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Abstract: The urgent need for efficient energy storage devices (supercapacitors and batteries) has
attracted ample interest from scientists and researchers in developing materials with excellent electro-
chemical properties. Electrode material based on carbon, transition metal oxides, and conducting
polymers (CPs) has been used. Among these materials, carbon has gained wide attention in Elec-
trochemical double-layer capacitors (EDLC) due to its variable morphology of pores and structural
properties as well as its remarkable electrical and mechanical properties. In this context, the present
review article summarizes the history of supercapacitors and the basic function of these devices,
the type of carbon electrode materials, and the different strategies to improve the performance of
these devices. In addition, we present different approaches to studying the charging mechanism of
these devices through different electrochemical techniques existing in the literature, since a deeper
understanding of the interfacial charge storage mechanisms is also crucial in the elaboration and
performance of the electrode material. We make a comparison of the different techniques and present
their advantages and challenges. Taking these advances into account, we consider that the coupling
between two methods/techniques provides a better understanding of the charge storage mechanisms
in energy storage devices.

Keywords: carbon materials; supercapacitors; EQCM (Electrochemical Quartz Crystal Microbalance); EIS
(Electrochemical Impedance Spectroscopy); ac-electrogravimetry; NMR (Nuclear Magnetic Resonance)

1. Introduction

One of the strategies to deal with climate change is to reduce the consumption of fossil
fuels and develop renewable and sustainable energy sources. In this way, more efficient
electrical energy conversion and storage devices are required Kabeyi and Olanrewaju [1,2].
Batteries and supercapacitors are the most used energy storage technologies. Batteries
store energy through faradaic redox reactions providing a high-energy supplement, with
energy densities of a few hundreds of W h kg−1. However, these battery-type faradaic
reactions undergo slow kinetics leading to limited energy yield and lifetime [3]. In contrast,
supercapacitors store the charge on reversible electroadsorption of electrolyte ions toward
the surface of electrodes [4]. Although featuring lower energy density, supercapacitors
can provide a high power delivery in a relatively short time and can operate for a high
number of charge/discharge cycles and a longer lifetime than batteries [2,5], as shown in
the Ragone Plot (Figure 1). These fast and highly reversible storage mechanisms make
supercapacitors promising candidates for energy storage devices, which are presently used
in a broad range of applications ranging from small devices (watches, sensors, mobile,
headphones, and others) [6] to large-size cells for automotive transportation such as electric
car and buses and their charging stations [7].
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Figure 1. Ragone plot for supercapacitors and batteries. Reproduced from Ref. [8] with permission 
from the American Chemical Society (copyright 2017). 
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H. Becker of GEC (General Electric Company) patented the first supercapacitor in 

1957. Electrodes composed of porous carbon and an aqueous electrolyte based on sulfu-
ric acid were used by Becker. It formed an electric double layer at the elec-
trode/electrolyte surface [9]. A few years later, a device using graphite was patented by 
SOHIO (Standard Oil of Ohio). In an experiment with organic electrolytes, SOHIO ob-
served a higher operating voltage than those obtained in aqueous electrolytes. In 1971, 
NEC (Nippon Electric Company) licensed the SOHIO patent under the name of “super-
capacitors”. NEC successfully introduced these new devices on the market as backup 
memories for electronics [10–12]. Following the success of NEC, several companies be-
gan to produce and develop supercapacitors. For instance, in 1982, the first high-power 
supercapacitor intended for military applications was designed by Pinnacle Research In-
stitute [9,13]. 

Presently, there are different types of supercapacitors in terms of charge-storing 
mechanisms. The two main types are the Electrochemical double-layer capacitors 
(EDLC) and the so-called Pseudocapacitors. In EDLC, the charge is stored by electrostat-
ic interaction between electrolyte ions and the surface of electrodes, typically using car-
bon materials as electrodes. In pseudocapacitors, the charge is stored by fast and re-
versible faradaic redox reactions between the electrolyte and electroactive species on the 
surface of the electrode, generally using conducting polymers (CPs) and transition metal 
oxide materials as electrodes [5]. Finally, another type of supercapacitor is the so-called 
hybrid capacitor, where the charging mechanism is due to electrostatic interactions and 
faradaic reactions [14] (See Figure 2). 

Supercapacitors can be classified as symmetric and asymmetric. Symmetric is when 
both electrodes have the same design and mass loading, while in asymmetric, both elec-
trodes are different [15]. 

Figure 1. Ragone plot for supercapacitors and batteries. Reproduced from Ref. [8] with permission
from the American Chemical Society (copyright 2017).

1.1. History

H. Becker of GEC (General Electric Company) patented the first supercapacitor in
1957. Electrodes composed of porous carbon and an aqueous electrolyte based on sulfuric
acid were used by Becker. It formed an electric double layer at the electrode/electrolyte
surface [9]. A few years later, a device using graphite was patented by SOHIO (Standard Oil
of Ohio). In an experiment with organic electrolytes, SOHIO observed a higher operating
voltage than those obtained in aqueous electrolytes. In 1971, NEC (Nippon Electric Com-
pany) licensed the SOHIO patent under the name of “supercapacitors”. NEC successfully
introduced these new devices on the market as backup memories for electronics [10–12].
Following the success of NEC, several companies began to produce and develop superca-
pacitors. For instance, in 1982, the first high-power supercapacitor intended for military
applications was designed by Pinnacle Research Institute [9,13].

Presently, there are different types of supercapacitors in terms of charge-storing mech-
anisms. The two main types are the Electrochemical double-layer capacitors (EDLC) and
the so-called Pseudocapacitors. In EDLC, the charge is stored by electrostatic interaction
between electrolyte ions and the surface of electrodes, typically using carbon materials as
electrodes. In pseudocapacitors, the charge is stored by fast and reversible faradaic redox
reactions between the electrolyte and electroactive species on the surface of the electrode,
generally using conducting polymers (CPs) and transition metal oxide materials as elec-
trodes [5]. Finally, another type of supercapacitor is the so-called hybrid capacitor, where
the charging mechanism is due to electrostatic interactions and faradaic reactions [14]
(See Figure 2).
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Supercapacitors can be classified as symmetric and asymmetric. Symmetric is when
both electrodes have the same design and mass loading, while in asymmetric, both elec-
trodes are different [15].
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1.2. Principle of Operation for EDLC

An EDLC is generally made up of two electrodes immersed in an electrolyte and
insulated by a separator [12,16–18]. The two electrodes can be composed of identical or
different materials. Nanostructured and porous carbons with high specific surface areas
are the most commonly used [12]. The electrode materials play an important role in the
capacitance values and the charge stored in the EDLC [16,17]. In EDLC, no faradaic redox
reactions are involved in the electrochemical process [17]. The principle of operation is
based on an electrochemical double layer. It is formed through electrostatic interactions
between the electrode surface and electrolyte [12,13,16,19]. During discharge, electrical
energy is generated when the accumulated charge causes a parallel movement of electrons
in the external circuit, as indicated in Figure 3 [12,13]. Due to the high specific surface area
of the electrode materials, the amount of energy that can be stored is much larger than
in traditional capacitors [18] and the stored charge can be restored more efficiently than
in batteries [20]. Furthermore, the life cycle of an EDLC is significantly higher compared
to batteries. EDLCs can withstand millions of cycles [2], while batteries have a life cycle
of approximately 500–2000 cycles [19]. As described above, the two electrode/electrolyte
interfaces in an EDLC function as two capacitors in series (C1 and C2) formed at the
electrode/electrolyte interfaces. Thus, the total specific capacitance of the cell (C) depends
on the capacitance of each electrode. It is described in the following equation [19]:

1
C

=
1

C1
+

1
C2

(1)
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Figure 3. Charged (right) and discharged (left) states of an EDLC. Reproduced from Ref. [21] with 
permission from Elsevier (copyright 2013). 
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energy, and power density of the supercapacitor [23]. Moreover, it affects the series re-
sistance and self-discharge characteristics [17,24]. Thus, the selection of the electrode ma-
terials is fundamental, and a huge number of parameters need to be considered. Such 
parameters are specific surface area, porosity, structure [25], “tunability” of the mor-
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ed the following classification: macropores (diameters > 50 nm), mesopores (diameters 
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The relationship between the capacitance C (in Farad), the quantity of stored electrical
charge Q (in Coulomb), and the rated voltage V (in Volt) is as follows [22]:

C =
Q
V

(2)

where the charge Q equals the current I (in Ampere) multiplied by time t (in seconds) [12]:

Q = I × t (3)

Generally, the charge Q is expressed in Ah/g (1 Ah = 3600 C) and the specific capaci-
tance C is given as the specific capacitance in F/cm2 or F/g.

1.3. Components of the Supercapacitors: Active Electrode Materials, Electrolytes, Separator, and
Current Collectors

The components of the supercapacitors are (i) active electrode materials, (ii) electrolytes,
(iii) separators, and (iv) current collectors. They are detailed below.

(i) Active Electrode Materials:

The main components of electrodes are the active materials. They store/deliver
charges. The electrode material plays an important role in determining the capacitance,
energy, and power density of the supercapacitor [23]. Moreover, it affects the series re-
sistance and self-discharge characteristics [17,24]. Thus, the selection of the electrode
materials is fundamental, and a huge number of parameters need to be considered. Such
parameters are specific surface area, porosity, structure [25], “tunability” of the morphology
(i.e., how readily the material allows manipulation of pore size, pore distribution, surface
functional groups, etc.) [9,26], surface wettability, electrical conductivity [9], electrochem-
ical stability [17], thermodynamic stability for a wide operational potential range, cycle
stability [9], mechanical resilience [27], and cost [9,17,25]. Considering the pore size, the
IUPAC (International Union of Pure and Applied Chemistry) has suggested the follow-
ing classification: macropores (diameters > 50 nm), mesopores (diameters between 2 and
50 nm), and micropores (diameters < 2 nm) [28].

At the present time, there are three main categories of active electrode materials based
on carbon materials [12], transition metal oxides, and conducting polymers. Among these
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classes of materials, carbon is the most frequently used in EDLCs [25], and the various
structures of carbon can affect their properties. The most commonly used structures in
EDLCs are: (1) onion-like carbons (OLCs), (2) carbon nanotubes (CNTs), (3) graphene,
(4) carbide-derived carbons (CDCs), (5) activated carbons (ACs), and (6) templated carbons
(See Table 1) [16,29].

Table 1. Carbon structures with some of their characteristics. Reproduced from Ref. [30] with
permission from the American Chemical Society (copyright 2013).

Material Carbon Onions Carbon
Nanotubes Graphene Activated

Carbon
Carbide

Derived Carbon
Templated

Carbon

Dimensionality 0-D 1-D 2-D 3-D 3-D 3-D
Conductivity High High High Low Moderate Low
Volumetric
Capacitance Low Low Moderate High High Low

Cost High High Moderate Low Moderate High

Structure
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(1) Onion-Like Carbons (OLCs) 
OLCs are zero-dimensional (0D) materials [30,31] that involve concentric graphitic 

shells with a specific surface area. The surface areas range from 200 to 980 m2/g depend-
ing on the synthesis conditions. Annealing of nanodiamond powders in a vacuum or 
under argon is generally the OLC preparation method [30]. They offer high electrical 
conductivity [30], high power [30], and high energy densities. However, a limited capaci-
tance of around 30 F∙g−1 is found in these kinds of materials [30]. 

(2) Carbon Nanotubes (CNTs) 
Multi-walled carbon nanotubes (MWCNTs) were first discovered by Sumio Iijima in 

1991, as soot-like products in the Krätschmer–Huffman arc discharge synthesis reactor 
used for the formation of fullerene (C60), and reported the existence of single-walled 
carbon nanotubes (SWCNTs) two years later [10,32]. CNTs are considered one-
dimensional since the graphite walls that compose them are assembled in almost one-
dimensional tubes and charge transport only occurs along the axis of the tube [9]. The sp2 
hybridization and the interplanar distance of 0.335 nm in the hexagonal atomic lattice 
remain the same in CNTs as in graphite [33]. The diameters of these tubes are approxi-
mately 1–50 nm. Depending on the number of graphitic layers (walls), CNTs are divided 
into three subgroups: single-walled nanotubes (SWNTs), double-walled nanotubes, and 
multi-walled nanotubes (MWNTs) [18,27]. Both SWNTs and MWNTs are appreciated for 
their high electrical conductivity [18,27], unique pore structure [34], excellent mechanical 
properties [9,34], chemical reactivity [34], and thermal stability [27], and relatively low 
equivalent series resistance (ESR) (lower than activated carbon) [29]. Although their sur-
face area is relatively moderate compared to activated carbon, it can be used more effi-
ciently because the mesopores are interconnected, providing access to almost all of the 
surface area and allowing continuous charge distribution [27,29,34]. Taken together, 
these properties make CNTs suitable for high-power devices [18,27,29]. The specific ca-
pacitance of CNT electrode material varies between 15 and 200 F∙g−1. However, it de-
pends on the morphology and purity obtained during the production procedure and 
any subsequent treatment [9,27]. Three major methods can be used to produce CNTs in 
sizeable quantities: arc discharge, laser ablation, and chemical vapor deposition (CVD) 
[35–37]. Each of these methods has advantages and disadvantages that result in different 
growth results (See Table 2). 
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(1) Onion-Like Carbons (OLCs)

OLCs are zero-dimensional (0D) materials [30,31] that involve concentric graphitic
shells with a specific surface area. The surface areas range from 200 to 980 m2/g depending
on the synthesis conditions. Annealing of nanodiamond powders in a vacuum or under
argon is generally the OLC preparation method [30]. They offer high electrical conduc-
tivity [30], high power [30], and high energy densities. However, a limited capacitance of
around 30 F·g−1 is found in these kinds of materials [30].

(2) Carbon Nanotubes (CNTs)

Multi-walled carbon nanotubes (MWCNTs) were first discovered by Sumio Iijima in
1991, as soot-like products in the Krätschmer–Huffman arc discharge synthesis reactor used
for the formation of fullerene (C60), and reported the existence of single-walled carbon
nanotubes (SWCNTs) two years later [10,32]. CNTs are considered one-dimensional since
the graphite walls that compose them are assembled in almost one-dimensional tubes
and charge transport only occurs along the axis of the tube [9]. The sp2 hybridization
and the interplanar distance of 0.335 nm in the hexagonal atomic lattice remain the same
in CNTs as in graphite [33]. The diameters of these tubes are approximately 1–50 nm.
Depending on the number of graphitic layers (walls), CNTs are divided into three sub-
groups: single-walled nanotubes (SWNTs), double-walled nanotubes, and multi-walled
nanotubes (MWNTs) [18,27]. Both SWNTs and MWNTs are appreciated for their high
electrical conductivity [18,27], unique pore structure [34], excellent mechanical proper-
ties [9,34], chemical reactivity [34], and thermal stability [27], and relatively low equivalent
series resistance (ESR) (lower than activated carbon) [29]. Although their surface area is
relatively moderate compared to activated carbon, it can be used more efficiently because
the mesopores are interconnected, providing access to almost all of the surface area and
allowing continuous charge distribution [27,29,34]. Taken together, these properties make
CNTs suitable for high-power devices [18,27,29]. The specific capacitance of CNT electrode
material varies between 15 and 200 F·g−1. However, it depends on the morphology and
purity obtained during the production procedure and any subsequent treatment [9,27].
Three major methods can be used to produce CNTs in sizeable quantities: arc discharge,
laser ablation, and chemical vapor deposition (CVD) [35–37]. Each of these methods has
advantages and disadvantages that result in different growth results (See Table 2).
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Table 2. Summary and comparison of synthesis methods of CNTs. Adapted from Ref. [38], open access.

Method Arc-Discharge Laser-Ablation CVD

How

CNT growth on graphite electrodes
during direct current arc-discharge
evaporation of carbon in presence of an
inert gas [39].

To form CNTs, the vaporization of a
mixture of carbon (graphite) and
transition metals located in a target
is used [40].

Fixed bed method: decomposition of
acetylene on graphite support iron
particles at 700 ◦C [41].

Yield rate >75% >75% >75%
SWCNT or MWCNT Both Both Both

Advantage Simple, inexpensive, high-quality
nanotubes.

Relatively high purity CNTs,
room-temperature synthesis.

Simple, inexpensive, low temperature,
high purity, large-scale production,
aligned growth is possible.

Disadvantage
Purification of crude product is required,
the method cannot be scaled, it must
have a high temperature.

Method limited to the lab scale;
crude product purification required.

Synthesized CNTs are usually
MWNTs, defects.

Therefore, the choice of the method depends on the requested properties of the CNTs.
Prasek, J. et al. [42] reported that the choice of catalyst is one of the most important
parameters when using the CVD method because it affects the CNT growth. Moreover,
CNT production (CNT growth) depends on the processing conditions, such as temperature
and pressure. Temperatures greater than 900 ◦C result in SWCNTs, while MWCNTs are
formed at temperatures in the range of 700–800 ◦C [43].

(3) Graphene

Graphene is another active material commonly used in energy-storage mechanisms.
The graphene material can host ions (such as Li+ or Na+ in metal-ion batteries) to store
electrostatic charges on the electrode double layer (as in EDLC applications) [44].

Graphene is composed of pure carbon organized in a hexagonal structure in the form
of a transparent sheet one atom thick. Graphene can be produced by mechanically ex-
foliating graphite (which is made up of interleaved sheets of graphene) with a Scotch
tape method. This approach involves removing a piece of graphite until only one layer
remains. However, this technique does not allow large-scale production of graphene, and
since most chemical and electrochemical energy storage systems require large amounts of
graphene, many other methods have been proposed to synthesize graphene-like materials.
For example, graphene oxide (GO) reduction can be used to make graphene-like materials.
GO is usually synthesized through the Hummers method [45], which is a reaction implying
graphite, sulfuric acid, and potassium permanganate. Once the GO is synthesized, its
reduction can be performed in three different manners: chemically, thermally, or electro-
chemically. The reduction process has a decisive influence, as it determines the quality of
the reduced graphene-like material [46]. Many approaches to chemical reduction can be
performed in order to bring the GO structures as close as possible to those of graphene
obtained by the Scotch Tape method. Hydrazine is involved in the most common method.
This compound is interesting because, unlike other reducing species such as lithium alu-
minum hydride (LiAlH4), it does not react with water, thus avoiding a series of secondary
reactions. However, a large-scale production implicating hydrazine would be difficult
as this compound is toxic and cannot be used in the context of sustainable development.
Another method involved in the production of graphene-like material is thermal reduction,
which can be carried out by heat-treating graphene oxide at 1050 ◦C. Total elimination of
carbonyl groups by thermal reduction is possible at a very high temperature (>1000 ◦C)
and low pressure [47]. This thermal process leads to an increase in the pressure within
the material because this process causes the liberation of bound oxygen in the form of
CO and CO2 [48]. However, thermal treatment of graphene oxide may cause damage to
the material, causing surface defects that affect electronic properties. Nevertheless, this
ecological method avoids the use of dangerous species such as hydrazine and allows the
production of high-quality graphene-like material [46].

An environmentally friendly method is electrochemical reduction. In this method, a
reaction in an electrolyte is carried out in a three-electrode system with a working electrode
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on which GO thin films are deposited and is generally used to apply a negative voltage
to produce RGO (Reduced Graphene Oxide) through a reduction reaction. The brown
color of GO is modified to black when RGO is formed [49]. In some experiments, Electro-
chemically Reduced Graphene Oxide (ERGO) can be obtained by chronoamperometry at
−1.1 V vs. Ag/AgCl for 30 min [50].

(4) Carbide-Derived Carbons (CDCs)

The carbide precursors obtained from the extraction of metals at high temperatures are
used for the manufacture of CDC [30]. The porosity is formed by leaching out metal atoms
from the crystal structure of the carbide precursor [30]. Furthermore, the pore structure
is highly dependent on the carbide precursor and the synthesis temperature [51]. Carbon
growth can be controlled on the atomic level, leading to a highly controllable pore size with
better than angstrom accuracy. The specific surface area ranges from 1000 to 3000 m2·g−1.

(5) Activated Carbons (ACs)

The carbonization of carbonaceous organic precursors (e.g., nut shells, wood, peat, or
coal) [30,31,52] is generally used to produce ACs and subsequent activation processes [30,31,52].
A three-dimensional porous network in the bulk of the carbon material can be created
through the activation of processes [52]. These processes can be physical and/or chem-
ical [30]. In physical activation, an oxidizing gas [31,52], e.g., air [31,52], water vapor,
CO2 [30,31,52], or KOH [30], is used for the thermal treatment of the carbon precursor.
Chemical activation is executed through an activating agent, e.g., phosphoric acid, potassium
hydroxide, sodium hydroxide, or zinc chloride (H3PO4, KOH, NaOH, ZnCl2) [30,31,52].
Throughout the activation processes, micropores and mesopores can be created and the
specific surface area can exceed 2000 m2·g−1 [30]. However, the control over porosity is
limited, resulting in a broad pore size distribution, which means that not all pores will be
accessible to ions. AC materials with different functional groups on the carbon surface may
be obtained by selecting the carbon precursor, activation method, and control of synthesis
conditions. In this way, a variety of physicochemical properties can be achieved [31,52].
Functional groups containing oxygen and/or nitrogen are the most common [31].

In the last decade, the capacitive performance of ACs has been significantly improved
and ACs have a higher energy density than CNTs and graphene (AC volumetric capaci-
tance reaches 50–80 F·cm−3) [30]. ACs are widely used in commercial EDLCs [30,52] as
manufacturing is scalable and the cost is reasonable.

(6) Templated carbons

The carbonization of a carbon precursor in nanochannels of a template inorganic
material and the subsequent removal of the template are used to produce templated car-
bons [30,31,34,51,52]. Porous carbons with different physical and chemical properties may
be obtained through the selection of carbon precursor and template, and by controlling the
carbonization parameters [31]. The preparation of 1D, 2D, and 3D carbons, e.g., carbon
nanotubes, graphene, and nanoporous carbons, can be obtained by using the template
method [30], and both microporous and mesoporous carbons can be formed [51]. Further-
more, the precise control of pore structure can be achieved by this method. In this way, pore
volume [51] and pore size [30] can be controlled by tuning the pore size of the template [34].
According to the templates used, it can be subdivided into hard-template and soft-template
methods. A replication synthesis with pre-synthesized hard templates (inorganic materials
such as silica nanoparticles, zeolites, mesoporous silica, and MgO) including infiltration,
carbonization, and removal of templates is involved in the former [34], while the latter uses
triblock copolymers as the template [30,34] and includes condensation and carbonization.
Large-scale production is unsuitable for the hard-template method because it is expensive
and time-consuming. In addition, toxic acids are required to remove the template. The
soft-template method is faster, less expensive, and more ecological [34]. Templated carbons
are suitable to study the effects of pore size, pore shape, and channel structures due to their
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controllability. Parameters related to ion diffusion and charge storage in nano-confined
systems are also analyzed [31].

In addition to carbon structures, the porous texture plays an important role in un-
derstanding the relationship between the specific surface area and the capacitance. A
strong impact on capacitance values can occur through the ion size/pore size and the
connection between the pores, particularly when high current densities operate in superca-
pacitor materials. Four important porous characteristics for carbon materials are presented:
(a) ion sieving, (b) ion desolvation, (c) pore saturation, and (d) distortion.

a. Ion Sieving

Aurbach et al. [53] defined the concept of ion sieving, and it denotes the possibility of
selective electrosorption of ions based on size [54–56]. The sieving effect was demonstrated
in a study of the capacitance of active carbon (AC) in a series of ILs (Ionic Liquids) of
increasing cation size. Since ILs are solvent-free, the capacitance properties can be inter-
preted by comparing the size of pores and ions calculated by molecular modeling. This
study showed an extensive mismatch between the pore size and the effective size of the
cations [25].

b. Ion Desolvation

Due to the solvation shell, the effective ion size in aqueous and organic electrolytes
is larger than the actual ion size itself. Solvation shells are formed surrounding the ions
in aqueous and organic electrolytes [25]. Therefore, the effective ion size is larger than
the actual ion size itself. Although it is clear that pore size and effective ion size need
to correspond, it is difficult to identify the optimal pore size, i.e., the pore size leading
to the best EDLC performance. For templated carbons measured by CO2 gas sorption,
Vix-Guterl et al. [57] showed that the capacitance is proportional to the ultra-micropore
volume (pores smaller than 0.7–0.8 nm), in both aqueous and organic media. Furthermore,
it was shown that the ions needed to be at least partially desolvated to access the pores (for
a two-electrode setup).

c. Pore Saturation

It was shown by Mysyk et al. [58] that the porosity of carbons with subnanometer-
sized pores (pitch-derived carbon (PC)) can be saturated with electrolyte ions for high
voltage values in a 1.5 M TEA-BF4/ACN electrolyte. Furthermore, it was found that the
capacitive current decreased significantly at a voltage above 1.5 V, although the pore size
probably matched the ion size. The charge was approximately equal to the theoretical
maximum charge storable in the pores larger than the desolvated cations. Therefore, the
authors proposed that saturation of the ion-accessible pore volume caused a decrease in
capacitive current.

d. Distortion

In a study conducted by Ania et al. [59], an unexpectedly high capacitance (92 F/g) for
a microporous carbon in TEA-BF4/ACN electrolyte was observed, where 63% of the pores
were smaller than the desolvated ion size. The authors proposed that distorted cations
penetrate the pores under the effect of the electric field, proving slightly smaller dimensions
than their computed rigid size. A size smaller than the average pore size of carbon has been
computed for some TEA+ conformations. Chmiola et al. [60] also observed an anomalous
increase in carbon capacitance at pore sizes less than 1 nanometer.

In summary, Table 3 details different synthesis methods for supercapacitor electrode
materials. Advantages and disadvantages are also included.
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Table 3. Advantages and disadvantages of synthesis methods for electrode materials of supercapaci-
tors. Reproduced from Ref. [61] with permission from Elsevier (copyright 2014).

Method Morphology Advantages Disadvantages

Electrochemical deposition Nanostructured film
Less time required; morphology can be
controlled through the control of synthesis
parameters such as time, temperature, etc.

Unsuitable for large-scale production

Hydrothermal method Nanostructured film
and powder

Large-scale production, easy control
of morphology

High-temperature and
time-consuming operations

Chemical bath deposition
(CBD) Nanostructured film

Faster than hydrothermal method,
large-scale production, easy control
of morphology

Only some metal oxide can be possible
to synthesize

Sol–gel Nanostructured film
and powder

Low costs; controllable film texture,
composition, homogeneity, and
structural properties

Difficult to produce films with
controlled porosity, needs the use of
hard/soft templates

Chemical precipitation Powders, colloidal
nanostructures

Allows synthesis of composite electrode
materials; efficient; easily implemented

Difficult to control morphology and may
generate a waste product

Chemical Vapor
Depositions (CVD) Nanostructured film High material yield than CBD; good

film uniformity
Expensive equipment and relatively
high costs

(ii) Electrolytes:

Supplying the ions to form the electrical double layer located between the electrode
and the electrolyte is primarily the role of the electrolyte (which is made of a salt and a
solvent) [12,25,62]. Therefore, electrolytes need to be good ionic conductors. Along with
ionic conductivity, which greatly affects specific power density, the electrolyte stability
voltage window is the primary criterion for electrolyte selection [12,25]. The stability
voltage window sets the limits for the voltage that can be applied to the electrodes without
causing electrolyte decomposition. This supports the importance of this property since the
specific energy density (E) is proportional to the squared voltage. It is also shown in the
following equation [2]:

E = −1
2

CV2 (4)

The ion size of the salts [27] is another important parameter to consider when choosing
the electrolyte composition. Regarding the electrolyte solvent, two types of electrolytes
have been widely used in supercapacitors, aqueous and organic. A third type of electrolytes
are ionic liquids (ILs) (Table 4).

Table 4. Voltage windows and ionic conductivity for aqueous and organic electrolytes and ionic liquids.

Type of Electrolyte Voltage Window (V) Ionic Conductivity (mS.cm−1)

Aqueous ≤1.2 [9,28] >400 [17,28]
Organic (NEt4BF4/PC) 3.0 [28] 13 [28]
Organic (NEt4BF4/ACN) 2.7 [28] 56 [28]
Ionic Liquids 3–5 [9,17] <15 [17,28]

The most common aqueous electrolytes are H2SO4, KOH, and KCl. They have high
ionic conductivity. However, they have a narrow voltage window (approximately 1.2 V) [9].
Low cost, easy handling in an open environment, and the availability of diverse pH values
are some of the advantages of using aqueous electrolytes [9,25,63]. The most used organic
electrolytes are solvents based either on acetonitrile (ACN) or propylene carbonate (PC).
These electrolytes have wider voltage windows (up to about 2.2–3 V) [9] but much lower
ionic conductivity than aqueous electrolytes, especially PC, which has more than four times
lower ionic conductivity than acetonitrile.

However, acetonitrile is both toxic and flammable, making PC a more attractive
option for safety and environmental reasons [9,25,27,28]. Salts liquid (molten) at room-
temperature [9,25] are the characteristics of ILs. Furthermore, their stability voltage win-
dows only depend on the electrochemical stability of the ions since they do not contain
any solvent. The voltage windows of these electrolytes are wider than both aqueous and
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organic electrolytes (approximately up to 3–5 V) [9]. However, they are preferably used at
higher temperatures because the ionic conductivity is low at room temperature. The ILs
are expected to significantly contribute to improving the performance of supercapacitors,
at least for high-temperature operations, as they have many advantages. They have higher
energy density and power density than other electrolytes, a well-defined ion size (a solva-
tion shell should not be considered) [16], and are nontoxic, nonflammable, and chemically
stable [2,9,25].

(iii) Current collectors:

The transport of the electric current between the electrodes and the external loads
is the main role of the current collectors [9,12]. In general, the current collectors provide
efficient transfer of electrons to external circuits, which depends on their conductivity. In
addition, the charge/discharge process may be accompanied by heat generation at the
current collector with low conductivities [64]. Therefore, the current collectors need to have
good electrical conductivity in order to reduce the total resistance of the supercapacitor and
to increase its specific power [12]. Furthermore, they must resist corrosion, which can be
achieved through chemical and electrochemical stability [9,12,17]. Reflecting these factors,
stainless steel is the most used in aqueous electrolytes, while aluminum alloys are favored
in organic electrolytes, as they have low density and good thermal conductivity [9].

The contact between current collectors and the active layers of the electrodes is another
important factor to consider [2,9,12]. It is mentioned that the interface resistance makes
a significant contribution to the total resistance, therefore, this kind of contact should
be the lowest possible [12]. To achieve this, polymeric binding agents (i.e., Nafion® and
polytetrafluoroethylene) are employed [9].

(iv) Separators:

The function of the separator is to electrically isolate the two electrodes, which would
make it possible to prevent short circuits and guarantee ionic conductivity [12,17]. The
separator is generally a porous membrane [12] and several properties need to be consid-
ered. The membrane must be electrically non-conductive while electrolytic ions must be
permeable with minimum ionic resistance. Moreover, it needs to be chemically resistant
(i.e., resistant to electrolytes and electrode materials) [9], thermally resistant [17], flexible
(i.e., endure pressure and volume changes), and easily soaked in electrolytes [9]. The
cellulose [17] and polymers (e.g., fibrous structure and monolithic network with defined
pores) [9] are the materials commonly used.

2. Proposed Strategies for Higher Performance in Supercapacitors: (Nano)Structuring,
Electrolyte Composition, Pseudocapacitance, and Hybrid and Composite Electrodes

Research on (i) nanostructuration, (ii) electrolyte composition, (iii) pseudocapacitance
behavior, and (iv) hybrid and (v) composite electrodes has been proposed to improve the
performance of supercapacitors. These strategies are detailed below.

(i) Nanostructuration

The performance of supercapacitors can be affected by the physical and chemical prop-
erties of carbon materials, e.g., pure CNTs. It includes size, purity, shape, defects, annealing,
and functionalization. Furthermore, composites such as CNT/oxide and CNT/polymer
have shown an increase in capacitance and supercapacitor stability. It has been achieved
through optimal engineering of composition, particle size, and coverage [65]. For example,
high values of specific capacitance (350 F/g), power density (4.8 kW/kg), and energy den-
sity (3.3 kJ/kg) have been shown in pyrrole-treated functionalized SWCNTs [66]. Moreover,
73 wt.% PANI deposited onto SWCNTs have shown high values of specific capacitance
(485 F/g), specific power (228 Wh/kg), and specific energy (2250 W/kg) [67].
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(ii) Electrolyte Composition

According to the literature, an ideal electrolyte for EDLC must have the following
characteristics: a wide electrochemical window (>4), specific conductance of >75 mS.cm−1

at room temperature, thermal stability up to 300 ◦C, and low toxicity. However, the ionic
conductivity is low at room temperature in the case of ionic liquids [25].

Lin, R has studied the influence of the type of electrolyte vs. energy density at different
voltage windows. The author confirmed that ionic liquids (ILs) are the most important
electrolytes in terms of energy density compared to organic and aqueous electrolytes.
ILs operated in a wider voltage window. Li, R also mentioned that the combination of
anions and cations influences the composition and associated properties of ILs. Millions
of different structures can form an IL. The number of cation and anion combinations can
be as high as 1018 [58]. However, Aprotic, Protic, and Zwinteerionic are the main classes
used in different types of applications [68]. Aprotic ILs are most commonly used for EDLC
applications as they allow cell voltage to be increased above 3 V. Therefore, ILs are well
known for their high electrochemical stability and thermal stability and are largely studied
in energy storage devices [69].

(iii) Pseudocapacitance

The pseudocapacitors are another type of technology that provides an increase in the
specific capacitance and the energy density. In this technology, charge storage is achieved
through a reversible redox reaction within the electrode surface [17,63,70].

Metal oxides, such as RuO2 [71] and MnO2 [72], and conducting polymers are the main
class of electrode materials used for charge storage in pseudocapacitors [73,74]. However,
the redox reactions can affect the cycling stability due to aging.

(iv) Hybrid Electrodes

An ideal storage device that has the high-power density of a supercapacitor and
the high energy density of a battery is the primary goal of a hybrid technology. Some
examples of asymmetrically structured hybrid supercapacitors have been reported in the
literature. The combination of a carbon electrode (of supercapacitor type) with a faradaic
electrode (of battery type) is achieved in this kind of technology. However, these hybrid
systems have intermediate characteristics. In these systems, the charge/discharge speed
is slower than the classic supercapacitor due to the influence of the redox reactions at the
faradaic electrode. A shorter lifetime is also caused by the chemical reactions that are
due to the consummation of the active material. Considering these characteristics, hybrid
supercapacitors have been the subject of numerous studies [22,29,75]. For instance, JSR
Micro and JM Energy Corporation proposed two Li-ion hybrid supercapacitors called the
2300 F and 3300 F prototypes. Their energy density is about 10 Wh·kg−1 [76].

(v) Nanocomposite electrodes

Nanocomposite electrodes have been reported in the literature [77], to improve the
performance of supercapacitors. Binary-composite or ternary-composite films have been
evaluated, employing various methods of preparation. It has been revealed that high
specific capacitances were reached with PANI-CNT [78] or PEDOT-CNT [79,80] composites.
It was either enhancing the robustness of the flexible PPy-CNTs [81] or improving the
capacitive properties of PTh-CNTs films [82]. Ternary nanocomposites of Mn3O4, TiO2,
and reduced graphene oxide (RGO) electrodes have been also studied for supercapaci-
tor applications [83]. This material has achieved a specific capacitance of 356 F·g−1 in
6 M KOH aqueous electrolyte and respectable cycling performance, making it suitable for
supercapacitors. In addition, a summary of these kinds of materials including specific
capacitance and type of electrolyte is presented in Table 5.
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Table 5. Summary of various metal oxide/carbon composite electrodes for supercapacitors [84],
open access.

Material Potential
Window/V

Specific Capacitance
/F g−1 (Scan Rate or Current Density) Electrolyte Retention/%

(Cycles)

ZrO2 carbon nanofibers 0–1 140 (1 A g−1) 6 M KOH 82.6 (10,000)
RuNi2O4/rGO composites 0–1 792 (1 A g−1) 0.5 M Na2SO4 93 (10,000)
NiO/activated carbon composites 0–0.4 568.7 (0.5 A g−1) 2 M KOH 90.6 (5000)
Ni0.25Co0.25oxide/carbon nanofibers −1–0 431.2 (1 A g−1) 6 M KOH 94 (2000)
MnO/Fe2O3/carbon nanofibers 0–1 437 (1 A g−1) 6 M KOH 94 (10,000)
ZnO/MnO/carbon nanofibers 0–1.6 1080 (1 A g−1) 6 M KOH 96 (800)
Au-Mn3O4/GO nanocomposites −0.2–1 475 (1 A g−1) 0.5 M H2SO4 94 (10,000)
Bi2O3/MWCNT composites −1.2–0.2 437 (1 A g−1) 6 M KOH 88.7 (3000)
NiO/MnO2/MWCNT composites 0–0.55 1320 (1 A g−1) 2 M KOH 93.5 (3000)
Carbon nanosheets/MnO2/
NiCo2O4 composites 0–1 1254 (1 A g−1) 1 M KOH 81.9 (5000)

ZrO2/C nanocomposites NiO/porous
amorphous carbon nanostructure 0–1 214 (1.5 A g−1) 1 M H2SO4 97 (2000)

NiO/porous amorphous
carbon nanostructure 0–1.6 508 (1 A g−1) 6 M KOH 78 (3000)

Defective mesoporous carbon/
MnO2 nanocomposites −0.8–0.8 292 (0.5 A g−1) 1 M Na2SO4 79 (2000)

In an overview, the specific capacitance of the representative EDLCs and pseudoca-
pacitors systems based on various active materials are shown in Figure 4.
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Furthermore, Table 6 shows a comparison between the different types of supercapaci-
tors. Some advantages and disadvantages are also included.

Table 6. Comparison between EDLCs, pseudocapacitors, and hybrid capacitors. Modified from Ref.
[87] open access.

Parameters EDLC Pseudocapacitor Hybrid Capacitor

Material Carbon-based materials, e.g.,
activated carbon, carbon nanotubes

Metal oxides, conducting
polymers, e.g., NiO, MgO, PANI

Metal oxide/carbon-based materials,
conducting polymer/carbon-based

materials, e.g., Ni(OH)2/rGO, PANI/rGO

Storage mechanism
Non-faradic/electrostatic, electrical

charge stored at the
metal/electrolyte interface

Faradic, reversible
redox reaction Both faradic and non-faradic

Specific capacitance Lower Higher Higher
Energy density Low High High

Cycle Life/stability High Low High

Voltage operation High voltage and high-power
operation

Low-voltage functioning is
restricted by electrochemistry

and the solvent’s solvent
decomposition voltage

Increased cell voltage

Charge/discharge speed Faster --- Slower

3. Diagnostic Tools for Electrode Materials in Energy Storage

To improve the performances of supercapacitors, it is necessary to use appropriate
tools to examine the electrochemical behavior of the different electrode materials. Electro-
chemical techniques such as (i) cyclic voltammetry, (ii) galvanostatic charge-discharge and
(iii) electrochemical impedance spectroscopy, (iv) electrochemical quartz crystal microbal-
ance (EQCM), (v) ac-electrogravimetry, (vi) NMR spectroscopy, and (vii) computer simula-
tion will be discussed in this section.

(i) Cyclic Voltammetry (CV)

Cyclic voltammetry is a potentiodynamic electrochemical measurement technique. It
measures current as a function of potential. For that, two successive potential scans (cyclic)
are imposed between the working electrode and the reference electrode. In this way, the
current is measured across the working electrode and the counter electrode [88,89]. This
information is plotted as current (i/A) in the function of applied potential (E/V) to provide
the cyclic voltammogram trace. Furthermore, the potential range can be limited by the
electrolyte stability window.

It has been reported in the literature, that cyclic voltammetry provides quantitative
and qualitative information on the capacitive behavior at the electrode/electrolyte interface.
This technique also identifies the presence of parasitic faradic reactions [17]. A typical cyclic
voltammogram curve, for capacitance diagnosis, is shown in Figure 5.
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In Figure 5a, the rectangular CV represents an ideal supercapacitor response. However,
in practice, an almost deformed rectangular shape can be obtained due to redox reactions,
characteristic of pseudocapacitive behavior (Figure 5b). Finally, two redox peaks are
observed in Figure 5c, which is predominantly faradaic behavior.

CV plots from 3E (three electrodes) and symmetric 2E (two electrodes) systems have
also been studied by Verma et al. [91]. The CV results of different samples related to high
specific capacitance values were attributed more to 3E systems than to 2E systems (e.g.,
GO/PANI/CuFe2O4 ternary gave the highest specific capacitance value of 790.12 F/g and
357.28 F/g at 1 mV/s and 1 A/g from 3E and symmetric 2E device systems, respectively).

(ii) Galvanostatic Charge-Discharge method (GCD)

The capacitance, resistance, and cyclability of the electrode materials are measured
by GCD. This technique consists of carrying out charge/discharge cycles. The potential
response is measured over time when a constant current density is applied [92] (Figure 6).
Through the slope of the discharge curve shown in Figure 6, the cell capacitance (C) can be
calculated using the following equation [93]:

C =
I

dV
dt

(5)

where I is the discharge current and dV/dt is the slope of the discharge curve. The specific
capacitance Cs is related to the capacitance of the cell C by:

Cs =
2C
m

(6)

where m is the mass per electrode of the active material.
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(iii) Electrochemical Impedance Spectroscopy (EIS)

The EIS measurements are based on frequency modulation. This technique provides
qualitative information about the studied system (capacitive, resistive, diffusive behavior,
etc.) and allows the calculation of the capacitance of the electrodes [92]. Electrochemical
impedance is based on the collection of an alternating current (AC) resulting from applying
a sinusoidal potential perturbation with a small amplitude (typically 10 mV rms) [94].
The Nyquist diagram (-ImZ, ReZ Cartesian coordinates) and the Bode diagram (polar
coordinates) are the plots normally used for EIS measurements.

In the literature, there are several works employing EIS to study carbon electrodes
in supercapacitors [30,95]. Rajasekaran et al. [96] performed studies of impedance on
activated carbon (AC) materials. This material was also tested in different electrolytes such
as KOH, Na2SO4, and H2SO4.

Figure 7 shows the Nyquist plots of RCS-AC electrodes from EIS measurements in
the frequency range of 100 kHz to 10 MHz. Here, three different frequency regions are
observed in the electrochemical process. At the low-frequency region, a quasi-vertical line is
observed in all electrolytes, which is indicative of capacitive behavior. In the zoomed region
(inset of Figure 7), a semicircle is observed due to the presence of resistance in the electrode.
It is known that a Warburg region is a transition range between the low-frequency and
high-frequency ranges. In this way, the authors concluded that the width of the impedance
arc at this transition area indicates resistance due to ion diffusion and transportation at the
electrode/electrolytes interface.
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Escobar-Teran et al. [97] also investigated the capacitive behavior of SWCNT electrodes
using electrochemical impedance. The carbon electrodes were tested in a NaCl aqueous
electrolyte and at different electrolyte pH conditions. Figure 8 shows the electrochemical
impedance responses of the SWCNT at pH 2, pH 7, and pH 10.
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They are presented in a comparative way at a selected potential (−0.4 V). The elec-
trochemical impedance responses, ∆E

∆I (ω) show a distorted straight line, which is due to a
multi-ion transfer contribution for the three pH values (Figure 8A–C). Particularly, at pH 2
(Figure 8A), the distortion is more significant than at pH 7 and pH 10 (Figure 8B,C). The
authors concluded that it is probably due to the amplified effect of H+ reduction by the
high proton concentration for the pH 2 case.

(iv) Electrochemical Quartz Crystal Microbalance (EQCM)

EQCM is a coupled method between Quartz Crystal Microbalance (QCM) with an elec-
trochemical measurement technique [98,99]. As it is often coupled with cyclic voltammetry,
cyclic electrogravimetry is another name for this technique [100].

During an electrochemical process, gravimetric EQCM is capable of quantitatively
measuring small mass changes occurring at the electrode surface. It can detect mass changes
in the order of 1 nanogram [101]. Various approaches have been investigated through
this technique, for example, metal electrodeposition [102–104], electrocrystallization [105],
electrochromic reactions [106], intercalation [107], and as well as adsorption and mass vari-
ations associated with electrolyte-ion movement [108–110]. Furthermore, the viscoelastic
properties can be studied through the EQCM with dissipation monitoring (EQCM-D), e.g.,
formation of a solid electrolyte interface (SEI) layer as well as the complex mass changes
in the electrodes [111–114]. Identification of the effect of various parameters such as the
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nature of the electrolytes/ions or the binder on the change in the structure of the electrodes
is possible through this acoustic technique [115].

It has been shown that the EQCM technique provides information on the capacitive
behavior of carbon electrodes by analyzing the capacitive current and the resulting mass
changes in the carbon film electrodes. Examining the literature, a certain number of papers
employing EQCM to study carbon materials have been found [116,117]. Maier et al. [118]
investigated, in carbon micropores, the effect of specific adsorption of cations and their
size on the charge compensation mechanism. This material was investigated using EQCM
technique and tested in 0.5 M NH4Cl. This technique revealed a complicated interplay
between the adsorption of NH4

+ cations and the desorption of Cl− anions inside carbon
micropores at low surface charge densities, which results in failure of their permselectivity.
The complete exclusion (desorption) of Cl− co ions is due to the higher negative densities,
imparting purely permselective behavior in carbon micropores (Figure 9).

Physchem 2023, 3, FOR PEER REVIEW  17 
 

 

It has been shown that the EQCM technique provides information on the capacitive 
behavior of carbon electrodes by analyzing the capacitive current and the resulting mass 
changes in the carbon film electrodes. Examining the literature, a certain number of pa-
pers employing EQCM to study carbon materials have been found [116,117]. Maier et al. 
[118] investigated, in carbon micropores, the effect of specific adsorption of cations and 
their size on the charge compensation mechanism. This material was investigated using 
EQCM technique and tested in 0.5 M NH4Cl. This technique revealed a complicated in-
terplay between the adsorption of NH4+ cations and the desorption of Cl− anions inside 
carbon micropores at low surface charge densities, which results in failure of their perm-
selectivity. The complete exclusion (desorption) of Cl− co ions is due to the higher nega-
tive densities, imparting purely permselective behavior in carbon micropores (Figure 9). 

 
Figure 9. Mass change in the carbon electrode in a 0.5 M aqueous solution of NH4Cl (scan rate = 20 
mVs−1) measured simultaneously with the CV of the largest 1.2 V amplitude (see inset, broken 
line). The inset also shows a series of CVs measured with different potential amplitudes. Repro-
duced from Ref. [118] with permission from John Wiley & Sons (copyright 2011). 

The authors introduced two terms in the context of these measurements: the poten-
tial of zero charge (PZC) and the potential of zero mass change (PZMC) to quantitatively 
correlate the mass changes in the adsorbed ions and solvent molecules with the poten-
tial-induced variation of the electrode charge density. According to a conventional point 
of view, the adsorption of anions and cations into carbon micropores occurs at Q > 0 and 
Q < 0, respectively. In this way, the PZMC should coincide with the PZC. However, the 
PZMC obtained from the EQCM does not coincide with the PZC of the electrode accord-
ing to Figure 9. It is because the former may depend on the dynamics of formation of the 
ionic part of the electric double layer (EDL), that is, on the relation between the fluxes of 
counterions (anions at Q > 0 and cations at Q < 0) and co-ions (cations at Q > 0 and ani-
ons at Q < 0). 

Escobar-Teran et al. [119] investigated the capacitive behavior of SWCNT-based thin 
films via EQCM in 0.5 M aqueous NaCl. A quasi-rectangular cyclic voltammetry (CV) 
response is shown in Figure 10A, which indicates that the charge storage is mainly due 
to the reversible electroadsorption of the ions. Figure 10B shows the corresponding mass 
variations followed by simultaneous QCM measurements as a function of potential. Ac-

cording to authors, a change in slope around 0.1 V vs. Ag/AgCl where 
∆௠∆ா  〈0 and 

∆௠∆ா 〉 0 
for the transfer of cations and the anions is observed in Figure 10B, which indicates that 
the point of zero charge (PZC) is around this value. 
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measured simultaneously with the CV of the largest 1.2 V amplitude (see inset, broken line). The
inset also shows a series of CVs measured with different potential amplitudes. Reproduced from
Ref. [118] with permission from John Wiley & Sons (copyright 2011).

The authors introduced two terms in the context of these measurements: the potential
of zero charge (PZC) and the potential of zero mass change (PZMC) to quantitatively
correlate the mass changes in the adsorbed ions and solvent molecules with the potential-
induced variation of the electrode charge density. According to a conventional point of
view, the adsorption of anions and cations into carbon micropores occurs at Q > 0 and
Q < 0, respectively. In this way, the PZMC should coincide with the PZC. However, the
PZMC obtained from the EQCM does not coincide with the PZC of the electrode according
to Figure 9. It is because the former may depend on the dynamics of formation of the
ionic part of the electric double layer (EDL), that is, on the relation between the fluxes of
counterions (anions at Q > 0 and cations at Q < 0) and co-ions (cations at Q > 0 and anions
at Q < 0).
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Escobar-Teran et al. [119] investigated the capacitive behavior of SWCNT-based thin
films via EQCM in 0.5 M aqueous NaCl. A quasi-rectangular cyclic voltammetry (CV)
response is shown in Figure 10A, which indicates that the charge storage is mainly due to
the reversible electroadsorption of the ions. Figure 10B shows the corresponding mass vari-
ations followed by simultaneous QCM measurements as a function of potential. According
to authors, a change in slope around 0.1 V vs. Ag/AgCl where ∆m

∆E 〈0 and ∆m
∆E 〉 0 for the

transfer of cations and the anions is observed in Figure 10B, which indicates that the point
of zero charge (PZC) is around this value.
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Another study [97] has investigated the influence of electrolyte pH on CNTs through
the EQCM technique. Figure 11 shows the EQCM results of SWCNT film electrodes
obtained in aqueous electrolytes of 0.5 M NaCl at pH 2, pH 7, and pH 10. It is noticed
the capacitive current increases when the scan rate increases (Figure 11A–C). In this study,
the SWCNT film electrodes show quasi-rectangular shaped responses, meaning that the
charge storage is due to the reversible electroadsorption of electrolyte ions. A slight faradaic
contribution is observed, which is probably due to the remaining surface functionalities
on the nanotubes. A pH dependency on the mass changes in the SWCNT electrodes is
observed. It shows a change in slope ( ∆m

∆E < 0 for the transfer of cations and ∆m
∆E > 0 for

anions), around −0.1 V, 0.1 V, and ∼0.125 V vs. Ag/AgCl, at pH = 2, 7, and 10, respectively.
It means that the points of zero charge (PZC) correspond to these values (Figure 11A–C). In
other words, the PZC depends on the pH range, and it is significantly different at pH = 2
compared to pH = 7 and pH = 10.

The capacitive charge storage behavior of the ERGO (Electrochemical Reduced Graphene
Oxide) thin film electrodes was also studied by Gouba et al. [50] using the EQCM technique.
The carbon electrodes were tested in different aqueous electrolytes such as LiCl, NaCl, and
KCl (Figure 12). Figure 12A shows the CV responses of ERGO electrodes obtained in the
three aqueous electrolytes at 100 mV s−1. In this study, the ERGO electrodes show quasi-
rectangular CV responses indicating that the charge storage is mainly due to the reversible
electroadsorption of the electrolyte ions. According to the authors, the slight distortion
observed in CV responses is due to the presence of a slight faradaic contribution to the
charge storage.
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Figure 12. CV curves (A) and simultaneously obtained mass responses (B) of ERGO thin films
measured in 0.5 M aqueous solution of LiCl, NaCl, and KCl at 100 mV s−1. The arrows correspond
to the scan direction of the potential in (A). CV scan starts from the anodic potentials towards
cathodic potentials. Reproduced from Ref. [50] with permission from the American Chemical Society
(copyright 2017).
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Figure 12B shows the mass changes in the ERGO electrodes. It is observed in Figure 12B
that the mass variations are almost identical when measured in aqueous LiCl and KCl
solutions and simultaneously similar current values are obtained in the same solutions.
According to the authors is due that the same amount of charge is electroadsorbed at
the electrode/electrolyte interface. However, it would not be consistent considering the
molecular weight of the ions and if only the cationic species contribute to the electroad-
sorption process. The authors explain that the Li+ species are electroadsorbed together
with free solvent molecules, and this phenomenon is more pronounced compared to that
which occurs in aqueous KCl electrolytes. Furthermore, both species (Li+ and K+) are
electroadsorbed in their hydrated form but they differ in the degrees of hydration.

The capacitive behavior in nanocomposite carbon film electrodes was also investigated
by Escobar-Teran et al. [5]. The EQCM technique was used to investigate the electrochem-
ical behavior of SWCNT/PPy composite electrodes in aqueous electrolyte NaCl 0.5 M
(Figure 13). The authors observed a slight contribution of the PPy component to the CV
responses (Figure 13a), as compared to that of pristine SWCNTs [119]. In contrast, a signifi-
cant difference in terms of amplitude and shape is observed in the mass response of carbon
film compared to SWCNT alone (Figure 13b). According to the authors, these qualitative
observations show that the presence of PPy changes the interfacial ion exchange behavior
of SWCNTs.
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Figure 13. EQCM results of SWCNT/PPy composite thin films: (a) current vs. potential; (b) mass
variation vs. potential measured in aqueous electrolyte 0.5 M NaCl. The arrows correspond to the
scan direction of the potential in (A). CV scan starts from the anodic potentials towards cathodic
potentials [5], open access.

(v) ac-electrogravimetry

Since its development in 1986, ac-electrogravimetry has been shown to be a very
promising tool for unraveling the role of each species involved at the electrode/electrolyte
interface. This laboratory-developed technique combines fast quartz crystal microbalance
(QCM) with electrochemical impedance spectroscopy (EIS). In addition, this technique
provides relevant information such as (i) identification of species involved (with their
flux directions) at the electrode/electrolyte interface, (ii) separation of charged and non-
charged species, (iii) determination of their kinetics, and (iv) variation of their relative
concentrations [120–122]. Escobar-Teran et al. [4] used ac-electrogravimetry to study the
electrochemical behavior of carbon nanotubes in aqueous electrolytes. In this work, the
charge/potential and electrogravimetric transfer functions were established considering
all ionic species involved. Then, the transfer functions were used to fit the experimental
results using kinetic parameters: Ki (kinetics of ionic transfer) and Gi (inverse of transfer
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resistance), respectively, considering the transfer of ions and solvent molecules at the elec-
trode/electrolyte interface. Figure 14A,B show the experimental transfer functions ∆q

∆E (ω)

and ∆m
∆E (ω) fitted by theoretical equations explained in previous papers [4,5,119]. With the

frequency variation, as shown in Figure 14B, different ionic species can be discriminated.
From Figure 14C, the result shows that the hydrated Na+ ion mass transfer is faster than
that of protons (H+).
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In addition, the free water molecules follow the transfer of the hydrated Na+ and
Cl−, which is due to an electrodragging phenomenon. Finally, the relative concentration
changes in each species estimated by ac-electrogravimetry allow us to distinguish between
the contributions of the different ionic species (Figure 14D).

In summary, the ionic fluxes in carbon nanotubes during the charge/discharge can be
analyzed in detail using the ac-electrogravimetry technique.

(vi) Nuclear magnetic resonance spectroscopy (NMR)

NMR spectroscopy is one of the promising techniques used to study the ion environ-
ments in supercapacitor electrodes and quantify changes in the populations of adsorbed
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species during charging [123–130]. The working principle of the NMR regarding the con-
finement of ions in nanopores is based on the resonance shift of the target electrolyte ions
to a lower frequency due to the distribution of delocalized electrons present on the carbon
surface that shields the signal [3].

The NMR spectra of supercapacitor electrodes offer a considerable amount of relevant
information (i) the number of in-pore anions and cations can be determined through the
intensities of the in-pore resonances and thus the composition of carbon pores and the
charging mechanisms of supercapacitors can be studied, (ii) the chemical shift difference
between the in-pore and ex-pore resonances provide information about the structure of the
carbon, and (iii) the line width of the in-pore resonance can provide information about the
dynamics of the ions in the pore [123].

Forse et al. [129] studied the ion dynamics and charge storage in ionic liquid superca-
pacitors through NMR. The authors found that the adsorption and desorption of anions
plays a more dominant role than that of the cations in the charge mechanism. Later, Forse
et al. [124] investigated the ion dynamics in supercapacitor electrodes using in situ diffusion
NMR spectroscopy. The authors found that the concentration of electrolyte and carbon
pore size distributions affect in-pore diffusion and the movement of ions in and out of the
nanopores. These findings are very significant to fully unravel the relationships between
material properties and performance in supercapacitors.

(vii) Computer Simulations

The simulation of electrochemical systems has become an important topic for under-
standing the molecular mechanisms involved in energy storage devices [131,132]. Such
simulations concern bulk electrode materials and electrolytes whose properties need to
be well characterized and rationalized, but more and more effort is being devoted to the
description of charge storage mechanisms [131].

The theories of Gouy–Chapman–Stern based on the Poisson–Boltzmann method
have been used to explain the charge storage mechanisms (See Figure 15). However, this
method is not suited for supercapacitors since field theories become inadequate when
the electrostatic correlations between ions and excluded volume effects can no longer be
neglected [133,134].
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Computational modeling methods such as molecular dynamics (MD) [136,137] and
Monte Carlo (MC) simulations [138], and density functional theory (DFT) [139], are being
used for exploring charge storage mechanisms in energy storage devices. Such theoret-
ical methods are principally useful for gaining insight into charging mechanisms when
combined with in situ experimental techniques [140].

Molecular dynamics (MD) has been used to explain the ion desolvation process in
nanopores when operating in aqueous electrolytes [141–143]. Furthermore, Huang et al. [142]
simulated a series of organic electrolytes. The authors demonstrated that the optimal
capacitance is obtained when the ratio between the size of the nanopore and the size of the
ion is close. Merlet et al. [144] used MD simulation to calculate the degree of confinement of
the adsorbed ions and characterize different sites with various morphology of carbide CDC
materials. The DFT method is generally used in gas sorption experiments. Particularly, it is
used to estimate the pore size distribution and accessible surface area [139]. Monte Carlo
simulation and in situ small-angle X-ray scattering (SAXS) have been used to investigate
the degree of confinement (DoC) of ions in micropores for an aqueous electrolyte [145].

4. Advantages and Challenges of Main Techniques Used in Energy Storage

The main techniques, commonly used to explain the charge storage mechanisms in
electrode materials and covered in this review, include NMR spectroscopy, EQCM, as well as
non-classical EQCM based method, i.e., ac-electrogravimetry. Computer Simulations have
also been shown to provide a significant understanding of the charge storage phenomena.
Advantages and challenges are detailed in Figure 16.
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5. Summary and Perspectives

Carbon electrode materials have been extensively studied for electrochemical double-
layer capacitors (EDLC). The relationship between the pore size and the ion size is an
important factor to consider in order to maximize the specific capacity [119]. The questions
related to charging mechanisms are experimentally difficult since there are no appropriate
electrochemical or physicochemical techniques that allow direct access to such information.
The electrochemical quartz crystal microbalance (EQCM) technique has begun to address
these questions. The EQCM technique was also combined with electronic conductance
studies or with nuclear magnetic resonance (NMR) to access a complete description of the
electrical double layer [109,127]. Furthermore, in situ SAS techniques and other techniques,
such as in situ XRD, in situ infrared spectroelectrochemical, etc., have been found to be
useful for investigating ion adsorption on nanoporous carbon [3].

However, the dynamic aspects of ion electroadsorption within carbon electrode mate-
rials remain a partially unresolved problem with these techniques. Consequently, some
research groups have used coupled methods/techniques to better understand the charge
storage mechanisms. For instance, the ac-electrogravimetry (coupling between fast QCM
and EIS) technique has been largely used to study the capacitive behavior in carbon ma-
terials since this technique provides relevant information concerning the identification
and separation of charged and non-charged species, the determination of kinetic constants
and relative concentration/contribution of individual species [4,5,50,97,119]. In situ or
operando techniques with simulation or modeling are another powerful tool for extract-
ing additional information, such as the distribution and population of ions on carbon
nanopores [3]. Reviewing the literature, we consider that the coupling between two meth-
ods/techniques provides a better understanding of the charge storage mechanisms in
energy storage devices.

The choice of type of material and electrolyte-ion to improve the performance of the
supercapacitor electrodes has been widely studied in the literature. However, the choice
of a characterization technique that allows us a deeper understanding of the interfacial
charge storage mechanisms is also crucial in the elaboration and performance of the
electrode material.

In this way, this review focused mainly on the study of charge storage mechanisms
using electrochemical techniques as opposed to the strategies that improve the performance
of supercapacitors.
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