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Abstract: The use of semiconductor materials, specifically TiO2, for photocatalysis of organic pollu-
tants has gained global interest as an effective method for contaminant removal from wastewater.
Titanium dioxide (TiO2) is a widely studied photocatalyst and is considered one of the best for
wastewater treatments due to its high stability, affordability, and nontoxicity. The discharge of
wastewater from the textile industries, which constitutes around 20% of total textile effluent, has
become a significant environmental concern, posing a threat to both the aquatic ecosystem and
human health. We aimed to investigate the photodegradation of organic dyes like Amaranth (AM),
Methyl Orange (MO), and Quinoline Yellow (QY), individually and in combination, in an aqueous
suspension with varying concentrations of TiO2. Results indicate a significant degradation of all three
dyes in the multicomponent, with approximately 40% degradation in the presence of the 0.050 g/L
TiO2 after 360 min. These findings suggest that TiO2 has a significant potential as a nanocatalyst in
complex matrices.
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1. Introduction

Dyes are chemically colored compounds that impart color to substrates. They have
an affinity and contain both chromophore and auxochrome groups. The chromophore is
the color-bearing group of the dye, determined by its saturation, while the auxochrome
group controls the dye’s ability to bind to the fiber. Dyes can be classified by various
means, including by the source, ionic nature, application method, fiber compatibility, and
constitution. Generally, they are classified by the source they are acquired from. Natural
dyes, sourced from animals, plants, and minerals without any chemical treatment, are
known to have minimal impact on the environment, easily biodegradability, and lack
of disposable problems. However, their use often requires larger amounts and extensive
dyeing process to dye a specific fabric, as opposed to synthetic dyes, and they tend to exhibit
poor brightness and fastness properties, with the color tending to fade quickly. Additionally,
standardization of these dyes is also difficult, due in part to the availability of the raw
ingredients which may vary from location, season, and species. In contrast, synthetic dyes
are highly colored organic substances that attach themselves to the fibers via chemical
bonding and can be further classified based on their chemical structure or application
method to the material. Notable types include azo dyes, which constitute more than 50%
of synthetic dyes, contain a chromophore group, -N=N-, in their structure, and at least one
nitrogen linked to an aromatic group, anionic (acid) dyes are mainly used in polyamide
fibers like nylon, silk, and wool, and require an acid bath for application, and cationic (basic)
dyes used in acrylic fibers, polyester, wool, and silk. Synthetic dyes have the advantage
of being more readily available at a lower cost than natural dyes, they offer a wide range
of colors, and provide consistent coloration across batches, unlike natural dyes that can
vary in shade and quality. They also exhibit better light and wash fastness, making them
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more durable and long-lasting. Nonetheless, they are not biodegradable and are difficult
to remove from textile effluents, with degradation resulting in hazardous byproducts that
are released into the environment [1–8]. Based on that mentioned before, this research was
focused on the photodegradation of synthetic dyes that act as contaminants (i.e., Amaranth
(AM), Methyl Orange (MO), and Quinoline Yellow (QY)) by titanium-based nanomaterials.
Refer to Supplementary Material (Figure S1) to view the skeletal structures of the dyes.

Amaranth is an anionic azo dye, widely used in the food and beverage industries as
well as a dye for textiles such as wool and silk, leather, wood, paper coatings, and photo-
graphic industries. It can also be used as a cytoplasmic and nuclear dye in histological and
hematological applications. Despite its usefulness, Amaranth is considered an endocrine
disruptor and can cause irritation and redness upon contact with eyes. The United States
Food and Drug Administration (FDA) withdrew its approval of the dye as a permitted
coloring agent in foods and pharmaceutical products in 1976, citing positive findings in
carcinogenicity tests, which were later disputed on technical grounds but have not been
confirmed in subsequent tests. However, no components of Amaranth present levels greater
than or equal to 0.1% as a possible or confirmed human carcinogen by the International
Agency for Research Cancer (IARC) or are on the Occupational Safety and Health Ad-
ministration’s (OSHA) list of regulated carcinogens. The potential health risks associated
with Amaranth underscore the need for further research into its use and potential impact
on human health [9,10]. Methyl Orange is an anionic azo dye, with various applications
in different fields. It is primarily used as a pH indicator in titration and in cell sap, as a
component of a polychrome histological stain, and as a solution indicator. Additionally, it
has biomedical applications, including its use in film dosimeters and as a reagent for the
assay bromide. While it is not commonly used in textile applications due to its fleeting
nature and sensitivity to acids, it has been used to dye wool and silk from an acid bath.
In humans, oral ingestion can lead to acute toxicity [11,12]. On the other hand, Quinoline
Yellow is a widely water-soluble anionic quinophthalone dye commonly employed in the
food, cosmetics, and pharmaceutical industries. It also serves as a textile dye for wool,
nylon, and silk. There are scarce studies about its potential genotoxic properties [13,14].

There is a significant environmental concern due to the potentially toxic and carcino-
genic properties of synthetic dyes, posing a threat to living organisms and the ecosystem.
The textile and dyeing industries are major contributors to water pollution, releasing a
significant amount of chemical waste and dye contaminants into water bodies. According
to Chandanshive et al. (2020), the annual worldwide production of synthetic dyes is about
7 × 107 tons, with over 10% of dyestuff being released as industrial wastewater [15]. Unfor-
tunately, the discharge of nonbiodegradable dyes poses a severe threat to aquatic life and
human health due to their petroleum components and lack of treatment before disposal,
causing a reduction in photosynthetic activity, dissolved oxygen concentrations, and marine
mortality. Traditional techniques for treating wastewater, such as biological and chemical
treatments, electrochemical techniques, and physical techniques, have proven ineffective
due to their high cost, low efficiency, production of toxic byproducts, secondary pollution,
or the need for additional treatment. A promising method for removing these pollutants is
through photocatalytic degradation using semiconductor nanoparticles. Photocatalysis is a
photochemical process that accelerates a reaction’s speed by converting solar energy on
the surface of a semiconductor catalyst [16,17]. In this study, we utilized titanium dioxide
(TiO2) nanoparticles, a nontoxic, cost-effective, and highly reactive photocatalyst. We used
Degussa P-25 TiO2, consisting of anatase and rutile phases in a 3:1 ratio, with anatase
exhibiting higher photocatalytic efficiency and rutile being more chemically stable.

Our study aims to provide insights into the potential of TiO2 nanoparticles for the pho-
tocatalytic properties of anionic dyes, specifically Amaranth, Methyl Orange, and Quinoline
Yellow, commonly used in the textile industry, individually and in a multicomponent ex-
periment. Reports in the literature showed a variable photocatalytic capacity of commercial
and modified TiO2 on Amaranth, Methyl Orange, and Quinoline Yellow [18–20]. The nov-
elty of the manuscript lies in the fact of photodegrading a mixture of dyes in an aqueous
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medium (deionized water and tap water). Although a known catalyst, TiO2, is being used,
most research on photocatalysis focuses on the degradation of individual contaminants,
not mixtures of them.

TiO2 NPs were characterized by transmission electron microscopy (HR-TEM). The
UV–Vis technique was used to track the degradation progress of the three dyes in the
solution. The process was performed as a homogeneous photocatalysis, with both the TiO2
nanoparticles and the dyes in a liquid phase. The results of this study could pave the way
for more efficient and eco-friendly wastewater treatment solutions.

2. Materials and Methods

The chemicals and raw materials were used as procured without further treatment.
The P-25 Degussa TiO2 NPS (CAS 13463-67-7; F.W. 79.87 g/mol), Amaranth (CAS 915-67-3;
F.W. 604.47 g/mol), Methyl Orange (CAS 547-58-0; F.W. 327.33), and Quinoline Yellow (CAS
8004-92-0; F.W. 477.38 g/mol) dyes were obtained from Sigma-Aldrich (MilliporeSigma, St.
Louis, MO, USA).

The protocol for the photocatalytic degradation of Amaranth, Methyl Orange, and
Quinoline Yellow, using P-25 TiO2 nanoparticles, was based on our previous published
work [21]. A stock solution of 500 µM was prepared for each dye, and from this, standard so-
lutions were derived with concentrations ranging from 3 µM–45 µM for AM, 1 µM–50 µM
for MO, and 3 µM–60 µM for QY, to monitor their absorbances and determine the maximum
wavelength. The concentrations of the P-25 TiO2 nanoparticles were set at 0.010, 0.015, 0.025,
and 0.050 g/L. Experimental solutions were prepared with the established concentrations
of 35 µM for AM, 30 µM for MO, and 25 µM for QY in an aqueous medium and tripled
for each concentration, resulting in a total of eighteen solutions. Twelve of these solutions
contained the dye, the established concentrations of TiO2 NPs, and deionized water, while
the remaining six were used as control solutions, containing only the established concentra-
tions of the dye and deionized water. The latter were labeled as UV and darkness blanks
and were used as controls to compare the degradation progress between them and the
solutions containing both the nanoparticles and dyes. For the multicomponent experiments,
the same procedure was followed, but the solutions contained the concentrations of all
three dyes mixed in deionized water (35 µM for AM, 30 µM for MO, and 25 µM for QY).
Also, an experiment of all three dyes mixed in tap water was performed.

These experimental solutions and UV blanks were subjected to photocatalytic degra-
dation using an 8-watt UV lamp (302 nm) with power irradiation of 10 mW.cm−2 at room
temperature while being agitated in a rotamix at 20–25 rpm. The darkness blanks were
placed in an unlit space under the same conditions. Samples were collected at 30 min
intervals and analyzed using a UV–Vis Spectrophotometer 2700i to measure the average
absorbance value and track the degradation progress of each dye. The collected samples
were monitored under the maximum wavelength of absorption of each dye, which was
determined to be 522 nm for AM, 464 nm for MO, and 413 nm for QY based on the ab-
sorbance spectra of the standards solutions prepared (see Supplementary Figures S2–S4).
The decrease in dye concentration over time was estimated from calibration curves plotted
previously (see Supplementary Figures S2–S4). Absorbance calibration curves for Ama-
ranth, Methyl Orange, and Quinoline Yellow were plotted, covering concentrations ranging
from 3 µM–45 µM, 1 µM–50 µM, and 3 µM–60 µM, respectively. The line equation and
correlation coefficients were determined from these calibration curves.

The datasets generated and/or analyzed during the current study are available from
the corresponding author upon reasonable request.

3. Results and Discussion
3.1. Morphology and Crystallography Composition of TiO2

The morphological analysis at different scales depicted in Figure 1a–d offers valuable
insights into the structural characteristics of TiO2 nanoparticles (surface area 35–65 m2/g,
BET, band gap of 3.20 eV), which are essential for understanding their behavior in various
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applications such as photocatalysis. The spherical shape and tendency to aggregate ob-
served in the nanoparticles (average size of 21 nm) are consistent with previous research
findings, highlighting the importance of surface energy minimization in nanoparticle
systems. The presence of faceted features and chain configurations among the particles
suggests potential crystalline facets and directional growth, indicating the complexity of
TiO2 nanoparticle assembly. Furthermore, the coexistence of amorphous particles alongside
crystalline phases (anatase and rutile) adds depth to the understanding of the nanoparticle
system’s composition. Energy-dispersive X-ray studies offer insights into the elemental
composition of TiO2 NPs. Analysis of TiO2 samples revealed a composition (expressed
in atomic percentage) of 33% titanium and 67% oxygen (spectrum is not shown here),
unequivocally confirming the predominance of Ti and O as the primary constituents of
these nanostructures. In addition to confirming the predominant presence of titanium and
oxygen in TiO2 NPs, the EDX analysis confirmed the absence of any impurities or dopants
within the nanostructures.
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3.2. Photocatalytic Degradation of AM, MO, and QY

The study explores the catalytic potential of titanium dioxide nanoparticles in the
photodegradation process of organic dyes. To comprehensively assess their efficacy, three
distinct dyes: Amaranth, Methyl Orange, and Quinoline Yellow, were subjected to experi-
mentation. Varied concentrations of TiO2 (0.010, 0.015, 0.025, and 0.050 g/L) were employed
under UV irradiation conditions. Throughout the experiment, the relative concentrations
of the dyes (Cf/Ci) were monitored and recorded (Figures 2–4). The findings provide
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compelling evidence that the photodegradation process is intricately linked to both the
concentration of TiO2 nanoparticles and the duration of UV irradiation. Control groups
subjected to UV light exposure in the presence of dye and those kept in darkness while
in contact with the dyes (for Amaranth, Methyl Orange, and Quinoline Yellow) exhibited
minimal degradation throughout the experiment. This observation strongly suggests that
the observed decrease in dye concentration can be primarily attributed to the degradation
catalyzed by the TiO2 nanoparticles.
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For Amaranth, the degradation efficiency varied with the concentration of TiO2
nanoparticles. Specifically, the 0.025 g/L TiO2 nanoparticles exhibited the highest effi-
cacy, degrading 94% of the dye within 360 min of irradiation. Meanwhile, concentrations
of 0.010, 0.015, and 0.050 g/L resulted in slightly lower degradation percentages of 87%,
92%, and 91%, respectively (Figure 2). In the case of Methyl Orange, optimal degradation
occurred with 0.015 g/L TiO2 nanoparticles, which effectively decomposed 97% of the dye
after 330 min of irradiation. Contrarily, lower and higher concentrations (0.010, 0.025, and
0.050 g/L) displayed slightly lower degradation rates of 81%, 93%, and 82%, respectively
(Figure 3). Interestingly, for Quinoline Yellow, the trend differed. The 0.010 and 0.015 g/L
TiO2 nanoparticles demonstrated remarkable efficiency, degrading 99% of the dye after
360 min of irradiation, surpassing the performance of higher concentrations. In contrast,
the 0.025 and 0.050 g/L TiO2 nanoparticles exhibited slightly lower degradation rates of
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88% and 77%, respectively (Figure 4). This trend suggests that for all three dyes, the degra-
dation efficiency peaks at lower concentrations of TiO2 nanoparticles, indicating a nuanced
relationship between nanoparticle concentration and dye degradation effectiveness.
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The catalyst concentration plays an important role in the photocatalytic capacity of
TiO2 nanoparticles. Increasing the catalyst concentration promotes greater generation of
ROS initially, resulting in enhanced dye photodegradation. However, the concentration
of the catalyst is not the only parameter that affects the photocatalysis processes. In
Figures 2–4, it is evident that in the early stages, TiO2 at high concentration (0.050 g/L)
promotes fast degradation. However, after the reaction is stopped and in the final stages
of the degradation process, lower concentrations of TiO2 demonstrate greater efficiency.
Since the light intensity, illumination time, and concentrations of oxygen, among other
parameters, remain constant during the entire process, this leads to decreased efficiency
of photodegradation at higher catalyst concentrations (0.050 g/L of TiO2). It is known
that the generation of ROS depends on the oxygen concentration in the solution. Higher
concentrations of oxygen and catalyst will promote more generation of ROS. In this case, the
concentration of oxygen was constant for all TiO2 concentrations, which did not promote a
high production of ROS at high concentrations of TiO2 [22].

In TiO2, the valence band is primarily formed by the bonding orbitals of oxygen and
titanium. Oxygen’s 2p orbitals hybridize with titanium’s 3d orbitals to form the valence
band, indicating a significant contribution from both elements to the electronic structure.
This hybridization influences the material’s electronic properties and its ability to participate
in redox reactions during photocatalysis. On the other hand, the conduction band consists
mainly of titanium’s 3d orbitals. This indicates that electrons in the conduction band are
primarily associated with titanium atoms, suggesting that titanium plays a dominant role
in charge transport within the material. During UV-based advanced oxidation processes
(AOPs), such as photocatalysis, TiO2 nanomaterials were irradiated with photons of energy
greater than 3.2 electron volts (eV); in this study, with UV light at 302 nm. These photons
have sufficient energy to excite electrons from the valence band to the conduction band,
creating electron–hole pairs (photoinduced charge carriers). The excited electron in the
conduction band becomes mobile and can participate in reduction reactions, while the hole
left behind in the valence band can engage in oxidation reactions [23,24].

The photodegradation process hinges on the transformative interplay of UV-activated
TiO2 nanoparticles with organic contaminants. The generated photoinduced charge carriers
are highly reactive and subsequently migrate to the surface of the nanoparticles. Here, they
engage in redox reactions with adsorbed water molecules or oxygen, producing reactive
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oxygen species (ROS) such as hydroxyl radicals (•OH) and superoxide radicals (•O2
−).

The generated ROS are potent oxidizing agents capable of abstracting hydrogen atoms
from organic molecules or directly attacking carbon–carbon double bonds, leading to the
fragmentation and eventual mineralization of the contaminant into smaller, less harmful
molecules. This cascade of oxidation reactions effectively dismantles complex organic
pollutants, rendering them less persistent and more amenable to further degradation
or complete mineralization into harmless byproducts such as carbon dioxide and water.
Furthermore, the unique surface properties of TiO2 nanoparticles, including their expansive
surface area and the presence of surface defects, play a pivotal role in augmenting the
efficiency of the photodegradation process. These attributes facilitate the adsorption of
organic contaminants onto the nanoparticle surface, thereby enhancing the probability of
interaction with photoexcited charge carriers and fostering degradation reactions [25,26].

Overall, the photodegradation mechanism mediated by TiO2 nanoparticles under-
scores their potential as promising catalysts for the remediation of environmental pollutants,
offering a sustainable and environmentally benign approach to wastewater treatment and
pollution mitigation.

3.3. Photocatalytic Degradation of the Multicomponent

As discussed previously in Figures 2–4, titanium dioxide nanoparticles were effi-
cient in the individual photodegradation of Amaranth, Methyl Orange, and Quinoline
Yellow. However, dyes may be discharged into water bodies in the form of mixtures.
Therefore, the photodegradation capacity of titanium dioxide was evaluated in complex
systems, specifically, on a mixture of Amaranth, Methyl Orange, and Quinoline Yellow in
deionized water.

Figure 5a–c show the photodegradation curves for Amaranth, Methyl Orange, and
Quinoline Yellow in the multicomponent after 330 min of irradiation. In the case of AM,
the 0.050 g/L TiO2 degraded 40% of the dye, whereas the 0.010, 0.015, and 0.025 g/L TiO2
degraded 17%, 22%, and 31% of the dye, respectively. For MO, the 0.050 g/L TiO2 degraded
39% of the dye, while the 0.010, 0.015, and 0.025 g/L TiO2 degraded 16%, 22%, and 30% of
the dye, respectively. Regarding QY, the 0.050 g/L TiO2 degraded 38% of the dye, while the
0.010, 0.015, and 0.025 g/L TiO2 degraded 15%, 20%, and 29% of the dye, respectively. In
each case, despite the 0.050 g/L TiO2 degrading a higher percentage of the multicomponent,
the other concentrations of nanoparticles demonstrated noteworthy degradation of the
three dyes in the mixture. This underscores the robustness of the photodegradation process
mediated by TiO2 nanoparticles, wherein even lower concentrations exhibit considerable
efficacy in degrading multiple dyes simultaneously.

The photodegradation mechanism of the studied anionic dyes may be due to the initial
destruction of the nitrogen–nitrogen double bond responsible for the color in the Amaranth
and Methyl Orange dyes. The presence of light-activated TiO2 is expected to generate
electron–hole pairs, followed by reactive oxygen species (ROS) formation. These ROS
would be responsible for breaking the nitrogen double bond in the anionic dye molecules.
Furthermore, the degradation of Quinoline Yellow could occur primarily through the
attack of the pyridine ring (lower electron density in comparison to benzene rings) by the
superoxide radicals (a type of ROS).

It is important to highlight that, similar to Figures 2–4 (individual dyes), the pho-
todegradation of the dye mixture, as evidenced in Figure 5, indicates that TiO2 at higher
concentrations exhibits significant photodegradation efficiency in the early stages of the
process compared to other concentrations used. However, it is later observed that pho-
todegradation stops and remains constant until 360 min. As explained previously, the
catalyst concentration is not the only factor governing photocatalysis. There are other
factors involved in the process, such as the intensity of illumination, duration of irradiation
intervals, and oxygen concentration, among others.
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for the degradation of (a) Amaranth, (b) Methyl Orange, and (c) Quinoline Yellow in the multicompo-
nent experiments.

In this research, we conducted a multicomponent test using tap water instead of
deionized water. The tap water utilized in the experiments was sourced directly from the
University of Puerto Rico in Ponce, drawn from the water supply used within the chemistry
laboratories. This decision was motivated by the need to simulate real-world conditions
more accurately and assess how the presence of minerals and other impurities commonly
found in tap water might influence the photocatalytic activity of nanoparticles. Under-
standing the behavior of nanoparticles in such complex environmental matrices is crucial
for extrapolating laboratory findings to practical applications, particularly in wastewater
treatment scenarios. Figure 6 displays the photodegradation curves for Amaranth, Methyl
Orange, and Quinoline Yellow after 330 min of light exposure.

For AM, the use of 0.050 g/L TiO2 resulted in a 52% degradation of the dye, whereas
0.010, 0.015, and 0.025 g/L TiO2 degraded 10%, 13%, and 27%, respectively. Similarly, for
MO, 0.050 g/L TiO2 achieved a degradation of 50%, while the concentrations of 0.010, 0.015,
and 0.025 g/L degraded 12%, 15%, and 27%, respectively. In the case of QY, 0.050 g/L TiO2
degraded 49%, while 0.010, 0.015, and 0.025 g/L degraded 11%, 14%, and 26%, respectively.
Notably, the 0.050 g/L TiO2 consistently achieved around 50% degradation across all three
dyes, a significantly higher percentage compared to our previous multicomponent exper-
iment. The notable improvement in dye degradation observed when using tap water as
opposed to deionized water prompts a deeper examination of the factors at play. Tap water,
sourced from natural environments, typically contains a diverse array of minerals and
organic compounds, which can act as co-catalysts or promoters in photocatalytic processes.
These minerals, such as calcium, magnesium, and bicarbonates, may interact synergisti-
cally with TiO2 nanoparticles, facilitating electron transfer processes and enhancing the
generation of reactive oxygen species (ROS) under UV irradiation.

Furthermore, the presence of natural organic matter (NOM) in tap water can serve as
additional electron donors, further promoting the photocatalytic activity of TiO2 nanopar-
ticles. NOM contains a variety of functional groups, such as carboxyl, hydroxyl, and
phenolic groups, which can scavenge photogenerated holes, thereby inhibiting charge
recombination and prolonging the lifetime of photoinduced charge carriers. This prolonged
availability of active charge carriers enhances the efficiency of dye degradation reactions.
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Additionally, tap water may also contain trace amounts of metal ions, such as iron and
copper, which can act as Fenton-like catalysts, generating additional ROS through the
Haber–Weiss reaction. These ROS can then participate in secondary oxidation reactions,
leading to further degradation of the dye molecules [27,28].
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for the degradation of (a) Amaranth, (b) Methyl Orange, and (c) Quinoline Yellow in the multicompo-
nent experiments using tap water.

In summary, the enhanced photodegradation observed in tap water can be attributed
to the complex interplay of minerals, organic matter, and metal ions present in the water
matrix, which synergistically promote the photocatalytic activity of TiO2 nanoparticles.
This underscores the importance of considering the composition of the water matrix when
evaluating the performance of photocatalytic processes in real-world applications.

4. Conclusions

This study explores the breakdown of anionic dyes Amaranth, Methyl Orange, and
Quinoline Yellow through photocatalysis using titanium dioxide nanoparticles. The results
indicate that, for Amaranth, a concentration of 0.025 g/L of nanoparticles demonstrated
superior efficiency, achieving a 94% degradation in 360 min, outperforming concentrations
of 0.010, 0.015, and 0.050 g/L. In the case of Methyl Orange, the most effective concentra-
tion was 0.015 g/L, achieving a remarkable 97% degradation after 330 min of irradiation.
Similarly, for Quinoline Yellow, concentrations of 0.010 and 0.015 g/L proved more efficient,
achieving a 99% degradation after 330 min of irradiation. Two multicomponent experi-
ments were conducted by mixing the three dyes in a solution, one with deionized water
and the other with tap water. After 330 min of irradiation, the 0.050 g/L concentration
showed enhanced efficiency, degrading approximately 40% and 50% of the three dyes in
the deionized and tap water solutions, respectively. The results suggest that minerals in tap
water could play a role in promoting the titanium dioxide nanoparticles’ effectiveness in
degrading these dyes.
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