation, the RGB color detection technique, and
the K-means clustering algorithm, in corrosion and crack detection based on a case study.
Chen et al. [106] proposed an AlexNet-based multiclass damage detection method for
reinforced concrete bridges in high-speed rail systems.

Wan et al. [107] proposed a BR-DETR model, a concrete bridge damage detection
model based on detection transformers (DETR), with deformable Conv2D in place of
convolution, as well as with an additional convolutional project attention layer after the
self-attention layer. Zhu and Tang [108] introduced a DeepLabV3+ network architecture
with Xception as the backbone to automatically estimate detailed crack information in
hydraulic concrete structures. Huang et al. [109] proposed a Faster R-CNN with Res-Net101
as the backbone for detection of damage like cracks, spalling, and precipitates in hydraulic
concrete structures.

3.2. Damage Quantification

Damage quantification is the next step after damage identification. Concrete damage
quantification aims to determine the extent, severity, and specific characteristics of dam-
age, such as cracks, spalling, corrosion, or other forms of deterioration. Although using
deep learning for concrete damage quantification is still a relatively new concept in SHM,
researchers are continuously generating new ideas to automate the quantification process,
given the inherent challenges associated with this topic.

Kim et al. [110] proposed a UAV-based digital image processing system integrated
with imaging and distance-sensing technology to determine the width and length of the
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cracks in concrete surfaces. Tong et al. [111] proposed a CNN-based method to calculate
the mean texture depth (MTD) of pavement surfaces from 3D scan data, which was tested
on four different highways in Shanxi, China. Huang et al. [112] studied lining damage
in tunnels with a rapid detection and assessment analysis system developed by Nanjing
HuoYang Hou Mdt InfoTech Ltd. The system includes a multichannel array of high-speed
CCD (charged couple device) cameras to obtaining image data, multiple sensors to mitigate
the impact of vehicle vibration on the tunnel, a multilayer lighting system, multiple posi-
tioning technology (reference object positioning technology + image positioning technology
+ mileage positioning technology + infrared laser positioning technology), and a computer
vision approach for damage identification and analysis. Tayo et al. [113] presented a device
capable of portable crack width calculation in concrete road pavement using pattern recog-
nition based on multiple image processing technologies, such as graying, enhancement,
filtering and denoising, binarization, segmentation, etc. Kim and Cho [114] proposed
Mask R-CNN+image processing techniques for successful detection and quantification of
concrete cracks with widths of 0.3 mm or more. Wei et al. [115] applied the same approach
to concrete surface bughole segmentation and diameter measurement.

Beckman [116] applied Faster R-CNN to automatically and simultaneously detect and
quantify concrete spalling in multiple locations within the same surface. The authors used a
depth camera to obtain the volume quantifications of the spalling damage. Park et al. [117]
applied YOLO for both concrete crack detection and quantification (i.e., to determine the
size of the cracks) in real time. The authors used laser beams with integrated distance
sensors for accurate measurement of the crack size. Bhowmick et al. [118] applied U-Net-
based segmentation for concrete crack localization and binarization to estimate quantitating
properties of cracks, like length, width, area, orientation, etc., from video data collected
by a camera mounted on a UAV. Flah et al. [119] applied a deep learning technique to
identify both structural and durability-related damage in structural members and assess
the condition in a short time span by combing a Keras classifier with Otsu image processing.
The proposed method can classify cracks; quantify them in terms of length, width, and
angular orientation; and evaluate the severity of the damage.

Yuan et al. [120] proposed an inspection robot that transforms the quantification of
concrete damage from a 2D plane to 3D space with stereo vision and a Mask R-CNN
approach. The robot is based on four different sensors, with a monocular camera as a
visual sensor, a stereo camera with a sensor for inertial measurement (IMU) of six degrees
of freedom that can be mapped for panoramic image stitching, and a LiDAR sensor to
measure the distance between the RC structure and the camera. Miao et al. [121] proposed
a GoogLeNet-based transfer learning approach incorporating a novel sliding technique
known as neighborhood scanning. This method aims at the detection, segmentation,
and quantification of concrete cracks, achieving an average relative error of 14.58% in
crack calculation.

Song et al. [122] introduced a deep learning approach for crack segmentation and
quantification utilizing MobileNetV1 and ResNet50, along with DeeplabV3+ and U-Net.
MobileNetV1 and ResNet50 handle crack classification, while DeeplabV3+ and U-Net
manage panoramic crack segmentation (Figure 4). The quantitative information of the
crack was subsequently acquired by multiplying the actual physical size corresponding to
the unit pixel, assuming the length of a single pixel as the unit length. Kumarapu et al. [123]
introduced UAVIC, a system that integrates UAVs with an image processing technique, i.e.,
digital image correlation. This approach is employed for damage quantification on scaled
bridge girders.
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Figure 4. Before and after concrete crack segmentation [122].

Bae et al. [124] proposed a computer-vision-based crack quantification algorithm using
decision making based on statistical methods for accurate estimation and quantification
of damage based on an image dataset of concrete building structures in South Korea.
Li et al. [125] proposed a ResNet50-based improved You Only Look At CoefficienTs for
Edge devices (YolactEdge) combined with digital image processing techniques for damage
identification and quantification in hydraulic tunnels.

4. Strengths, Weaknesses, Opportunities, and Threats (SWOT) Analysis

SWOT analysis is a strategic tool utilized to assess the strengths, weaknesses, opportu-
nities, and threats within a system or situation [126]. To facilitate future planning, decision
making, and strategic development in construction engineering, a SWOT analysis was
conducted to evaluate the deep-learning-based SHM systems discussed in this study.

1. Strengths: The implementation of deep learning models can assist in improving the
SHM process by systematically predicting patterns and anomalies in image data [127].
This results in more accurate damage identification in concrete and concrete structures.
One advantage of deep learning is its integration capability with multiple other
systems, such as sensors (LiDAR and IMU); UAVs or drones; and depth/stereo or
infrared camera, which, in turn, aids in the quantification process. Combining deep
learning with computer vision applications can not only eliminate the unsafe and
lengthy manual inspection process but also enable the automation of the entire SHM
system in real time [128].

2. Weaknesses: The first weakness in the implementation of deep learning models is
their requirement for large-scale annotated data. Obtaining high-quality labeled data,
specifically related to concrete health conditions, remains a persistent challenge [61].
Another potential limitation is the requirement for extensive knowledge. Those
aiming to implement a deep-learning-based SHM process must be familiar with both
deep learning and structural engineering, posing an additional challenge.

3. Opportunities: An SHM system based on deep learning models offers early damage
identification and real-time continuous monitoring [2]. When integrated with an alarm
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system, it can promptly notify authorities during the early stages of damage. This
enables rapid action, preventing the escalation of severity and reducing additional
costs related to maintenance and damage repair. The field of construction engineering
also often struggles with complexities in data, and deep learning has proven to be an
effective solution to address these challenges [62].

4. Threats: While deep learning applications can undoubtedly aid in the SHM process,
the reliability of results becomes questionable without proper validation or practical
testing of the trained models. Additionally, a deep-learning-based system should
undergo regular updates with new data or guidelines to effectively tackle emerging
challenges [61].

According to the SWOT analysis, the application of deep learning in SHM systems
offers a vast array of opportunities; however, further research and studies are required to
understand its limitations and threats. The next section describes some practical recom-
mendations regarding training data requirements, model reliability, and other issues found
in the studies published to date.

5. Discussion and Suggested Frameworks for the Future

The number of deep-learning-based applications in concrete research is rapidly grow-
ing, especially in the SHM area. Numerous applications have been reported with respect
to both concrete damage identification and quantification. However, based on the above-
mentioned trends, the number of automatic concrete damage quantification studies in
the SHM area was comparatively less before 2019. The application and integration of
stereo cameras and sensors, such as LiDAR and laser sensors, have made deep learning
applications for damage quantification. Many researchers have applied various image
processing techniques rather than integration with depth cameras or sensors. However,
concrete cracks are very fine, so whichever system is adopted must precisely quantify a
particular property (either length, width, or diameter). AlexNet, GoogleNet, Faster R-CNN,
Mask R-CNN, U-Net, VGG, and YOLO models seem to be popular choices for damage
identification. However, compared to other industries, construction falls behind in terms
of adopting digitalization; therefore the application of deep-learning- and vision-based
systems to monitor concrete health in the SHM area is still not sufficient in real practice,
mostly due to the following issues:

1. Data shortage: Although transfer learning has made the adaptation of deep learning
easier, there is still a lack of publicly available datasets in the construction domain.
Raw data often need to go through many stages of post processing, which is very time-
consuming and labor-intensive. Also, there is a need for annotated datasets, which
are essential for any deep learning training [129]. Most studies have been conducted
using private datasets; making such datasets public would open multiple doors for re-
searchers in the SHM domain for multiple applications. Although data augmentation
plays an important role in dataset incrementation, applying various transformations
to existing data, such as rotating, scaling, flipping, or cropping images, is insufficient
for research in the SHM area. An alternative method involves utilizing generative
adversarial networks (GANs), where a deep learning model comprising two distinct
networks (namely a generator and a discriminator) is employed to generate synthetic
image data instead of relying on real-world camera inputs only, as reported in [87,100].
Deng et al. [130] implied that GANs trained on synthetic data often perform well in
real-world scenarios.

2. Impact of the training data on overfitting: Transfer learning has undeniably simplified
the application of deep learning models in structural health monitoring (SHM). How-
ever, the persistent challenge of overfitting can arise, particularly in instances where
there is a paucity of image data. Deep learning models characterized by multiple
layers and millions of parameters demand extensive tuning, as illustrated, for exam-
ple, by the necessity of adjusting at least 100 million parameters in VGG-16 for crack
detection [61]. The insufficiency of training data, both in terms of quantity and quality,
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poses a significant obstacle, rendering a model incapable of performing effectively
in real-world applications. It is imperative that the training data encompass diverse
real-world scenarios, accounting for variations in background, lighting, and weather
conditions, to ensure the model’s robustness and applicability.

3. Requirement for high-performance computers: Many deep learning techniques neces-
sitate several days for training due to the extensive calculations involved in computing
related training parameters, such as loss functions. Adequate hardware, including
high-capacity hard disks, multiple GPUs/CPUs, and substantial memory, is essential
for storing these calculations. Researchers should prioritize discovering optimized
model structures with fewer parameters, facilitating their seamless adaptation in
structural health monitoring (SHM) applications. An attempt to address this concern
was made by Zang et al. [86] with an SSD-based model.

4. Dealing with background noise: On the other hand, in addressing various background
noises in images, researchers have implemented different morphological changes
in the CNN architecture [80,87,90,93,94,100,107] to increase the detection accuracy.
However, the source code is typically not publicly available. Researchers should be
encouraged to make their source code publicly accessible, enabling other researchers
to enhance the architecture further and, consequently, increase its applicability in
actual practice. Due to the image resizing requirement of deep learning models to be
trained on computers with average computing capacities, generalization abilities are
often lost. For example, stains are a common issue in concrete structures and often
incorrectly identified as cracks. To solve this issue, stains and similar defects could be
categorized as another class [131] to improve the generalization abilities.

Despite the challenges and limitations, the use of deep learning and computer vision
technologies holds significant promise in structural health monitoring (SHM) and concrete
research. Integrating deep learning applications into smartphones or tablets for on-site
inspections, as well as utilizing UAV-based approaches for the inspection of high-rise
buildings and long-span bridges, not only facilitates the whole inspections process but also
saves time and effort while promoting workplace safety. Additionally, the integration of big
data and data mining technologies with cloud computing can enhance data management. A
collaborative effort from researchers, scholars, and engineers in the construction, computer
science, and civil engineering domains can establish more effective deep -earning-based
SHM inspection systems for both damage identification and quantification, regardless of
severity, delicacy of the damage, and the influence of the surrounding environment.

6. Conclusions

The aim of this research was to conduct a systematic review of the utilization of deep
learning in the identification and quantification of concrete damage for SHM purposes.
This study delved into the concepts and historical development of artificial intelligence
(AI), computer vision (CV), and deep learning. With the aim of including the latest ad-
vancements in concrete research, the analysis was focused on studies spanning from 2017
to 2023, particularly those addressing vision-based crack identification, categorization, and
measurement analysis. Our comprehensive discussion of the applications, purposes, and
limitations of deep-learning-based SHM research yielded the following key points:

1. Although deep-learning-based damage identification is subject to multiple challenges
regarding data acquisition, processing, training, and testing issues, it has demon-
strated significant promise. The requirement for specific dataset preparation and
strategic approaches during training could help the researchers overcome overfitting
issues encountered as a result of limited resources.

2. The integrations of deep learning in concrete damage quantification research is chal-
lenging due to the fact it can only provide pixel-based measurement, not an actual
measurement. While unit conversion and image processing techniques can be applied
to smaller cracks, large cracks may require depth or stereo cameras and remote sensing
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systems. However, most available depth cameras on the market have a short range
(>10 m), so efforts should be made to develop longer-range depth cameras.

In this study, we addressed four critical issues related to the application of deep
learning to concrete damage identification and quantification and suggested potential
frameworks to deal with these issues. This research provides helpful insights that can aid
in future applications and studies regarding deep learning in the SHM area.
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