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Abstract: In recent years, the rapid growth of air traffic has intensified pressure on the air transport
system, leading to congestion problems in airports and airspace. The projected increase in demand
exacerbates these issues, necessitating immediate attention. Additionally, there is a growing concern
regarding the environmental impact of the aviation sector. To tackle these challenges, the adoption
of advanced methods and technologies shows promise in expanding current airspace capacity and
improving its management. This paper presents an overview of sustainable aviation, drawing on
publications from academia and industry. The emphasis is on optimizing both flight and ground
operations. Specifically, the review delves into recent advancements in airline operations, airport
operations, flight operations, and disruption management, analyzing their respective research ob-
jectives, problem formulations, methodologies, and computational experiments. Furthermore, the
review identifies emerging trends, prevailing obstacles, and potential directions for future research.
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1. Introduction

After a decline in air travel due to COVID-19, air passenger demand is now rebounding
and is projected by the International Air Transport Association (IATA) [1] to return to pre-
pandemic levels by 2024. This growth is expected to continue for the next two decades,
presenting challenges in managing the increased demand and addressing environmental
concerns. In 2021, the aviation sector accounted for more than 2% of global energy-related
CO2 emissions, with a faster growth rate compared to other transportation industries
like road, rail, and shipping [2]. Additionally, the climate impact of aviation extends
beyond CO2 emissions, as it includes the release of nitrogen oxides, water vapor, sulphate,
and soot particles at high altitudes, which can significantly affect the climate [3]. Numerous
organizations have been actively advocating for solutions and roadmaps to mitigate these
environmental impacts (e.g., IATA [4]). Sustainable aviation encompasses various research
areas, such as sustainable aviation fuel [5], hydrogen energy systems [6], and electric
aircraft [7]. In the systematic review by Afonso et al. (2023) [8], sustainability efforts in
aviation are categorized into operations, energy sources, propulsive systems, aerodynamics,
structures, materials, and manufacturing processes.

Certainly, the optimization of both flight and ground operations is an efficient and
effective way to enhance aviation efficiency while reducing its environmental footprint.
Operations Research (OR) models and methodologies play a practical role in air transport,
providing a faster implementation compared to technological advancements. As a result,
the discipline of OR has become essential for advancing the aviation industry [9].

The aviation operations optimization literature is extensive, covering a wide range of
research topics, problem formulations, methodologies, and technologies. While tradition-
ally focused on safety, economics, efficiency, and customer satisfaction, there is a growing
emphasis on environmental and social factors. This paper aims to review environmentally
sustainable aviation from an OR perspective, with a focus on recent publications from
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academia and industry. Based on the research topic, the reviewed works are categorized
into four groups: airline operations, airport operations, flight operations, and disruption
management. Many of these works directly address environmental concerns by incorporat-
ing indicators like CO2 emissions into their objective functions or constraints. In other cases,
the indicators that are used may relate more to economics, efficiency, customer satisfaction,
or safety, but still positively impact environmental aspects. For example, optimizing crew
assignments to reduce flight delays and cancellations also helps lower fuel consumption.
To ensure a comprehensive review, works with indirect connections to environmental
indicators have also been considered.

This paper offers several contributions: (i) a review of environmentally sustainable
aviation from an OR perspective, including a detailed discussion of findings; (ii) an analysis
of emerging trends in the literature; (iii) identification of key challenges; and (iv) sugges-
tions for future research directions. The paper is structured as follows: Section 2 presents
the research methodology. Works are categorized into airline operations, airport opera-
tions, flight operations, and disruption management, with key findings being discussed
in Sections 3–6, respectively. Building on these insights, Section 7 highlights emerging
trends and challenges, while Section 8 suggests future research directions. Finally, Section 9
provides conclusions.

2. Research Methodology

The literature review approach is crucial for advancing research and uncovering
new opportunities. It systematically synthesizes and consolidates dispersed knowledge.
The process began with an initial search on Google Scholar to find recent reviews on
sustainable aviation [8,10,11]. These reviews, combined with the author’ expertise, were
used to identify categories and subcategories for environmentally sustainable aviation
operations. These categories are airline operations, airport operations, flight operations,
and disruption management. The subcategory labels, which are described in the following
sections, were used as keywords for further searches, sometimes with the addition of the
keyword “review”.

The selection of primary studies was based on inclusion and exclusion criteria de-
scribed next. Rather than aiming for an exhaustive compilation, the review sought to
provide a representative selection of recent works, offering valuable insights into the ways
in which optimizing operations contributes to aviation’s environmental sustainability. Ad-
ditionally, it aimed to identify and discuss emerging trends, challenges, and potential areas
for future research. Studies that met inclusion criteria were those that (i) optimize aviation
operations with direct or indirect consideration of environmental sustainability; (ii) present
literature reviews or proposal OR methodologies with computational experiments; (iii)
are published in peer-reviewed journals or international conference proceedings; (iv) are
in English; and (v) were published between January 2015 and May 2023. Studies that
contained exclusion criteria were those that (i) do not focus on aviation operations and (ii)
center on aviation infrastructure or airline revenue management.

Moreover, this search was broadened to include recent contributions from industry
sources, such as company reports and websites.

3. Airline Operations

In this section, recent studies on airline operations are reviewed, highlighting the
consideration of environmental impacts. Airline operations (Figure 1) refer to the core
activities and processes involved in the daily functioning of an airline. It encompasses
a range of tasks and functions required to operate flights and ensure the safe, efficient,
and reliable transportation.
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Figure 1. Representation of subcategories in airline operations.

3.1. Flight Scheduling

Flight scheduling encompasses the creation and optimization of flight itineraries,
routes, and timetables for flights. It takes various factors into account, such as aircraft
availability, airport slot availability, demand and profitability, crew scheduling, regulatory
and airspace constraints, weather conditions, and aircraft turnaround time. By optimizing
flight routes, aircraft utilization, and minimizing unnecessary idling and delays, airlines
can reduce their carbon footprint. Additionally, scheduling flights during off-peak hours
can alleviate congestion and reduce the environmental impact. Employing direct flight
paths, optimizing altitude and speed profiles, and using advanced technologies for naviga-
tion and communication can help airlines reduce fuel consumption. Finally, minimizing
delays, providing accurate and reliable schedules, and offering convenient connections
can improve passenger satisfaction. An overview of airline schedule planning, includ-
ing flight scheduling, is provided by Eltoukhy et al. (2017) [12]. The authors categorize
flight scheduling models into those that consider market share and passenger demand
fluctuations and those that prioritize the robustness of the timetable. The models exhibit
variations in planning horizon, network type, model formulation, objective function, so-
lution procedure, data used, airline, stochasticity, robustness, passenger demand (fixed
or variable), and market share (fixed or variable). The review criticizes models that rely
on assumptions like daily repeated flight schedules, fixed arrival and departure times,
and deterministic passenger demand, arguing that these limitations hinder their real-life
applicability. Furthermore, the authors emphasize the significance of integrated schedule
planning models despite acknowledging the complexity they introduce. They do not
prioritize sustainability considerations.

In the context of reducing CO2 emissions, Mitici et al. (2022) [13] address challenges
in short-range electric flights, focusing on fleet investment and efficient charging logis-
tics. The authors propose a two-phase mixed-integer linear programming (MILP) model.
The first phase develops a schedule for flight operations and battery recharge management.
The second phase determines optimal charging times, station, and battery requirements. All
parameters are assumed to be deterministic and known in advance. The model is applied
in a European airport. Kenan et al. (2018) [14] tackle flight scheduling and fleet assignment
challenges, which must be completed many weeks prior to the flight date. The authors
propose a two-stage stochastic programming model to maximize profit under demand
and fare uncertainties. The first stage assigns fleet families to each flight leg, while the
second stage determines fleet types based on actual demand and fares. A sample average
approximation algorithm is employed to solve the problem.

While the results show promise in terms of estimated optimality gap, the computa-
tional time may pose a challenge for medium- and large-sized companies, particularly
when considering additional sources of uncertainties or integrating different problems.
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Birolini et al. (2021) [15] address flight scheduling and fleet assignment, proposing a mixed
integer nonlinear model to maximize operating profits while considering air travel de-
mand generation and passenger allocation within markets. They employ least squares
piecewise linearization for nonlinearities and a nested logit formulation to assess com-
petitive dynamics. Computational experimentation indicates the model’s capability to
efficiently optimize mid-size hub-and-spoke networks within reasonable time. Nonetheless,
the authors highlight the potential for further investigation into heuristic methods. The
approach’s benefits are showcased in a European carrier case study. Despite the absence
of specific environmental indicators, fuel costs constitute a primary component of direct
operating costs.

3.2. Aircraft Maintenance Routing

Aircraft maintenance routing is the process of determining the sequence of flight legs
for individual aircraft to cover each flight once while meeting maintenance requirements.
Regulatory bodies like the Federal Aviation Administration (in the US) and the European
Union Aviation Safety Agency (EASA, in Europe) enforce these rules. Airlines add their
own standards. A solution includes a generic route in a rolling time frame. Each aircraft
undergoes many maintenance tasks in its life cycle. Tasks vary in scope, duration, and fre-
quency, depending on aircraft type. Examples: walk-around inspections, light checks,
emergency equipment inspections, engine oil servicing, and repairs if needed. In their
2009–2019 review, Temucin et al. (2021) [16] identify trends in aircraft maintenance. Short-
term maintenance studies dominate, with more emphasis on scheduled vs. unscheduled
maintenance. Daily and weekly studies are equally common. They emphasize the prob-
lem’s NP-hard nature, leading to preference for heuristic and metaheuristic approaches. It
is found that studies predominantly feature a single objective, while existing multi-objective
models typically encompass certain operational cost elements like crew pairing cost, idle
time cost, CO2 emission cost, fuel consumption cost, or spill cost.

Ruan et al. (2021) [17] present a network flow-based integer linear programming
(ILP) framework aiming to maximize profitability and considering three maintenance
constraints: maximum cumulative flying hours, maximum number of take-offs between
two maintenance checks, and workforce capacity. They propose a reinforcement learning
(RL) algorithm, tested on real data from a Middle Eastern airline, and compare its per-
formance against both CPLEX and various metaheuristic algorithms. The RL algorithm
exhibits faster computational times and surpasses them in solution quality in large-scale
datasets, where CPLEX struggles to deliver optimal solutions. Similarly, Bulbul and Kasim-
beyli (2021) [18] address the aircraft maintenance routing problem on a connection network,
treating it as an asymmetric traveling salesman problem with fleet size and maintenance
constraints. Their hybrid solution combines Gasimov’s modified subgradient algorithm
with ant colony optimization (ACO). Test problems provide proof that the method can solve
instances with 260 flights and 7982 connections in under three hours. Cui et al. (2019) [19]
create an ILP model for aircraft maintenance routing, aiming to minimize aircraft count
and remaining flying time. It is expanded for robustness via aircraft delay probability to
cut delay costs. The variable neighborhood search (VNS) algorithm is used for solving the
problem and it is validated through comparisons with CPLEX 12.6 software. While these
works do not directly tackle environmental concerns, the emphasis on reducing delays
carries positive implications for both economic and environmental factors.

3.3. Fleet Assignment

The fleet assignment problem involves optimizing aircraft allocation to flights, con-
sidering aircraft diversity and flight variations. It aims to maximize revenue, minimize
costs, and ensure operational efficiency. Factors like fuel, crew, maintenance, and dynamic
changes due to weather or demand are considered. By considering aircraft range, capacity,
and fuel consumption, airlines can reduce emissions. Efficient fleet allocation enhances
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resource utilization, including crew and facilities. It also accounts for noise concerns and
supports sustainable technology adoption.

Ma et al. (2018) [20] address the fleet assignment problem by proposing a multi-criteria
approach taking into account random demand, fare price, and gasoline price. The model
aims to maximize revenue while minimizing operational costs and emissions. A rounding
algorithm is developed to handle the large-scale nature of the problem. Its effectiveness is
evaluated by applying it to two test cases: Jetstar Asia and a major Chinese airline. When
compared to the prevailing assignment strategy of the Chinese airline, the proposed model
demonstrates superior performance in both profitability and emission reduction. Justin et al.
(2022) [21] investigate the integrated fleet assignment and scheduling for environmentally
friendly electrified regional air mobility. This problem is formulated as a half-leg half-
itinerary MILP. A hierarchical multi-objective approach is proposed, which reveals the
trade-offs between profitability and emissions. The approach is used to solve large fleet
assignment and scheduling problems in the US Northeast Corridor using electric and
hybrid-electric regional aircraft. Their method achieves near-optimal solutions, allowing
for the service of twice as many communities as currently served while reducing carbon
emissions per passenger by fifty percent. Glomb et al. (2023) [22] present a mixed-integer
programming (MIP) model to address the combined challenges of fleet assignment, tail
assignment, and turnaround handling. A decomposition algorithm is developed, which
alternates between solving the combined assignment problems and the turnaround model.
Through a study using realistic instances containing up to several hundred flights, it is
demonstrated that this method outperforms comparable state-of-the-art exact approaches.
Moreover, two strategies to scale up the results for large airlines are presented. Finally,
Liu et al. (2023) [23] examine the problem from a risk-averse standpoint, taking into account
both uncertain passenger demand and fuel prices. This problem is formulated as a two-
stage stochastic programming model. In the first stage, aircraft families are assigned to
flight legs, while the second stage determines the specific deployment of aircraft based on
realized information. A sample average approximation approach and an efficient string-
based heuristic are proposed to solve the problem. Future research is proposed to explore
the integration of multimodal transportation and the inclusion of carbon emission costs.

3.4. Aircraft Scheduling

While the fleet assignment problem focuses on the strategic assignment of aircraft
types and quantities to routes, aircraft scheduling deals with the operational assignment of
specific aircraft to individual flights within a shorter time frame, considering factors such as
flight timings, crew scheduling, and resource utilization. Ikli et al. (2021) [24] review aircraft
scheduling, emphasizing key techniques: exact methods, metaheuristics, and RL. The most
common objective functions are deviations from target times, delays, makespan, and emis-
sions. The authors introduce a challenging dataset due to the ease of solving current
benchmarks. Future prospects include aircraft categorization, air traffic control integration,
broader air traffic context, surface operations, matheuristics, and uncertainty handling.

Samà et al. (2017) [25] tackle aircraft landing and take-off schedules and re-routing.
Despite its MILP model potential, the problem’s NP-hard nature demands heuristic algo-
rithms. Their approach starts with an initial solution via a truncated branch-and-bound
algorithm with fixed routes and known resources. A metaheuristic optimizes it by rerouting
some aircraft within a terminal control area. Experiments in an Italian terminal control
area test the framework, simulating disturbances like delays and runway disruptions.
Zheng et al. (2020) [26] address aircraft scheduling and parking, determining take-off,
landing times, wake vortex constraints, and apron space. The authors formulate it as an
MILP model minimizing aircraft service time. Using a bottom-left/right strategy, they
employ a hybrid approach with simulated annealing (SA) and reduced VNS to find near-
optimal solutions. Experiments on random instances and reduced benchmarks showcase
the method’s effectiveness and efficiency in comparison to the CPLEX solver. Huo et al.
(2021) [27] tackle aircraft scheduling under uncertainty, aiming for robust arrival flight
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schedules. They use a trajectory model with time as random variables, comparing it to two
benchmarks: a deterministic model and one with separation buffers. For the Paris Charles
de Gaulle airport case study, they employ an SA algorithm with a time decomposition
sliding window. Solutions are evaluated using a Monte-Carlo-based simulation framework.
Results show that the model with separation buffers is unstable under uncertainty, while
the proposed model excels in stability and conflict management.

3.5. Tail Assignment Problem

The tail assignment problem assigns aircraft to flights using their unique tail num-
bers, optimizing efficiency, minimizing costs, and meeting constraints like aircraft type,
maintenance, crew, and passenger demand. For example, Vikstål et al. (2020) [28] solve
instances of up to 25 routes of the exact cover problem derived from reducing the tail as-
signment problem, where the goal is to find any solution satisfying all the constraints. They
propose a quantum approximate optimization algorithm and assess its effectiveness using
simulation techniques. A comprehensive comparison against classical methods is missing.
Khaled et al. (2018) [29] present a compact mathematical programming formulation for the
tail assignment problem with few, 0–1, decision variables and polynomial-sized constraints.
Based on the results of solving randomly generated instances, state-of-the-art MIP solvers
demonstrate efficient handling of large scenarios, such as 30-day flight schedules typically
involving up to 40 airplanes. Khaled et al. (2018b) [30] emphasize tail assignment solutions
for cost minimization and robustness but acknowledge the need for plan adjustments due
to unforeseen events. They formulate a multi-objective ILP for repair and recovery, mini-
mizing multiple repair criteria using an additive value function for solution selection. A
test case example involving 111 flights, 10 airplanes, and 11 airports is solved and discussed.
Jayaraj et al. (2020) [31] address robustness by integrating maintenance routing and tail
assignment. This combines tactical and operational planning for a resilient schedule, using
real-time aircraft data. The problem combines set partition and multi-commodity network
models, efficiently solved with a restrict-and-relax strategy, proven effective in large-scale
instances. Real-world tests validate the approach.

3.6. Crew Scheduling

Scheduling airline crews involves cockpit and cabin crews, split into tactical and oper-
ational planning stages. Tactical planning aims for cost efficiency but has shifted towards
robust scheduling in response to unpredictable conditions. This aims to enhance robustness
and reduce potential disruptions. The operational stage is discussed in Section 6.2.

The airline crew scheduling problem comprises two components: crew pairing and
crew assignment/rostering. Crew pairing generates adequate anonymous feasible pairings
to meet the personnel requirements for all flights. In the crew assignment/rostering stage,
these pairings are combined into monthly assignments. To enhance crew and customer
experiences, crew assignments consider qualifications, rest, and preferences. Crew pairing,
being the initial stage, receives more attention and significantly impacts schedule quality.
Optimizing crew assignments reduces flight disruptions, crew repositioning, fuel usage,
and commuting, reducing environmental impact. In Wen et al. (2021) [32], airline crew
scheduling literature is reviewed. Alongside set-covering and set-partitioning models, pure
network models are suitable for smaller problems. Incorporating side constraints improves
cabin crew pairing solutions. However, considering unique cabin crew characteristics, like
mixed qualifications and crew substitution, escalates the problem’s complexity, making
column-generation approaches less suitable. Scheduling both cabin and cockpit crews
often overlooks cabin crew’s distinct features for simplicity. A rolling horizon approach is
suggested, dividing the problem into daily, weekly, and monthly sub-problems.

Table 1 summarizes recent works on the crew pairing problem, outlining their objec-
tives and solving methods. Main objectives include cost minimization, revenue maximiza-
tion, robustness, and risk reduction. Crew preferences and penalty schemes are considered
in some studies. Common methodologies are column generation algorithms and genetic
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algorithms (GAs). Table 2 compiles recent studies on the rostering problem, with two works
addressing both crew pairing and rostering. The primary aim is cost reduction, but other
objectives focus on crew-related aspects like equitable benefits, workload, and vacation re-
quests. Most studies employ population-based metaheuristics, including ACO and particle
swarm optimization (PSO) algorithms.

Table 1. List of recent works on the crew pairing problem.

Work Objective(s) Methodology

[33] Min. costs. GA.

[34] Max. revenue—fleet assignment
costs—non-robustness penalties.

Matheuristic: decomposition approach and
proximity search algorithm.

[35] Min. deadhead cost, crew cost and risk of COVID-19. GA.

[36]

Min. cost of crew members, penalization for short or
long connection times, cost for crew members
changing aircraft along their routes, and penalty for
the use of aircraft.

Four heuristic algorithms based on an
MILP model.

[37]
Min. sum of pairing costs and penalties related to the
base, monthly language, and daily
language constraints.

Branch-and-price heuristic.

[38] Min. adjusted costs. It considers crew preferences. Column generation algorithm.

Table 2. List of recent works on the rostering problem. Note: 1 Integrated model for crew pairing and
rostering problems.

Work Objective(s) Methodology

[39] Max. crew satisfaction. Deep learning-based partial pricing in a
branch-and-price algorithm.

[40] Min. difference between crew sit times. PSO algorithm.

[41] 1 Min. costs. ACO algorithm.

[42]

Min. nautical mile cost, balance workload among
cockpit crews, max. preferential requests from senior
pilots and min. number of repeated flight patterns
flown by individual pilots.

MOEA/D and HBMO metaheuristics.

[43] 1
Max. number of satisfied vacation requests and
preferred flights and PFs and min. cost of pairings and
dissimilarity of pilot and copilot pairings.

Alternating Lagrangian decomposition.

[44] Max. fairness and satisfaction of crew. ACO algorithm.

3.7. Aircraft Turnaround Operations

Flight turnarounds involve vital tasks like baggage handling, refueling, and pushback,
alongside passenger services like cleaning and catering. Ground handling providers
strategically plan these operations to minimize delays. This planning occurs in advance
and aims for robustness, considering uncertainties like task durations, aircraft arrival
times, and equipment availability. Sustainable aircraft turnaround practices encompass
optimizing fuel efficiency, waste management, energy use (e.g., using ground power units
and efficient lighting, heating, and cooling systems), water conservation, noise reduction,
and sustainable procurement.

In San Antonio et al. (2017) [45], a simulation estimates critical paths and survival
functions in aircraft turnarounds, departing from deterministic time assumptions. This
approach provides probabilities of completing operations before target times, validated
through small numerical experiments. Saha et al. (2021) [46] focus on allocating ground
handling teams to aircraft turnarounds, using a two-part approach: (i) simulation based
on flight data and static rules and (ii) RL for dispatching rule selection. A case study at
Luton Airport in the UK illustrates their methodology. With more aircraft needing service,
ground handling operators encounter higher workloads that can result in delays. Gök et al.
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(2020) [47] study aircraft turnaround scheduling and ground service team/equipment plan-
ning. They initially tackle the resource-constrained project scheduling problem to minimize
delays. Then, they support decentralized team/vehicle allocation, using constraint pro-
gramming and MIP solvers for tasks like multiple traveling salesman problems with time
windows. To generate real-world solutions, they employ a matheuristic with large neighbor-
hood search (LNS), emphasizing maximizing total slack time for robustness. The solutions’
robustness is evaluated with a discrete-event simulation model, demonstrated in a case
study at Barcelona Airport, in Spain.

3.8. Contributions from the Industry

The industry has taken steps to enhance the efficiency of airline operations with a
focus on environmental considerations. The following examples illustrate these efforts.

• Flight Scheduling. In terms of route optimization, KLM Royal Dutch Airlines [48]
(i) employ a flight plan computer system for calculating the most fuel-efficient routes,
(ii) advocate for the establishment of a Single European Sky (SES) to enhance the capac-
ity, safety, efficiency, and environmental impact of Europe’s airspace, and (iii) support
the necessary reform of the European Air Traffic Management System at institutional,
operational, technological, and control and supervision levels. Another example
involves Eurocontrol’s promotion of continuous climb and descent operations [49],
allowing for aircraft to follow a flexible, optimum flight path that brings significant
environmental and economic benefits, including reduced fuel burn, emissions, noise,
and fuel costs without compromising safety. Lastly, SAS [50] optimizes schedules and
aircraft sizes to meet demand effectively, particularly on regional routes with lower
demand. This approach allows for the optimization of fuel usage and emissions per
seat kilometer.

• Aircraft Maintenance Routing. The industry is increasingly adopting physics-based
modeling, statistical analysis, and machine learning for predictive maintenance rec-
ommendations. This shift aims to enhance dispatch reliability, reduce unplanned
maintenance, and optimize schedules. Collins Aerospace [51] offers Ascentia, a service
converting data into tailored, predictive insights. Jeppesen [52] provides decision
support tools, including what-if simulations, for precise aircraft routing solutions,
factoring in revenue forecasts, maintenance, and operational costs. Skywise [53],
a collaboration between Airbus and Palantir Technologies, utilizes abnormal behavior
analysis of aircraft sensor data for proactive component failure anticipation. It inte-
grates reliability data, enabling fleet performance benchmarking and identifying root
causes and solutions. This marks a significant advancement in proactive aircraft main-
tenance management, which reduces fuel consumption and emissions by ensuring
optimal performance and reliability of aircraft systems.

• Fleet Management. Software solutions often overlook the distinctions between fleet
assignment, aircraft scheduling, and tail assignment problems, with many companies
offering integrated solutions for flight operations and fleet management. For instance,
Ramco’s flight operations [54] provides a comprehensive solution catering to aircraft
professionals’ needs, offering real-time operational readiness tracking for fleet avail-
ability. Matellio’s aviation fleet management software [55] automates various aspects
of the aviation industry, including fleet, fuel, and crew management. Veryon [56]
offers its integrated flight operations software to optimize flight schedules and crew
assignments for fleet utilization. Additionally, there is a notable industry focus on
developing eco-friendly aircraft, such as hybrid-electric models and weight-saving
measures, to minimize fuel consumption and emissions. In terms of fleet composition,
the industry places significant emphasis on advancing eco-friendly aircraft, such as
hybrid-electric models [57] and initiatives focused on weight reduction [58]. Lighter
aircraft offer clear advantages as they require less fuel and produce lower emissions.

• Crew Scheduling. When selecting crew scheduling software, airlines take into account
factors such as operational size, complexity, budget, and desired functionalities. So-
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lutions typically feature a rule engine to handle intricate regulations on flight time
limitations, duty hours, and rest periods. This software can integrate with existing
bidding systems where pilots and crew members input preferences for routes, days
off, and vacations. Additionally, optimization algorithms process extensive data on
pilot qualifications, aircraft types, flight routes, and layover requirements to generate
efficient schedules aimed at cost reduction. Notable examples of such software in-
clude PDC crew scheduling [59], ProDIGIQ’s flight operations system—NAXOS [60],
and Sabre schedule manager [61]. One aspect of cost optimization involves minimizing
crew deadheading, which mitigates environmental impacts.

• Aircraft Turnaround Operations. Software solutions streamline processes, optimize
resource allocation, and reduce turnaround times. This is achieved by collecting and
integrating real-time data from diverse sources such as flight schedules, gate avail-
ability, maintenance requirements, weather conditions, and ground crew schedules.
Employing advanced algorithms that analyze historical data and forecast potential
delays or bottlenecks enables stakeholders to preempt issues and implement preven-
tive measures, such as pre-positioning ground crew or conducting maintenance tasks
proactively. Examples of such software include ADB SAFEGATE’s AiPRON 360 [62]
and FLYHT [63]. These software contribute to environmental sustainability, for ex-
ample, by mitigating ground delays. Noteworthy initiatives in sustainable aviation
include Turin Airport (TRN) in Italy [64], which transitioned to a 100% electric ground
handling fleet in 2020, featuring electric tractors, baggage loaders, and pushback tugs
for aircraft maneuvering. Similarly, dnata [65], an aviation services provider, has
globally implemented electric ground support equipment, replacing traditional diesel-
powered counterparts, with a focus on utilizing on-site renewable energy sources or
clean electricity grids whenever feasible.

3.9. Discussion

Airline operations encompass a variety of tasks aimed at ensuring safety, efficiency,
and reliability in daily airline functioning. Optimizing these operations directly mitigates
environmental impact, particularly by reducing fuel consumption through minimizing
resource idling, traffic congestion, flight delays, and cancellations.

• In flight scheduling, airlines can reduce environmental impact by scheduling flights
during off-peak hours to alleviate congestion, employing direct flight paths, optimiz-
ing altitude and speed profiles to reduce fuel consumption, and providing reliable
schedules to minimize delays.

• Efficient aircraft maintenance routing ensures peak performance, reducing fuel con-
sumption and emissions associated with inefficient operations and unexpected mainte-
nance delays. Minimizing last-minute maintenance also reduces environmental impact
by preventing disruptions to flight schedules and unnecessary fuel consumption.

• Strategic fleet assignment facilitates the integration of sustainable aircraft and technolo-
gies. In fleet assignment, aircraft scheduling, and tail assignment, approaches that min-
imize fuel costs and maximize aircraft load factors correlate with emission reduction.

• Crew scheduling optimizes staffing to minimize inefficient flights, reducing fuel
consumption and emissions. It prevents last-minute cancellations or delays and
optimizes crew rotations, reducing the need for deadhead flights.

• Efficient turnaround operations minimize ground idle time between flights, reduc-
ing fuel consumption and emissions. They also contribute to on-time departures,
decreasing fuel burn associated with holding patterns or inefficient routing.

Despite relatively few works directly addressing environmental aspects to quan-
tify and reduce environmental impacts, the increasing availability of high-quality data,
computing power, and hardware development, and focusing on efficiency, robustness,
and resilience contribute to a more environmentally sustainable aviation industry.
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4. Airport Operations

Airport operations (Figure 2) are the various activities and procedures involved in
managing and running an airport efficiently and safely.

Figure 2. Representation of subcategories in airport operations.

4.1. Gate Allocation

The gate assignment problem allocates aircraft to gates, with two main strategies:
common use and exclusive use. Common use optimizes gate utilization, while exclusive
use involves leasing gates to airlines. Airlines prioritize access and efficient ground times,
passengers want convenience, and airport operators aim for revenue by improving re-
source efficiency, reducing congestion, and minimizing disruptions. Gate schedules need
robustness due to flight time uncertainty. Some models prioritize idle time between gate
uses, enhancing schedule resilience. Airports may enforce minimum buffer times between
flights for safety and delay accommodation. Other models focus on resolving gate conflicts,
which occur when multiple aircraft request the same gate, impacting passenger delays,
connections, and fuel consumption.

Daş et al. (2020) [66] survey the gate assignment problem, noting its lack of a standard
formulation due to diverse stakeholders, feasibility criteria, and objectives. Common for-
mulations use assignment and flow variables, with numerous heuristic and metaheuristic
algorithms developed. Table 3 compiles recent studies on the gate assignment problem,
emphasizing objectives and solving methods. Common objectives include minimizing
walking distance, aircraft taxiing costs, and enhancing robustness. Metaheuristics are preva-
lent among the proposed methods. These studies do not directly address environmental
impacts, and only one takes into account robustness, which, as mentioned earlier, leads to
decreased delays and congestion, and consequently lower fuel consumption. Unfortunately,
a fair comparison of the effectiveness of the proposed methods is not feasible, as each study
presents a highly specific formulation and addresses instances that are neither accessible
nor replicable.

Table 3. List of recent works on the gate assignment problem.

Work Objective(s) Methodology

[67] Min. aircraft taxiing costs and passenger
walking distance.

NSGA-II-LNS algorithm (builds upon the
NSGA-II framework and LNS algorithm).

[68] Max. sum of preference values. Branch-and-price algorithm.

[69]
Max. operators’ preferences (scores) and min.
robustness cost caused by changes of
flight schedule.

Monte Carlo based NSGA-II algorithm.

[70] Min. number of aircraft assigned to apron and
walking distance.

Branch-and-bound algorithm, beam search,
and filtered beam search algorithms.

[71] Penalty cost of remote stands, walking distance,
and fuel consumption cost of taxiing. Improved adaptive parallel GA.

[72] Min. walking distance. Quantum approximate optimization algorithm.

4.2. Stand Allocation

Stand allocation assigns parking positions to flights, aiming to minimize delays, re-
duce congestion, and optimize resource use while adhering to constraints. The common
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objectives are to enhance airport resource utilization, reduce delays, and improve the
passenger experience. Real-time data integration and adjustments are vital for real-world
implementation. Guépet et al. (2015) [73] show that allocating operations to airport stands
is NP-hard. The authors create a MIP model with the aim of maximizing the utilization
of contact stands by passengers/aircraft and minimizing towing movements, all while
adhering to operational and commercial prerequisites. Additionally, they introduce two
heuristic algorithms based on spatial and temporal decomposition. Realistic scenarios
from two major European airports validate these methods. Zhao and Duan (2021) [74]
introduce a multi-objective model for stand allocation at Lanzhou Zhongchuan Airport,
targeting passenger distance, airline costs, and stand usage efficiency. They employ an SA
algorithm and use actual flight data to validate the approach. These two papers concentrate
on pre-departure position allocation, which occurs before early departures and involves
arranging positions for the entire day in advance. Delays and other unforeseen circum-
stances necessitating position adjustments are not taken into account. Bagamanova and
Mota (2020) [75] propose a method for stand assignment, considering airport environment
uncertainties. They merge Bayesian modeling and metaheuristics for robust solutions
against schedule disruptions. The elements comprising the multi-objective function include
the number of flights designated for remote parking positions, the total taxi distance for the
assigned schedule, the number of flights waiting for an available stand, and the average
area per passenger at the boarding gate. It is noteworthy that reductions in both total taxi
distances and the number of flights allocated to remote parking positions can result in
substantial fuel savings. Combining this with simulation aids in assessing assignment
robustness, illustrated in a Mexico City International Airport case study.

4.3. Slot Allocation

Airport capacity limits hinder global air travel growth. Congested airports use slot
allocation to grant access to limited resources like runways, gates, and air traffic control.
Katsigiannis and Zografos (2021) [76] offer a framework integrating airline flexibility pref-
erences and dynamic and asynchronous total airport capacity constraints. The approach
addresses multiple objectives, including rejected requests and displacement, aligning with
IATA Guidelines. Airline preferences are represented by timing flexibility indicators, con-
tributing to a weighted objective. Computational analysis, using Gurobi as a solver, demon-
strates the approach’s value with data obtained from a coordinated regional European
airport. Wang and Zhao (2020) [77] propose a robust slot allocation model spanning multi-
ple days, addressing uncertainties in airport capacity. It prioritizes minimizing scheduling
conflicts in worst-case scenarios, ensuring resilience in allocation. This model connects
strategic and pre-tactical decisions in air traffic management by balancing strategic cost
and operational congestion. It harmonizes long-term planning with short-term efficiency.
Validation employs the CPLEX solver and numerical analyses involving Level 3 airports in
the South China Airport network. Androutsopoulos et al. (2020) [78] address the strategic
airport slot allocation problem, treating it as a bi-objective resource-constrained project
scheduling issue with partially renewable resources and non-regular objective functions.
These non-regular criteria encompass total earliness–tardiness and a dispersion measure to
manage overdisplaced requests. They propose a hybrid heuristic algorithm, combining the
objective feasibility pump algorithm with the LNS metaheuristic. A new set of instances,
based on real slot request patterns at a Greek Regional Airport, evaluates the algorithm,
showing it provides reasonably accurate solutions.

4.4. Baggage Handling Transport System

The baggage handling transport system (BHTS) poses an optimization challenge,
aiming to find optimal paths for baggage from check-in counters to departure gates. This
entails choosing conveyor belts, sorting facilities, and transfer points. The main goal is to
minimize operational costs, covering energy, maintenance, and labor expenses. Capacity,
time, and security constraints apply. Metrics focus on throughput, efficiency, and resource
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use. Optimizing BHTS is vital for airport operation, requiring detailed modeling, precise
data, and ongoing dynamic adjustments to adapt to changing conditions.

Lodewijks et al. (2021) [79] introduce a mathematical model addressing key costs in
belt conveyor operations within a BHTS, covering capital, operational, and CO2 emission
offsetting costs. The authors employ three advanced PSO algorithms, demonstrating their
effectiveness and efficiency. The self-regulation PSO algorithm excels, particularly in CPU
time performance. The experiments, relying on artificial data, reveal that a BHTS with
multiple shorter belt conveyors outperforms a single long conveyor system. However,
practical applicability depends on factors like varying baggage throughput per hour. Thus,
BHTS optimization requires customized, case-specific approaches. Volt et al. (2022) [80]
develop a model to optimize the allocation of airport equipment for baggage loading and
unloading. The study comprises two main phases. Initially, a thorough analysis investigates
the existing baggage processes. Then, a mathematical model predicts equipment demand
and computes the optimal number of carts required for efficient flight handling. Internal
validation leverages operational data from Václav Havel Airport Prague. Allocating ground
handling staff is considered a topic for future research.

4.5. Taxiway Optimization

The airport taxiway planning problem involves designing efficient and safe taxiway
networks, connecting runways, terminals, hangars, and other facilities. Aircraft use taxi-
ways for movement, including landing, take-off, and taxiing. The aim is to optimize
layout, configuration, and connectivity to reduce taxiing times, congestion, enhance safety,
and minimize fuel consumption and carbon emissions.

Deng et al. (2022) [81] propose a multi-strategy PSO and ACO algorithm to tackle
taxiway conflicts and propagation, enhancing taxiway resource utilization. They introduce
a conflict adjustment strategy based on speed priority and first-come-first-served princi-
ples to optimize airport taxiway paths. The authors aim to minimize flight taxiing time
and flight delay time. An experiment considering 28 taxiing nodes, three gates and three
runway entrances is carried out to illustrate their approach. Zhang et al. (2019) [82] aim
for a Pareto-optimized taxiing plan, considering taxiing time, fuel usage, and emissions.
Their work involves choosing waiting points and optimizing speed curves, utilizing pa-
rameters and fuel consumption data for various aircraft types. Validation occurs via a
case study at Shanghai Pudong International Airport. Li et al. (2019) [83] consider factors
like aircraft taxiing distance, steering times, and collision avoidance. They propose a path
optimization model to minimize taxi time on airport surfaces, utilizing a GA for solution.
Experiments based on Shanghai Hongqiao Airport show substantial improvements over
pre-optimization scenarios.

In the field of airport taxiway planning, Guépet et al. (2016) [84] explore the ground
routing problem, which involves efficiently scheduling aircraft movements on the ground
between runways and parking positions, while adhering to operational and safety stan-
dards. The authors introduce an MIP model for this challenge. It encompasses traditional
metrics like average taxi and completion times, along with aviation-specific punctuality
indicators. Using real data from Copenhagen Airport, the authors explore the intricate
relationship between these performance and punctuality metrics. The aviation industry’s
conventional punctuality measures often conflict with efforts to reduce taxi times and emis-
sions. To address this, the authors propose new indicators that not only reflect sustainability,
but also carry greater significance for stakeholders.

4.6. Contributions from the Industry

This subsection outlines industry-specific software utilized to improve airport opera-
tions, which have a primary focus on enhancing operational efficiency.

• Gate and Stand Allocation. Several software solutions exist for optimizing gate and
stand allocation. One example is the PDC StandPlan [85], a decision support system
guiding users through all planning stages, from long-term specification to last-minute
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revisions. It optimizes gate and stand utilization while considering various constraints
like arrival patterns and airline rules. Another example is the CAST Stand and
Gate Allocation [86], which efficiently allocates resources for long-term, medium-
term, and operational planning tasks, including optimizing allocation for objectives
and increasing peak hour capacity. Finally, AeroCloud [87] offers gate management
with artificial intelligence and machine learning, making allocation easier and more
efficient by automatically planning based on real-time flight data and allowing flexible
gate ownership.

• Slot Allocation. Several software solutions are available for slot allocation in airports.
PDC SCORE [88] is a widely used software designed specifically for this purpose,
with over 30 years of development and global usage in over 50 countries. It offers fea-
tures such as schedule data validation, visualization tools, historical data management,
and task automation to streamline the slot allocation process. Sabre’s Slot Manager [89]
streamlines slot portfolio management for airlines by automating changes and facil-
itating efficient utilization, enabling them to compare historical slots with future
schedule requirements to avoid losses and expedite slot requests. OneAlpha [90]
provides a comprehensive airport slot coordination and capacity management solu-
tion, offering features such as a cloud-based platform, automated messaging, apron
planning, dynamic reporting, and tailored customer support, ensuring efficient airport
management and planning.

• Baggage Handling Transport System. Designing and improving baggage handling
transport systems often involves utilizing either general simulation software like
Arena [91], Simio [92], and FlexSim [93], or specialized solutions like Maxibas [94].
Maxibas, crafted by the Scarabee Aviation Group, is a comprehensive testing and
training simulation tool tailored specifically for baggage handling systems.

• Taxiway Optimization. No dedicated software explicitly designed for taxiway opti-
mization has been found. However, simulation software could prove beneficial in
making such decisions, or alternatively, integrated solutions like INFORM’s advanced
software for aviation ground operations [95], which effectively balance costs, punctu-
ality, and quality, may offer viable options. In this context, an interesting tactic aimed
at diminishing fuel consumption, emissions, and engine wear during taxiing involves
operating an aircraft on the ground with just one of its engines [58], necessitating
meticulous coordination and adherence to safety protocols.

4.7. Discussion

The efficient and safe management of airports involves a variety of activities and
procedures known as airport operations. By optimizing these operations, environmental
impact can be directly mitigated, notably by decreasing fuel consumption through the
reduction of distances, congestion, delays, and other inefficiencies.

• Optimizing gate and stand allocation reduces aircraft idle time, aircraft taxiing dis-
tances, and congestion, leading to lower fuel consumption and greenhouse gas emis-
sions. Additionally, strategic gate assignments facilitate the adoption of sustainable
practices and efficient use of infrastructure.

• Efficient slot allocation at airports optimizes aircraft schedules, minimizing wait-
ing times and reducing fuel consumption. Strategic slot assignments also promote
smoother operations, encouraging the adoption of sustainable practices.

• Optimizing the baggage handling transport system through energy-efficient technolo-
gies and streamlined processes reduces fuel consumption, emissions, and resource usage.
These efforts enhance operational efficiency and minimize transportation distances.

• Strategic taxiwaylayouts and procedures at airports reduce aircraft taxiing distances
and idle time, leading to decreased fuel consumption and emissions. Strategic taxiway
planning also enhances operational efficiency, minimizing congestion and delays.
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5. Flight Operations

Flight operations (Figure 3) can be defined as the set of activities and processes
specifically focused on the planning, execution, and management of individual flights.

Figure 3. Representation of subcategories in flight operations.

5.1. Trajectory Optimization

Aircraft trajectory optimization involves adjusting speed and flight level on cruise
routes to achieve predefined objectives while considering airspace, aircraft maneuverability,
and control constraints. The literature covers optimal control methods (direct and indirect),
as well as non-optimal methods like mathematical programming, metaheuristics, and path
planning. Noteworthy reviews include Hammad et al. (2020) [96], who propose a clas-
sification framework considering modelization, objectives, and methods for sustainable
fixed-wing aircraft trajectories. Simorgh et al. (2022) [97] survey operational strategies
addressing aviation’s climate impact, especially non-CO2 emissions. These emissions
significantly contribute to aviation radiative forcing, and their effects vary with location,
altitude, and emission time. The study emphasizes the potential of climate-aware trajectory
planning to reduce these effects.

In a recent study, Ma et al. (2021) [98] tackle sustainable trajectory optimization
through a discretization approach. They introduce a method that combines forward re-
currence and memoization to solve the problem. Real-world operational data, including
meteorological conditions, aircraft type, and time horizon, are used for evaluation. The ob-
jective function comprises three components: (i) an economic benefit index (fuel- and
time-related cost), (ii) a green benefit index (aviation pollutants and temperature change
cost), and (iii) a passenger benefit index (travel time value and passenger loss). The flight
route from Beijing Capital International Airport to Shanghai Hongqiao International Air-
port is considered to illustrate the approach. Murrieta-Mendoza et al. (2020) [99] utilize
metaheuristic algorithms to improve the cost efficiency of the cruise flight phase, with a
specific emphasis on reducing fuel consumption. These optimization techniques involve
GAs, the artificial bee colony algorithm, and the ACO algorithm. The computational exper-
iments, relying on a flight simulator, demonstrate that these algorithms effectively lower
fuel consumption during flight.

Flight plans rely on static atmospheric forecasts. However, unforeseen changes in
atmospheric conditions, such as shifts in wind speed and direction, are challenging to
predict and are not factored into flight operations, except in cases of severe weather events.
Lindner et al. (2020) [100] explore the benefits of providing in-flight weather updates and
optimizing short-term trajectories. Evaluation criteria include fuel consumption, engine
emissions, and controller workload. The analysis employs an air traffic simulation envi-
ronment. Samà et al. (2019) [101] propose integrating aircraft scheduling and trajectory
optimization for congested terminal maneuvering areas. The formulation considers var-
ious factors, such as trajectories, safety regulations, and decisions regarding timing and
sequencing. The performance metrics involve minimizing delays, travel times, and fuel
consumption. MILP solvers are used to tackle the problem and validate the approach
through experiments using data from Milano Malpensa Airport.

5.2. Flight Formations

Formation flying, observed in both nature and human aviation, entails coordinated
flight patterns. In military aviation, it fulfills tactical roles like mutual defense and con-
centrated firepower. In civil aviation, it has traditionally been associated with air shows
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and recreation. However, there is growing interest in exploring formation flying as a
means to decrease fuel consumption and emissions. Researchers have explored extended
flight formations for long-haul commercial aircraft, focusing on minimizing fuel consump-
tion by flying in the upwash of the lead aircraft’s wake. In two-aircraft formation flight,
Dahlmann et al. (2020) [102] assess the potential of aircraft wake-surfing in efficient forma-
tion flights, accounting for CO2, water vapor, ozone, methane, and contrail cirrus impacts
on different flight paths. Case studies reveal an average 5% reduction in fuel consumption
when implementing formation flights at the 50 busiest airports. Investigating various
airline scenarios like long-haul, transatlantic, and low-cost carriers, Kent and Richards
(2021) [103] explore the feasibility of two-aircraft formation flight. The study employs
an analytical geometric approach to determine optimal route combinations and utilizes a
MILP model to pair aircraft into formations. Their findings suggest substantial fuel savings
and reductions in CO2 emissions through scheduling adjustments.

Unterstrasser (2020) [104] studies how aircraft formation flight can mitigate contrail
formation using detailed simulations. By employing advanced modeling techniques,
the study demonstrates that contrail ice mass and total extinction are notably reduced
behind a two-aircraft formation compared to a separate aircraft. This finding suggests that
adopting formation flight strategies could significantly alleviate the climatic impact of con-
trails. Marks et al. (2021) [105] utilize an interdisciplinary approach merging aerodynamics,
aircraft operations, and atmospheric physics to quantify flight formation effects. This
approach employs an integrated model chain to evaluate climate impact based on flight
plan data, aerodynamic interactions within the formation, detailed trajectory calculations,
and a tailored climate model. Representative scenarios for major airports worldwide are de-
rived by analyzing and assessing flight plans. Formations are recalculated using trajectory
calculation tools, and emission inventories are generated for these scenarios. Quantitative
estimation of climate impact, measured by average temperature response, reveals a relative
change ranging between 22% and 24%, with fuel savings estimated at 5–6%.

5.3. Air-to-Air Refueling

Long-haul flights require carrying extra fuel, resulting in higher fuel consumption.
However, refueling during the flight can help avoid the additional fuel consumption and
potentially reduce aircraft emissions. Fezans and Jann (2018) [106] outline the modeling
and simulation infrastructure used to assess novel functions for aerial refueling in piloted
simulations, emphasizing the noteworthy aerodynamic interaction between tanker and
receiver aircraft during these maneuvers. To maintain simplicity, the entirety of flight
physics is encompassed within a single model. The authors intend to expand the simulation
framework in future research to explore formation flight. Rong (2020) [107] introduces a
Floating Aerial Refueling System (FARS). The study encompasses stakeholder analysis,
system architecture, economic feasibility, mathematical simulation, and optimization. The
optimization model incorporates design variables for every component: tanker aircraft
(including wing-span, aspect ratio, sweep angle, maximum take-off weight, and thrust-
to-weight ratio), refueling strategy (such as the number of refueling operations per tanker
and per receiver), and mother ship (comprising class of ship, hull number, and mooring
configuration). Through the case study of Singapore Airlines SQ21, the optimized FARS
design indicates potential annual fuel savings of up to 39,415 tons over 25 years.

In a recent study, Hansknecht et al. (2023) [108] study the air-to-air refueling problem
within the framework of a vehicle routing problem. Their focus is on a scenario where
a fleet of feeder aircraft undertakes air-to-air refueling operations for a predetermined
group of cruisers. The study introduces a comprehensive model detailing the feeder
aircraft’s fuel consumption during various flight phases. Additionally, it proposes two
integer programming models and adapts a widely recognized labeling algorithm for
solving the problem. The effectiveness of their methods is demonstrated on real-world and
artificial instances. Zhang et al. (2023) [109] introduce the multi-dimensional improved
NSGA-II algorithm for air-to-air refueling planning, with the objective of minimizing
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both total fuel consumption and refueling time. Their approach involves several notable
assumptions, such as disregarding the impact of variables like wind direction, wind speed,
and weather conditions. The optimization solution provided by their algorithm comprises
the longitude and latitude coordinates of multiple aerial refueling points. Simulation
experiments indicate that the improved NSGA-II variant displays enhanced convergence,
uniformity, and universality when contrasted with the original version.

5.4. Stops for Refueling

When conducting long-range operations, considering refueling stops can decrease
the total amount of fuel needed. However, refueling stops may reduce passenger comfort,
worsen local air quality, stress flight crews, and lead to congestion in specific areas, affecting
air traffic management. Deo et al. (2020) [110] propose two methodologies minimizing the
cost index through intermediate refueling stops. They employ an ILP model and network
strategy, reducing costs by 3% in a case connecting six airports and 17 refueling stops. Non-
CO2 emissions like water vapor, nitrogen oxides, and contrail cirrus significantly affect
aviation’s radiative forcing. In this context, Zengerling et al. (2022) [111] utilize simulations
to compare reference cases with climate-optimized and fuel-optimized scenarios, taking
into account stop operations in European long-haul flights. The findings highlight the
potential for climate mitigation and a shift in flight trajectories towards lower latitudes and
altitudes. Linke (2018) [112] employs an analysis workflow that integrates databases for
aircraft movements, meteorology, and navigational information, along with models for
trajectory calculation and optimization, leveraging advanced aircraft performance models.
They assess fuel savings resulting from intermediate stops in global wide-body aircraft
operations. Wind-optimized flight planning has demonstrated potential savings of up
to 15%. In conclusion, further research is necessary to design realistic experiments that
consider various indicators relevant to all stakeholders involved, including congestion,
passenger comfort, local air quality, and more.

5.5. Contributions from the Industry

• Trajectory Optimization. Integrated flight operations software often includes fea-
tures for trajectory optimization. For example, Pacelab Flight Profile Optimizer [113]
provides crews with actionable recommendations throughout the flight, optimizing
altitudes and speeds for the most cost-efficient journey under current conditions. It
carefully balances operational needs with passenger comfort and on-time performance.
Additionally, Veryon’s software [56] tracks daily flights via an interactive map, dis-
playing alerts and weather information in real time. It allows for swift updates directly
within the map interface, including diversions or cancellations.

• Flight Formations. In 2020, Airbus conducted flight tests for formation flying and
achieved the first long-haul demonstration in transatlantic airspace in 2021 [114].
The demonstration involved two A350s flying from France to Canada, resulting in
over six tonnes of CO2 emissions saved, equivalent to a more than 5% fuel saving
rate on long-haul flights. The focus now is on concept maturation, with the aim of
enabling controlled implementation by the mid-2020s.
The EU SESAR-funded Geese initiative [115], spearheaded by Airbus, will conduct
flight trials involving Air France and French Bee A350s from 2025 to 2026, with Boe-
ing participating for interoperability. Geese also encompasses collaboration with
Eurocontrol and air navigation service providers from Bulgaria (BULATSA), France
(DNSA), Ireland (IAA), Lithuania (ON), and the UK (NATS), alongside ATM technol-
ogy providers Indra and Frequentis.

• Air-to-air Refueling. The Airbus A330 Multi-Role Tanker Transport, certified for
automatic air-to-air refueling since late 2020, marks a significant milestone in this
technology [116]. Airbus is currently working on the Auto’Mate demonstrator project,
focused on advancing autonomous air-to-air refueling. Several companies provide
aerial refueling services. Omega [117], for instance, offers a variety of refueling solu-
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tions to both the U.S. Armed Forces and global allies, boasting around 10,000 missions
conducted since 2000. Metrea [118] delivers commercially owned, operated, and main-
tained aerial refueling aircraft, along with personnel and equipment to satisfy fleet
training, operational, test and evaluation, and Foreign Military Sales requirements.

• Stops for Refueling. Flight planners are increasingly incorporating advanced fuel
planning features, such as predictive fuel-warning systems [119], into their processes.
There are companies, such as Flightworx [120], that handle every aspect from route
planning to actual flight management. Should the initial flight plan suggest the aircraft
cannot fly directly, they strategically arrange a fuel stop along the route.

5.6. Discussion

Flight operations encompass the planning, execution, and management of individual
flights. Optimizing these operations directly reduces environmental impact by minimizing
fuel consumption, distances traveled, emissions of CO2, water vapor, ozone, methane,
and contrail cirrus effects.

• Trajectory optimization can reduce fuel consumption by finding more efficient flight
paths, thereby decreasing greenhouse gas emissions and minimizing the environmen-
tal footprint of each flight. By minimizing unnecessary deviations and optimizing
altitude and speed profiles, trajectory optimization can also reduce the formation of
contrails and their associated climate impacts.

• Flight formations can reduce aerodynamic drag and fuel consumption by allowing
aircraft to fly in close proximity, benefiting from reduced air resistance. Additionally,
coordinated formations enable more efficient routing and spacing, optimizing airspace
usage and minimizing emissions from individual flights.

• Air-to-air refueling can extend the range and endurance of aircraft, allowing for
them to fly more direct routes and avoid unnecessary fuel-consuming stops, thereby
reducing overall fuel consumption and emissions. Additionally, by enabling aircraft
to carry less fuel during take-off, air-to-air refueling reduces their weight, leading to
improved fuel efficiency and lower environmental impact per mission.

• Stops for refueling can enable aircraft to carry less fuel during initial take-off, reducing
their weight and improving fuel efficiency throughout the flight, thereby lowering
overall emissions. Additionally, strategically located refueling stops can allow for
aircraft to optimize routing, potentially minimizing the distance traveled and further
reducing fuel consumption and environmental impact.

6. Disruption Management

Unforeseen factors like severe weather, airport closures, and maintenance disrupt
aircraft and flight operations. Airline operation control centers respond by reallocating
resources and accommodating passengers to restore schedules and minimize costs. Inability
to address these disruptions can harm airlines economically, socially, and environmentally.
High resource utilization exacerbates the impact of disruptions. Planning prioritizes
optimization, while recovery aims for swift real-time solutions, even if they are suboptimal.

Flight disruptions fall into two categories: those originating from airline resources (like
aircraft and crew) and those resulting from external environmental factors (such as weather).
Recovery operations include addressing flight delays, cancellations, resource swaps (e.g.,
aircraft or crew), using reserved resources, deadheading (transporting crew as passengers),
ferrying (relocating aircraft without passengers from one location to another), managing
speed, and reassigning passengers. This section covers aircraft, crew, and passenger recov-
ery (Figure 4). Aircraft recovery involves retrieving, repairing, and restoring immobilized
or damaged aircraft, often due to accidents, technical issues, or weather. Crew recovery
focuses on assisting flight crew members affected by disruptions, scheduling changes,
or events impacting their duty schedules. Passenger recovery involves managing and
assisting passengers affected by flight disruptions, cancellations, delays, overbookings, etc.
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Figure 4. Representation of subcategories in disruption management.

6.1. Aircraft Recovery

Recent studies have explored different aspects of aircraft recovery. For instance,
Wang et al. (2023) [121] analyze operational data from China South Airlines to comprehend
delay causes and recovery patterns. The authors introduce a heuristic algorithm simulating
dispatcher actions, involving two operations: flight tail number exchanges and departure
time resets. Evaluations consider delay costs, adjustment costs, and an analytic hierarchy
process scoring system, indicating the impact of irregular flights on the airline system.
Zhao et al. (2023) [122] suggest a two-stage algorithm to mitigate the impact of daily
disruptions on airline schedules. It deals with uncertainty in disruption duration and when
its length is known. Network models pinpoint highly affected flights and adjust their
schedules for system-wide optimization. The goal is to minimize delay costs, cancellation
costs, curfew violations, and schedule deviations. Uncertainty is managed through scenario
analysis, evaluating likely outcomes. A rolling horizon approach, mirroring existing airline
procedures, serves as a benchmark for comparison. Lee et al. (2022) [123] use RL for aircraft
recovery, allowing for aircraft swaps within subfleets to alleviate flight delays. The goals
include reducing total delays and the count of delays exceeding 30 and 0 min. Q-learning
and Double Q-learning algorithms are employed and validated with a domestic flight
schedule from a South Korean airline. Rhodes-Leader et al. (2022) [124] propose an aircraft
recovery approach involving an initial deterministic integer program and subsequent
simulation optimization. It addresses uncertainties in solution evaluation, aiming to
minimize recovery costs, aircraft allocation changes, and delays. The model focuses on a
short-haul airline’s homogeneous sub-fleet. The authors conduct an empirical assessment,
resolving three problem instances involving up to 102 aircraft, yielding promising outcomes.
They acknowledge that transitioning to real-world implementation hinges on overcoming
the challenge of reducing computation time. Lee et al. (2020) [125] propose a dynamic
approach for optimizing recovery decisions considering both realized and anticipated
disruptions. The framework involves forecasting future disruptions by estimating systemic
delays and employs a stochastic integer programming model to minimize expected costs.
The model integrates a stochastic queuing model for airport congestion, flight planning,
and airline disruption recovery. The approach’s benefits are achieved by introducing
departure holds strategically to reduce fuel costs, flight cancellations, and aircraft swaps.
They examine Delta Air Lines’ flight network, a prominent US hub-and-spoke carrier,
conducting experimental studies. These experiments demonstrate that incorporating
partial and probabilistic estimates of future disruptions can lead to a 1–2% reduction
in expected recovery costs compared to a myopic baseline approach reliant solely on
realized disruptions.
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6.2. Aircraft and Crew Recovery

While crew scheduling has been extensively studied, crew recovery has received
less attention. For example, Khiabani et al. (2022) [126] propose integrated aircraft and
crew recovery plans to minimize delay and prevent its propagation in airline schedules.
They use an MILP model considering various factors, efficiently solving it with Benders’
decomposition and testing it on a 227-flight case. Another strategy involves scheduling
reserve crew members to replace absent crew when needed. Bayliss et al. (2020) [127]
address this by formulating the scheduling of reserve crew duties as a combinatorial
optimization problem. They propose a mathematical model to assess different reserve crew
schedules, considering factors like expected flight cancellations and delays due to reserve
crew assignments. The experiments utilize problem instances derived from data supplied
by KLM. This study specifically focuses on a single fleet, crew rank, and crew qualification
scenario. Consequently, exploring more intricate examples and adapting the model into an
online decision-making tool represents a future line of research.

6.3. Aircraft and Passenger Recovery

Yetimoglu and Akturk (2021) [128] address an integrated approach to aircraft and
passenger recovery. It focuses on evaluating passenger itineraries to maximize airline
profit while minimizing passenger dissatisfaction, considering options like cruise time
control, aircraft exchange, and cancellation. They use a two-phased approach, presenting
findings based on a U.S. airline’s daily schedule. Similarly, Sun et al. (2021) [129] reduce
problem complexity using a modified time-band network, introducing intermodal con-
cepts for greater flexibility and passenger protection in aircraft recovery. Computational
experiments with up to 144 flights are carried out. According to the results, considering
a real-time intermodal network in disruption management drastically reduces the num-
ber of disrupted passengers and total disruption cost. In the future, the authors plan to
develop a methodology of real-time intermodalism that integrates pre-scheduled ground
transportation. Hu et al. (2021) [130] examine passenger willingness in optimizing aircraft
rerouting and recovery, proposing an integer programming model with dual objectives of
minimizing airline recovery cost and reducing passenger recovery loss. They employ a
heuristic combining multi-directional and stochastic VNS for real-data experiments.

6.4. Aircraft, Crew, and Passenger Recovery

The integration of recovery decisions across all elements is crucial, as choices made
for one element directly affect the others. However, given the vast scale of airline flight net-
works and the need for rapid recovery, this integration is complex. Evler et al. (2022) [131]
propose an approach to enhance integrated recovery by incorporating aircraft turnaround
considerations. This model combines a heterogeneous vehicle routing problem with time
windows to assign aircraft to flight routes and a resource-constrained project schedule prob-
lem for allocating limited resources to turnarounds at the central hub airport. The model
considers passenger and crew itineraries as connections between flights, influencing stand
allocation and resource assignment while factoring in transfer times. However, these con-
nections can only be disrupted if spare capacities exist and if rebooking and compensation
costs outweigh the benefits of accepting departure delays to maintain transfers. The study
employs a rolling horizon algorithm and case study evaluation, demonstrating that incorpo-
rating turnaround recovery options significantly enhances the airline network’s resilience.
Similarly, Arıkan et al. (2017) [132] propose a flight network-based representation for
the problem, which supports recovery decisions such as departure delays, aircraft/crew
rerouting, passenger reaccommodation, and ticket and flight cancellations. The model
incorporates aircraft cruise speed decisions and uses a conic quadratic MIP formulation.
Additionally, methods to address large airline networks are presented. They assess the
viability of the proposed methods using actual data from a prominent U.S. airline’s network
in the year 2013.
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6.5. Contributions from the Industry

Amadeus [133] is a report that delves into the evolving landscape of disruption man-
agement within airline IT systems. It highlights a notable shift in industry perspectives
towards prioritizing the development of disruption mitigation tools. This change is evident
in the industry’s move towards automated backend processes and proactive passenger
service solutions. The report underscores the increasing recognition of the return on invest-
ment in disruption management tools, with airlines demonstrating a greater willingness to
collaborate with competitors and third parties for better responses to disruptions. As air
travel continues to rise, effective disruption mitigation will become a critical aspect of cus-
tomer service. Encouragingly, ongoing high levels of investment in IT system integration
and tools suggest that significant progress is on the horizon.

In this context, Sabre introduces IROPS Reaccommodation [134], an advanced tool
designed to assist airlines in managing irregular operations and devising reaccommo-
dation strategies that enhance customer satisfaction. This system identifies passengers
based on various criteria such as frequent flyer status, Special Service Requests (SSRs),
and fare levels. By leveraging computerized decision support for swift and efficient issue
resolution, airlines can deliver elevated service levels, often resulting in future revenue
opportunities. The objective is to enhance customer satisfaction, boost agent productivity,
optimize operational efficiency, and minimize passenger recovery expenses. Inform [135]
provides advanced decision support for aviation disruption management, addressing the
growing challenges faced by airports and airlines. Real-time operational decision-making
software helps optimize staff and equipment scheduling, maximizing resource utilization
and effectively managing disruptions such as understaffing.

6.6. Discussion

Disruption management encompasses the recovery of aircraft, crew, and passengers.
Streamlining these operations directly mitigates environmental impact by minimizing fuel
consumption associated with delays, congestion, ferrying, adjustments in speed away from
the optimal rate, and more.

• Optimizing aircraft recovery streamlines operations, reducing idle time and unneces-
sary fuel consumption during disruptions, consequently lowering carbon emissions.
By swiftly resolving disruptions, optimized aircraft recovery minimizes the need for
additional flights or fuel-intensive repositioning, thus curbing environmental impact.

• Optimizing crew recovery ensures efficient utilization of workforce, minimizing the
need for additional crew repositioning flights and reducing fuel consumption and
emissions. By swiftly resolving crew disruptions, optimized crew recovery mini-
mizes delays and operational inefficiencies, thereby mitigating environmental impact
associated with extended flight durations and unnecessary resource consumption.

• Optimizing passenger recovery facilitates efficient rebooking and rerouting processes,
minimizing the need for additional flights and reducing overall fuel consumption and
emissions. By swiftly resolving passenger disruptions, optimized recovery procedures
decrease flight delays and congestion, ultimately lowering carbon emissions and
mitigating environmental impact.

7. Trends and Challenges

Drawing from the literature review presented in preceding sections, the objective of
this section is to discern and elucidate emerging trends and pertinent challenges. Each
trend and challenge is illustrated with an example to enhance clarity.

7.1. Trends

Below, we provide an overview of the key trends that have emerged.

• Multiple Optimization Problems. The aviation industry often models decisions as
optimization problems, enabling the integration of diverse environmental indicators.
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The literature shows a growing variety of problem formulations. This review en-
compasses 18 distinct optimization problems. Recent works for each problem have
been introduced, each offering its unique formulation tailored to address specific
nuances. Take, for instance, flight formations, where alongside traditional objectives
like mutual defense and concentrated firepower recent studies have delved into con-
siderations such as fuel consumption, CO2 emissions, and the environmental impact
of water vapor.

• Variety of Methodologies. The OR literature offers a range of methodologies to opti-
mize and promote sustainability within the aviation industry. For example, in crew
scheduling, various approaches including exact methods, heuristics, metaheuristics,
hybrid methods like matheuristics, and deep learning have been identified. This
diverse range of methodologies enables professionals to compare and select the most
suitable one for their specific problem. Consequently, when environmental consid-
erations are integrated into the problem formulation, it enhances the likelihood of
discovering more environmentally sustainable solutions.

• Multi-objective. With the wide range of stakeholders and diverse impacts involved,
multi-objective models are gaining prominence. For example, Stollenwerk et al.
(2020) [72] tackle the gate assignment problem with a primary emphasis on mini-
mizing passenger walking distances. Conversely, Liang et al. (2020) [71] not only
prioritize minimizing walking distances, but also integrate a penalty cost for remote
stands and minimize fuel consumption during taxiing. This holistic approach reduces
passenger inconvenience and also contributes to mitigating emissions by optimizing
fuel consumption.

• Robustness. Uncertainties are inevitable and pose challenges. Researchers are tran-
sitioning from cost-minimization planning to robustness-oriented planning. For ex-
ample, neglecting robustness in flight scheduling can result in airport congestion and
delays. Such delays not only inconvenience travelers but also escalate fuel consump-
tion and emissions for aircraft waiting to take off or land [136].

• Disruption Management. Disruptions demand immediate and viable solutions for
recovery, potentially inflicting costs, as well as social and environmental repercussions.
Researchers are turning increased attention to this topic. To illustrate, flight delays
and cancellations often result in increased fuel consumption if passengers must return
home and then travel back to the airport via fuel-consuming transportation modes.
The recovery option of relocating aircraft from other locations requires greater fuel
consumption. Furthermore, adjusting aircraft speed can also contribute to heightened
fuel consumption, as speeds are optimized to minimize fuel costs.

7.2. Challenges

Moreover, the literature underscores several pivotal challenges described below.

• Stochasticity, Uncertainty, and Incomplete Information. The industry necessitates
methodologies capable of addressing this type of information.
For example, random events like unexpected maintenance delays, bad weather, or pas-
senger issues can disrupt aircraft schedules. Factors like wind speed or pilot availabil-
ity can fluctuate, creating uncertainty in how long specific tasks take. Real-time data
on aircraft position and landing times might be incomplete due to communication
gaps. By considering these elements, aircraft scheduling can become more resilient,
ultimately leading to smoother and more environmentally sustaiable operations.

• Integrated Approach. Authors often concentrate on individual optimization problems,
making it easier to define and solve them. Yet, in practice, these problems are intercon-
nected and interdependent. Isolated solutions may work for one problem but often
fail to meet another’s objective. In disruption management, an emerging trend is the
simultaneous consideration of aircraft, crew, and passenger recovery. By adopting
an integrated approach and incorporating environmental sustainability indicators
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like CO2 emissions, we can potentially achieve superior solutions to optimization
problems in environmentally sustainable aviation.

• Realistic Formulations. Authors frequently simplify problem formulations to enhance
manageability, but this simplification can result in unrealistic representations, limiting
their effectiveness in real-life applications. Oversimplifying air-to-air refueling models
by excluding variables like wind direction, wind speed, and weather conditions can
produce misleading results. When implemented in real-life operations, these simpli-
fied solutions might lead to significantly higher fuel consumption than anticipated.

• Meteorological Information. Meteorological information is frequently disregarded, yet
it can significantly affect operational performance. For instance, by avoiding adverse
weather conditions such as thunderstorms, icing conditions, or strong crosswinds,
airlines can minimize delays and disruptions while enhancing passenger safety. More-
over, headwinds can increase fuel burn during flight, while tailwinds can reduce it.

• Information Sharing. Vital data like landing time and aircraft position are dispersed
among stakeholders with conflicting interests, usually not sharing information [137].
For instance, airlines might prioritize on-time arrivals over informing air traffic control
of potential delays, leading to inefficiencies in the airspace.

• Problem Instances. A lack of standardized problem instances exists. Some authors
create test cases with distribution properties instead of sharing actual data, while
others use inaccessible real data. A diverse collection of problem instances encompass-
ing various environmental indicators would empower researchers and practitioners
to enhance the design, validation, and comparison of their approaches. It would
facilitate the exploration of trade-offs between conflicting objectives and the effects
of incorporating a broader range of constraints. Moreover, a diverse set of problem
instances could spark increased interest from the academic community in addressing
the challenges of environmentally sustainable aviation operational optimization.

• Code Sharing. Authors frequently describe their approaches but often do not share
their code, hindering scientific progress. This lack of code transparency makes
it difficult to replicate published findings, hinders collaboration, and ultimately
slows the development and validation of new approaches. Therefore, encouraging
code sharing among experts and practitioners engaged in operational optimization
for environmentally sustainable aviation would facilitate the development of more
sustainable solutions.

8. Future Research Directions

Drawing upon the insights gathered from the literature review, we discerned the
promising lines for future research.

• Data Science and Big Data. Through data analytics and advanced algorithms, aviation
stakeholders can boost operational efficiency while reducing environmental impact.
This involves utilizing extensive datasets from sources. As an illustration, leveraging
traffic data and weather conditions enables the construction of a model aimed at
identifying optimal timeframes for air traffic controllers to facilitate continuous descent
approaches for the majority of incoming aircraft [138]. This approach effectively
mitigates noise, minimizes fuel consumption, and curtails pollution emissions.

• Simulation and Optimization. Simulation is a valuable tool allowing for stakeholders
to model and assess scenarios without costly real-world experiments. When integrated
with other OR techniques, simulations can effectively tackle complex challenges. For
example, digital twins can incorporate dynamic information including environmen-
tal conditions and aircraft status to offer optimization recommendations for aircraft
operations such as fuel optimization and flight route recommendations [139]. More-
over, they can forecast the remaining useful life of components, facilitating predictive
maintenance and minimizing downtime.

• Reinforcement Learning. RL is gaining traction for its capacity to learn from dynamic
and stochastic environments, enhancing decision-making processes. As an example,
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deep multi-agent RL has been employed to tackle aircraft conflict resolution while
optimizing trajectories [140]. This approach aims to resolve conflicts by optimizing
solutions with regard to time, fuel consumption, and airspace complexity.

• Hybrid Algorithms. Integrating methodologies enables researchers to create more
efficient algorithms for realistic problems. For example, Gök et al. (2020) [47] introduce
a matheuristic approach, which combines heuristics with techniques from linear and
integer programming, to efficiently obtain high-quality solutions within reasonable
time for real-world aircraft turnaround scheduling instances.

• Parallel and Distributed Computing, and Quantum Computers. Problems frequently
entail large-scale data, complex models, and high-dimensional search spaces. Ad-
vances in computing help researchers overcome computational constraints, enabling
them to obtain better solutions [71].

• Electric and Hydrogen-Powered Aircraft. Electric and hydrogen-powered aircraft
requires studies examining throughputs, capacities, and requirements. The use of
electric and hydrogen-powered aircraft has the potential to significantly reduce emis-
sions compared to the use of traditional aircraft, especially if the aircraft are powered
by renewable energy sources. Nevertheless, optimizing operations, such as refining
battery charging regimes, is necessary [141].

• Automation. Numerous opportunities exist for automating operations, e.g., for the
docking process of ground support equipment with aircraft. For instance, Alonso
Tabares and Mora-Camino (2019) [142] emphasize the potential for automating the
docking process of ground support equipment with aircraft, implementing autonomous
vehicles for maneuvering around aircraft, and incorporating automated systems
within the aircraft.

• Aviation’s Climate Impact. The existing literature focuses on indicators indirectly
associated with environmental impacts and CO2 emissions. Greater efforts are needed
to comprehend and minimize other environmental indicators [3]. As an illustration,
in flight formation, Dahlmann et al. (2020) [102] consider the effects of CO2, water
vapor, ozone, methane, and contrail cirrus.

• Climate Change Adaptation. Changes in storm and wind patterns, sea-level rise,
and extreme temperatures pose significant risk factors. Climate change can have diverse
impacts on aviation operations, such as alterations in aircraft performance [143,144].
The aviation sector must proactively prepare for climate change. Aircraft scheduling,
turnaround operations, and disruption management are fields that require adaptation
to mitigate the risks of accidents, congestion, delays, and cancellations.

• Open Data. The publication of open data attracts the attention of researchers, ac-
celerating progress in optimizing aviation operations. The ROADEF 2009 challenge
on disruption management (https://roadef.org/challenge/2009/en/, accessed on 1
April 2024) is a noteworthy example.

• Information Security. Cooperation among multiple agents requires preserving in-
formation security. Blockchain technology, for instance, can play a crucial role in
safeguarding security and privacy during the exchange of information among various
stakeholders, including crew members, flight manifests, and passenger data [32]. This
technology can indirectly contribute to environmental sustainability by enhancing the
efficiency and reliability of aviation operations.

• Infectious Diseases. The aviation industry saw major effects from the COVID-19
pandemic, leading to operational adaptations. For example, aircraft turnaround opera-
tions had to be streamlined to ensure thorough cleaning, disinfection, and sanitization
of cabins and cockpits after each flight [145]. Additionally, new technologies and
protocols, such as biometric boarding, were swiftly adopted to enhance bio-safety
and security throughout travel [146]. These advancements hold potential to alleviate
environmental impacts if they minimize congestion and delays. More research on
disruption management can enhance preparedness and response strategies for future
similar scenarios.

https://roadef.org/challenge/2009/en/
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9. Conclusions

The projected trajectory indicates a return to pre-pandemic aviation levels by 2024,
followed by substantial growth over two decades. Managing this demand surge and ad-
dressing environmental impacts is a significant challenge. Operations Research (OR) plays
a key role in aviation offering efficient solutions. This paper reviews operational optimiza-
tion in environmentally sustainable aviation, categorizing works into airline operations,
airport operations, flight operations, and disruption management. The review contextu-
alizes optimization problems, focusing on objectives and methodologies, and explores
approaches to addressing environmental impact.

Several emerging trends are notable, such as the effective modeling of aviation
decision-making as optimization problems, an expanding array of powerful methodologies
in OR literature, the growing use of multi-objective models, and a shift toward robustness-
oriented planning to address complex stakeholder interests and impacts during disruptions.
Challenges persist, including dealing with stochasticity, uncertainty, and incomplete in-
formation, emphasizing integrated and realistic problem formulations, the influence of
meteorological data on operational performance, fostering collaboration and data sharing
among stakeholders, generating realistic problem instances, and promoting code sharing
for reproducibility and reusability. Future research directions include leveraging data
science and big data methods for insights, integrating simulation and optimization tools,
exploring reinforcement learning, hybrid algorithms, distributed computing, and quan-
tum computing, addressing the OR challenges of electric and hydrogen-powered aircraft,
exploring automation in aviation operations, open data publication to stimulate research,
and finding a balance between information security and cooperation among multiple
agents. Further areas of study encompass the climate impact of aviation, climate change
adaptation, infectious disease effects, and proactive disruption management.
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Abbreviations

ACO Ant Colony Optimization
BHTS Baggage Handling Transport System
CO2 Carbon Dioxide
EASA European Union Aviation Safety Agency
FARS Floating Aerial Refueling System
GA Genetic Algorithm
IATA International Air Transport Association
ILP Integer Linear Programming
LNS Large Neighborhood Search
MILP Mixed-Integer Linear Programming
MIP Mixed-Integer Programming
OR Operations Research
PSO Particle Swarm Optimization
RL Reinforcement Learning
SA Simulated Annealing
VNS Variable Neighborhood Search
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