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Abstract: Nowadays, hydropower plants are being used to compensate for the variable power
produced by the new fluctuating renewable energy sources, such as wind and solar power, and
to stabilise the grid. Consequently, hydraulic turbines are forced to work more often in off-design
conditions, far from their best efficiency point. This new operation strategy increases the probability
of erosive cavitation and of hydraulic instabilities and pressure fluctuations that increase the risk of
fatigue damage and reduce the life expectancy of the units. To monitor erosive cavitation and fatigue
damage, acoustic emissions induced by very-high-frequency elastic waves within the solid have
been traditionally used. Therefore, acoustic emissions are becoming an important tool for hydraulic
turbine failure detection and troubleshooting. In particular, artificial intelligence is a promising
signal analysis research hotspot, and it has a great potential in the condition monitoring of hydraulic
turbines using acoustic emissions as a key factor in the digitalisation process. In this paper, a brief
introduction of acoustic emissions and a description of their main applications are presented. Then,
the research works carried out for cavitation and fracture detection using acoustic emissions are
summarised, and the different levels of development are compared and discussed. Finally, the role of
artificial intelligence is reviewed, and expected directions for future works are suggested.

Keywords: acoustic emission; cavitation erosion; fatigue damage; crack propagation; hydraulic
turbines

1. Introduction

Nowadays, environmental policies are putting increasing pressure on the governments
to generate clean energy from sustainable sources. As a result, new renewable energy
sources (wind, solar, tidal, wave, etc.) are being widely introduced into the energy grid [1].
But most of these sources are characterised by very unstable levels of power output, such
as wind and solar farms, in contrast with those more pollutant—but more predictable—
sources such as fossil fuels and nuclear power plants. To compensate for this lack of
stability, new requirements for extending the operational conditions of hydraulic turbines
have been introduced because they are the most suitable units among traditional power-
generating units for providing a fast response in face of electrical power fluctuations. As
a result, hydraulic turbines are prone to work in off-design operation conditions more
frequently [2,3]. The term “off-design operation” should be understood as a transient
condition, such as start-up and shut-down, or as a steady condition, such as partial or
full-load operation, that was not considered at the design stage of the machine for long-term
operation [4]. Operation far from the best efficiency point (BEP) increases the probability of
cavitation erosion, as well as of stronger pressure fluctuations speeding up the appearance
of fatigue cracks.
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When an abrupt structural change occurs in a small part of a solid (i.e., a dislocation, a
crack initiation or growth, etc.) a sudden change in the stress/strain state happens in the
small area where the change is produced. The small volume of material that is stressed
releases its energy and produces a high-frequency vibration. This vibration propagates
through the material producing an elastic wave that may be detected using a suitable
transducer when it reaches the surface (Figure 1). This phenomenon is called acoustic
emission (AE), and it is very useful because it permits the detection of structural changes in
specimens (in laboratory tests) and in structures or parts (in operational service). In the
first case, changes in the structure of the material can be studied with specific tests, and the
strength can be quantified. In the second case, the premature failures of operating machines
can be prevented [5].
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The aim of this paper is to provide a review of the AE-based techniques for monitoring
cavitation erosion and fatigue damage. The remaining sections of the paper are organized
as follows: Section 2 presents the AE and its applications, Sections 3 and 4 review the uses
of AE for cavitation erosion and fatigue crack detection, respectively, Section 5 presents a
discussion, and finally, Section 6 summarises the conclusions and the future work.

2. Acoustic Emission

The phenomenon of AE was first observed as audible sounds when materials were
deformed. Already in the eighth century, the Arabian alchemist Jabir ibn Hayyan (also
known as Gerber) wrote that Jupiter (tin) gives off a “harsh sound” or “crashing noise”,
referring to an audible emission produced by the twinning of pure tin during its plas-
tic deformation. Gerber also described that Mars (iron) makes a louder sound during
forging. This sound was produced by the formation of martensite during the cooling
process [6]. Joseph Kaiser conducted the first comprehensive study into the phenomena of
AE [7]. The most significant discovery of Kaiser’s work was the irreversibility phenomenon
that now bears his name, the Kaiser effect: if a material is loaded, it will emit some AE
signals, but if it is unloaded and later reloaded, it will not emit any AE signal until the
maximum charge level from before is reached. AEs are currently used in many areas of
research, quality control and industry in general. AEs have been used in the study of
different materials: metals [8–13], composites [14,15], additive manufactured materials [16]
and human and other living being tissues [17,18]. Other applications are real-time leak
detection and localisation [19,20], tool-wear monitoring and other studies on machining
processes [21–24], the health monitoring of large structures [25,26], the study of cavitation
and its erosion and the monitoring of fatigue crack onset and growth. The review of these
last two applications constitutes the scope of this paper.

The elastic waves produced by an AE propagate inside the material and can be
captured using a suitable sensor attached on the surface at the time the waves reach the
surface. A contact type sensor is normally used in AE measurements, such as the one shown
in Figure 2a. In most of the cases, a piezoelectric crystal enclosed inside a protective housing
is employed as an AE transducer. These sensors are exclusively based on the piezoelectric
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effect out of lead zirconate titanate (PZT). AE signals are detected in the form of dynamic
motions over the surface of a material, and they are converted into electrical signals using
a PZT piezoelectric transducer [27]. In contrast to accelerometers, the frequency response
function (FRF) of a PZT AE sensor presents a significant deviation from a preferred flat
frequency response due to the proximity between the PZT natural frequencies and the
characteristic elastic wave frequencies. Thus, the sensitivity of an AE sensor depends on the
frequency. Additionally, unlike accelerometers, which are carefully designed to measure
only the motion component parallel to their axis, AE sensors respond to motions in any
direction [28]. Figure 2b shows the FRF of an AE sensor. Sensors of different models have
different FRFs. Consequently, if different AE signals are to be compared, they shall be
measured with the same sensor model.
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Typical data acquisition schemes for AE measurements comprise both amplification
and filtering stages. Amplifiers boost the signal voltage to bring it to a level that is optimal
for the measurement stage. Along with several stages of amplification, frequency filters are
incorporated into the AE measurement chain. These filters define the frequency range to
be used and attenuate low frequency background noise. This process of amplification and
filtering is called “signal conditioning”. It “cleans” the signal and prepares it for processing.
After conditioning, the signal is digitalised for its recording or/and processing. Sampling
frequencies must be very high (of the order of MHz) because of the high frequencies of AE
signals [27].

AE signals can be classified into two general classes: burst signals and continuous
signals. Burst signals have a clearly defined start and end relative to background noise, and
thus, they have a well-defined duration (Figure 3a). A burst signal, from its beginning to
its end, is also called a hit. On the other hand, continuous signals, although they present
variations in their amplitude and frequency over time, do not have a defined beginning
and end, and they are maintained as long as the process that generates them is active
(Figure 3b).
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Figure 3. AE signals: (a) burst signal or hit; (b) continuous signal.

Approaches for analysing AE signals can be divided in two groups: parameter-based
analysis and signal-based analysis. In the first approach, as the signal is acquired, the
characteristic parameters that describe the waveforms of the different parts of the signal
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(hits) are computed, and even the whole hit can be recorded; thus, parameter-based analysis
can be used with burst signals only. This is usually an on-line processing. In a signal-based
analysis approach, the raw signal is usually recorded for further analysis. It can be used
with burst and continuous signals [27].

2.1. Parameter-Based Analysis

Burst signals have to be clearly defined relative to the background noise. In order to
detect burst signals, it is necessary to have previously set a threshold amplitude level above
the background noise. In Figure 4, the main parameters of a characteristic AE time-response
signal are presented. The burst signal onset is defined as the instant at which the absolute
voltage exceeds the predetermined threshold level. It is considered that the burst signal
has ended when a determined time, called the Hit Lockout Time, has passed without any
further signal crossing the threshold [30]. The burst signal from its onset to its end is called
a hit.
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Parameter analysis is based in the extraction of descriptors that contain most of the
waveform information, which are the following ones (Figure 4) [30]:

• Counts are the number of times within the signal that the AE amplitude reaches the
threshold level. For example, this number is 7 in Figure 4.

• Amplitude is the peak voltage of the signal waveform, which can be positive or
negative. Amplitudes are expressed in decibels on a logarithmic scale. Commonly, 1
µV is defined as 0 dB AE.

• Energy is generally defined as a Measured Area under the Rectified Signal Envelope
(MARSE). While this is an “engineering” value, another definition of energy, known as
“absolute energy”, is computed as the integration of the rectified squared waveform.
It is considered analogous to the actual energy released from the AE source:

Eabs =
∫ t1

0
V2(t)dt (1)

where V is the voltage, and t is time. The waveform starts at time 0 and ends at t1.
Duration is the time interval between the first count and the last descending

threshold crossing.
Some parameters can be calculated from the hit-frequency spectrum. The most re-

markable ones are the peak frequency and the centroid frequency:
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• The peak frequency is the frequency corresponding to the highest magnitude in
the spectrum.

• The centroid frequency is given by the following expression:

CF =

∫ fmax
0 f H( f )d f∫ fmax
0 H( f )d f

(2)

where CF is the centroid frequency, fmax is the spectrum maximum frequency, H( f ) is the
spectrum magnitude, and f is the frequency.

2.2. Signal-Based Analysis

In this subsection, several approaches that consider the entire AE waveform are
described. The basic premise is that the AE waveforms are recorded, and their changes
over time are characterised and interpreted [31]. Different analyses can be conducted, such
as those presented in the following subsections.

2.2.1. Frequency Analysis

Frequency analysis techniques are widely used, ranging from simple filtering to more
sophisticated approaches. AE signals can be filtered with a high-pass filter in order to
remove the low-frequency background noise [31]. Furthermore, signals can be demodulated
using the Hilbert transform [32], such as in cavitation analyses, in order to identify the
characteristic frequencies of its dynamic behaviour [33].

2.2.2. Time–Frequency Analysis

This family of techniques is well suited for non-stationary signals and includes the
wavelet transform (WT) and the short-time Fourier transform (STFT). An advantage of these
techniques is that they are able to relate changes in the frequency characteristics of the signal
within the time domain [31]. Both techniques can also be used as a signal conditioning stage
to improve denoising. These transforms produce tri-axis diagrams (X-time, Y-frequency
and Z-amplitude) that are plotted in colour-scaled plots called spectrograms.

Although the WT shows a good performance for processing signals in the time–
frequency domain, its application requires the selection of a suitable wavelet function
before the analysis. As different wavelet functions result in different output results, the
Empirical Mode Decomposition (EMD) method was introduced in 1998 [34] to reduce the
impact of a pre-defined wavelet function. EMD decomposes any complex dataset into a
finite number of Intrinsic Mode Functions (IMFs) that provide information about instanta-
neous frequency and energy instead of the global pictures defined by the Fourier spectral
analysis [35,36]. Enhanced Empirical Mode Decomposition (EEMD) is a refinement of
EMD used to overcome a mode-mixing problem that appears with intermittent compo-
nents [37]. In EEMD, the mode-mixing problem is removed by adding white noise to the
processed signal. Lei et al. [38] have compared decomposed signals using both methods
and concluding that EEMD is more accurate than EMD. Complete EEMD (CEEMD) is a
further refinement wherein the decomposition provides a more accurate reconstruction of
the original data [39].

2.2.3. Machine Learning Approaches

Pattern recognition and clustering have been proposed to discriminate different types
of AE events. The goal is that waveforms with similar features are grouped (or clustered),
corresponding to different source mechanisms or failure types. A set of characteristics,
or parameters, are deducted from each type of signal, which is then considered by the
algorithm to determine the clusters. Different machine learning algorithms are used with
AE signals. The k-nearest neighbour algorithm (k-NN) is one of the simplest ones: the
output value of any test point is the average of the k-nearest output values from the training
distribution [31]. The random decision forest (RF) is an ensemble learning algorithm for
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regression problems that constructs a robust number of decision trees during training,
and the average prediction value of the training trees is returned as the final predicted
result [40]. The support vector machine (SVM) is an algorithm that constructs a hyperplane
with the shortest possible distance between it and the sample points. It has exhibited a
good generalisation capability and high prediction accuracy in cases of limited training
datasets [41].

Neural networks (NNs) consist of an input and output layers that are connected
through a number of hidden layers, all mathematically related via non-linear relationships
that must be estimated (learning) [30]. Convolutional neural networks (CNNs) are defined
as NNs that use the convolutional operation, which is defined as the dot product between
a grid-structured set of numbers (weights) and similar grid-structured inputs drawn from
different spatial locations in the input [42]. CNNs are commonly used in image recognition
processes. For example, Gaisser et al. [43] employed spectrograms of AE signals measured
in hydraulic turbines as the input of a CNN to detect cavitation.

3. Cavitation Detection and Erosion Prediction

When the static pressure of a liquid drops below its vapor pressure, part of the liquid
evaporates and forms vapor-filled bubbles. When the pressure rises again above the vapor
pressure, vapor condenses, and the bubbles (or cavities) collapse. As a result, shock waves
and high-velocity micro-jets collide against the nearest solid walls, producing very high
local pressures that can reach up to 700 MPa [44], which result in damage (pitting). The
successive repetitions of these impacts produce an aging of the material, and, finally, small
parts of it are detached, thus showing the start of the material erosion (mass loss).

In hydraulic turbines, the static pressure of water varies as it flows through the con-
duits and the runner, making it prone to cavitation. The most affected turbine parts by
cavitation are the runner and the draft tube cone [44]. As explained in Section 1, hydraulic
turbines often run in off-design operation mode, far from their BEP. This increases the
probability of cavitation inducing erosion. Therefore, it is necessary to detect cavitation
in hydraulic turbines and to predict the cavitation erosion to schedule preventive mainte-
nance and to avoid catastrophic failures. The measurements of vibrations, AEs, dynamic
pressures and noise are commonly carried out to detect the presence of cavitation and to
predict erosion.

The cavitation research is mainly focused on two aspects [45]: experimental mea-
surements and computational fluid dynamic (CFD) simulations. The latter has gradually
become an important method used to explore and understand the internal flow behaviour
of hydraulic machines [46]. The former includes many techniques such as the measurement
of the main effects of cavitation (vibrations, AEs, noise and dynamic pressures), flow visual-
isations with high-speed cameras [47], particle image velocimetry (PIV) and laser Doppler
velocimetry (LDV), among others. Experimental studies can be carried out in the laboratory
with reduced-scale model turbines machines or cavitation tunnels, or in full-scale prototype
turbines located in hydropower plants. It is worth it to note that invasive methods and flow
visualisation techniques cannot be easily used on prototype turbines because it is necessary
to ensure access to the internal components with the machine stopped and to install trans-
parent windows. Thus, research on cavitation in prototype turbines has been mainly based
on the external measurement of the effects of cavitation with traditional sensors. The use of
vibrations, dynamic pressures and noise signals has also been considered in this review
because all of them share similar analysis procedures to the ones used with the AE signals.

Avellan et al. [48] studied, in 1988, cavitation on a two-dimensional hydrofoil installed
in the test section of a high-speed cavitation tunnel. They found that cavitation erosion
results from the collapse of swirling transient vortices originated at the leading edge. These
vortices are shed away of the closure region of the sheet cavity at a defined shedding fre-
quency [49]. In hydraulic machines, this shedding frequency is governed by the cavitation
interaction with the induced flow instabilities, which can be generated by the passage of
blades in front of the wakes of the guide vanes and the spiral case tongue or by a draft tube
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swirling flow starting at the runner hub (outlet swirl). Then, the shedding frequency is
forced to a frequency characteristic to the particular design of each machine corresponding
to the blade passing frequency, the guide vane frequency or the swirl frequency [50]. Thus, a
signal measured on a machine suffering cavitation will be modulated by the corresponding
shedding frequency (or frequencies), which can be identified by an amplitude demodula-
tion process. Different procedures have been used to demodulate these signals: full-wave
rectification using electronic circuits [50–52], Hilbert transform [33,53] and spline interpola-
tion over local maximums [54]. Previously to the demodulation process, a passband filter
has to be applied, usually located in a high-frequency band of the order of kHz.

Abbot et al. studied cavitation in a high-speed cavitation tunnel [51] and in different
turbines [52]. Demodulation was carried out through the full-wave rectification of accel-
erations previously bandpass filtered from 10 to 20 kHz. Kaye et al. used high-frequency
vibrations for different cavitation studies on turbines [50,53]. In Kaye et al.’s study [53],
vibrations were acquired on several guide vanes and on the turbine guide bearing of a
Francis turbine prototype that were then demodulated using a bandpass filter from 80 to
100 kHz, and the envelope was determined using the Hilbert transform. The analysis of
the processed signal showed a well-defined peak at the blade passing frequency and a
wide spread of values, indicating that the cavitation was very unstable. In Kaye et al.’s
study [49], vibrations filtered from 40 to 50 kHz were acquired on the guide bearings and
above two guide vanes. The demodulation envelope was determined using an analogue
demodulator previous to the data acquisition, which allowed the use of a low sampling
frequency and the acquisition of long-time signals containing many rotations of the tur-
bine shaft. The envelope signals were processed in the frequency domain, showing the
characteristic peak frequencies of the cavitation, and in the time–frequency domain using a
spectrogram (STFT), showing the stability of these particular frequency peaks.

Escaler et al. [32] studied cavitation in several turbines using vibrations, dynamic
pressures and AEs. The signals were bandpass filtered and demodulated using the Hilbert
transform. In the case of two turbines suffering inlet leading edge cavitation, vibrations
and AEs were measured on the bearing and guide vanes at different output loads. The
frequency spectra showed a clear amplitude increase in a wide frequency band with the
output load. Moreover, the blade and guide vane passing frequencies were identified in
the spectra of the demodulated signals. In the case of a reduced-scale model of a Francis
turbine, various analysis were performed at the BEP and at higher loads. The frequency
spectra of bearing vibrations showed that the levels in all frequency bands increased as
the flow rate increased. The demodulated spectra of the draft tube cone vibrations and
pressures showed the blade passing frequency and its second harmonic. Finally, two
prototype turbines suffering draft tube swirl were analysed. In a pump turbine, dynamic
pressures were measured at the draft tube at 50, 75 and 100% of the output load. The
spectrum at 50% load showed a maximum peak at a frequency equal to 0.31 times the
turbine rotating frequency corresponding to the rotating vortex rope (RVR). In a Francis
turbine, vibrations and AEs were measured on the guide bearing and on the guide vanes
at different output loads. The spectra showed the amplitude increase in all the frequency
bands with the load, and the spectra of the demodulated signals showed a frequency peak
at 0.27 times the turbine rotating frequency at low loads (corresponding to the RVR) and at
the guide vane passing frequency at high loads.

Table 1 shows a summary of the above-mentioned case studies. Despite the signal
demodulation technique applied in the previously described references [33,50,52,53], it
enables us to know if cavitation takes place, but it does not allow us to distinguish if the
cavitation is erosive or not.
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Table 1. Reference case studies on cavitation detection using demodulation.

Reference Test Bench Measured
Magnitude Analysis Results

Abbot et al.
[51]

Cavitation
tunnel Vibration

Filtering 10–20 kHz
Full-wave rectification

Spectrum

Shedding
frequency

Abbot [52] Prototype
turbines Vibration

Filtering 10–20 kHz
Full-wave rectification

Spectrum

Blade passing
frequency

Kaye et al. [50] Model
turbine Vibration

Filtering 40–50 kHz
Full-wave rectification

Spectrum

Blade passing
frequency

Kaye et al. [53] Prototype
turbine Vibration

Filtering 80–100 kHz
Full-wave rectification

Spectrum

Blade passing
frequency

Escaler et al. [33]
Prototype

Kaplan
turbine

Vibration

Filtering 5–10 kHz
Demodulation

through Hilbert
Spectrum

Guide vane
passing

frequency

Escaler et al. [33]
Prototype

Francis
turbine

Vibration

Filtering 10–15 kHz
Demodulation

through Hilbert
Spectrum

Runner, guide
vane and blade

passing
frequencies

Escaler et al. [33]
Prototype

Francis
turbine

Vibration
acoustic
emission

Filtering 30–40 kHz
Demodulation

through Hilbert
Spectrum

Swirl frequency

Escaler et al. [33]
Model
Francis
turbine

Vibration
dynamic
pressure

Filtering 10–15 kHz
Demodulation

through Hilbert
Spectrum

Blade passing
frequency

Ylönen et al. [54] Cavitation
tunnel

Acoustic
emission

Filtering
Demodulation
through Spline

Spectrum

Shedding
frequency

In the period 2018–2020, Ylönen et al. performed an extensive study on cavitation in a
high-speed cavitation tunnel [55]. Polished stainless steel mirror samples were exposed to
cavitation in periods of a few minutes in order to not exceed the incubation period, and, in
parallel, an AE time signal was monitored [56]. Figure 5 shows an AE signal and a zoom
in on one of the peaks measured during the cavitation incubation period [56]. The pits
were measured using an optical profilometer, and the cavitation damage was characterised
by the pit diameter distribution. The monitored AE signals were demodulated by fitting
an envelope function calculated via spline interpolation over the local maxima in order
to identify the hits in the signal and to determine their amplitudes [54]. A relationship
between the cumulative distributions of the amplitude peak values and pit diameters was
established. It was concluded that, in the incubation period, AE signal analysis can be used
to monitor the deformation of pits without visual examination of the surface damage.
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Figure 5. AE cavitation signal and a zoom in on one of the peaks during the incubation period [56].

In order to study the possibility of monitoring the cavitation shedding frequency with
AEs, ramp tests through a set of experimental conditions ranging from well-developed
cavitation to no cavitation were performed in a high-speed cavitation tunnel. The moni-
tored waveforms were demodulated, and the shedding frequencies were identified [57].
Non-dimensional cavitation numbers were related to shedding frequencies, and a rela-
tionship was observed. For cavitation numbers lower than 1.75, which corresponds to
the cloud cavitation state, a linear trend between cavitation number and shedding fre-
quency was observed, but for higher cavitation numbers and sheet cavitation onsets, the
shedding frequencies were found to become unsteady. Hence, the point at which the
shedding frequency appears unsteady can be used to detect the transition from cloud
to sheet cavitation [57]. In order to study the relationship between shedding frequency
and erosion, two stainless steel samples were eroded from a virgin non-eroded surface
to an approximately 400 µm maximum erosion depth during 65 h of exposure to cloud
cavitation. AEs were measured every one or two hours, and it was concluded that the
shedding frequency increased when the volume loss and erosion depth also increased. It
was also found that the increasing surface roughness leads to increases in the shedding
frequency. The main conclusion was that these results could be used to track the erosion
stage induced by cavitation on a hydrofoil in a cavitation tunnel [57]. Figure 6 shows the
AE signals measured for different cavitation conditions: (A) and (B) correspond to fully
developed cloud cavitation, (C) corresponds to sheet cavitation and (D) corresponds to
cavitation-free conditions [57].
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Recently, different methods for identifying the cavitation condition have been pro-
posed based on artificial intelligence (AI). These methods employ AEs, vibrations, dynamic
pressures and noise as inputs. Zhou et al. [58] developed a method to monitor the cavita-
tion state in a Francis model turbine using AE signals for which their wavelet transform
was introduced in a NN. The output of the developed method was the cavitation state:
no-cavitation, primary cavitation, critical cavitation and severe cavitation. Tiwari et al. [59]
developed a cavitation detection method for centrifugal pumps using the standard devia-
tions, mean values, kurtosis and skewness values of dynamic pressures as the inputs of a
two-layer NN that identified pump blockage and/or cavitation. Amini et al. [60] developed
a cavitation detection methodology based on a Gaussian mixture model that classified
turbine noise signals into cavitating and non-cavitating categories. The detection system
was developed based on laboratory tests and validated in a hydropower plant.

Gaisser et al. [43] developed a CNN for cavitation detection that handled the data
from different turbines (two Kaplan, two Francis and one Pump turbines), improving
usual approaches that require learning on a specific machine. This approach creates a
representation of the data and combines it with the domain-aligned training to generate
a network to a variety of hydraulic machines. The training cavitation data stem from
six model machines, and the testing data stem from five prototypes working in different
powerplants. A cluster analysis was performed with AE data, and the result was that
the data were clustered according to the machines instead of the class labels (cavitating
conditions). This demonstrated that the differences between the machines were more
dominant than the differences between the cavitating conditions. This is called a multi-
source multi-target problem that can be solved with a special class of machine learning
methods capable of dealing with multiple domain shifts. Then, a domain-alignment method
for training deep NNs, called domain-adversarial training [61], was applied. With this
approach, a framework for cavitation detection, which is applicable to a variety of hydraulic
machinery, was successfully developed.

Table 2 shows a summary of the case studies discussed above.

Table 2. Reference case studies on cavitation detection using AI.

Reference Test Bench Measured
Magnitude

Pre-
Processing Network Results

Zhou et al.
[58]

Model
Francis
turbine

Acoustic
emission

Filtering
20–500 kHz

Back
propagation

Cavitation
state

Tiwari et al.
[59]

Centrifugal
pump

Dynamic
pressure

Parameter
selection

Deep
learning

Normal
condition,
cavitation,
blockage

Amini et al.
[60]

Prototype
Francis
turbine

Noise
Signal pieces

of 1′′

FFT

Gaussian
mixture
model

No cavitation
Cavitation

Gaisser et al.
[43]

Model and
prototype
turbines

Acoustic
emission

Filter
100–450 kHz
Normalisation

Snippets
(4 rev)
STSF

Convolutional
neural

network

No cavitation
Cavitation

In summary, erosive cavitation in hydraulic turbines can be detected measuring the
induced effects from various quantities: AEs, vibrations, dynamic pressures and noise.
Mainly two approaches have been developed based on amplitude demodulation and on
AI. The former is based on the fact that the signals are modulated at the characteristic
frequencies of the particular cavitation dynamic behaviour. The spectral content of the
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signal envelope in a high-frequency band provides this information, which indicates the
location where cavitation occurs inside the hydraulic machine. Conversely, an accurate
methodology for quantifying the amount of erosion caused by the cavitation has not
been developed yet. Recently, AI has also been successfully used to detect cavitation.
Nevertheless, there is no AI methodology able to detect whether cavitation is erosive or
not, or in which part of the turbine it occurs.

4. Crack Detection Using Acoustic Emissions

Fatigue cracks are one of the predominant failure modes in hydraulic turbines. Fatigue
damage starts with the initiation of cracks and continues with their propagation until an
unstable size is reached that produces the breakdown of the component. AEs can be used
to track this process of crack initiation and growth.

Dunegan et al. [62] presented a model that states that the cumulative AE counts (η)
on a specimen in a tensile strength test are proportional to the fourth power of the stress
intensity factor (K), as expressed by Equation (3):

η ∝ K4 (3)

In spite of that, some tests presented with aluminium and beryllium specimens in
the same study exhibited a mechanical behaviour that differed significantly from the one
predicted by the model, with experimental exponents higher than four.

Bassim [63] presented a relationship between the AE count rate (dη/dN) and the stress
intensity factor range (∆K) in metallic materials, as expressed by Equation (4):

dη

dN
= B(∆K)p (4)

where N is the number of fatigue cycles, ∆K is the stress intensity factor range, and B
and p are material-dependent constants. This expression is similar to the Paris–Erdogan
law [64], which, when combined with Equation (4), permits the derivation of a relationship
between fatigue crack growth rate ( da/dN) and dη/dN for metallic materials, as given by
Equation (5) [65–67]:

log
(

da
dN

)
= mlog

(
dη

dN

)
+ s (5)

where a is the fatigue crack length, and m and s are material-dependent constants. This
means that a can be estimated through the integration of dη/dN, and a can be estimated
without knowing the load-time history or complex calculations of K. Roberts et al. [65]
performed fatigue tests on specimens made from grade S275JR steel, with load ratios R
of 0.1, 0.3 and 0.5 and the simultaneous measurement of AEs. Measuring only the counts
among the top 10% of the applied range, they claimed that the prediction based on the
above procedure exhibited a reasonably close correlation with the experimental results.

Yu et al. [68] developed a model that includes the acoustic energy rate, crack driving
forces, fracture toughness and load ratio, as expressed in Equation (6):

da
dN

=

(
dU
dN

)q2 D2

[(1 − R)(Kc − Kmax)]
1−q2

(6)

where dU/dN is the absolute energy change rate (based on AE data), R is the load ratio,
Kc is the fracture toughness, Kmax is the high-stress intensity factor, and q2 and D2 are
material-dependent constants.

Li et al. [69] developed a methodology for AE crack sizing based on bending tests
on rail steel specimens for different load conditions. A classification index based on the
wavelet power (WP) of the AE signal was first established to distinguish the crack closure-
induced AE waves from the crack propagation-induced ones. Then, a method for crack
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sizing was developed based on the experimental finding that the crack closure-induced AE
count rate correlates positively with crack length in the structure.

Pascoe et al. [70] used AEs to study crack growth behaviour during a single fatigue
cycle using double cantilever beam specimens made of two aluminium Al2024-T3 arms
bonded with Cytec FM-94 epoxy adhesive. A pre-crack was created along one edge of
the double cantilever beams, and from a quasi-static test, it was concluded that the strain
energy release ratio (SERR) calculated according to ASTM D3433-99 [71] was larger than
the SERR at which the crack growth physically started. On the other hand, it was observed
that the crack could grow during the loading and unloading phases of the load cycle during
fatigue tests and that the crack growth did not occur just at maximum load or near the
minimum load. Thus, the relevance of the maximum value and range of SERR used in
many fracture mechanics formulas is in doubt. The interest of the cited study relays on the
fact that the authors analysed the AE during a single fatigue cycle on bonded specimens,
allowing the study of the behaviour of the glue. Referring to the authors’ conclusions, it
might be assumed that all AE hits were produced by the crack extension, but they could
also be produced by the crack closure, as it has been established in this review [69].

Joseph et al. [72] presented a method for correlating the AE signals produced by the
fatigue crack growth with the crack length. It was observed that the generated AE energy
resonated with the crack developing a steady wave pattern that depended on the crack
length. A finite element model (FEM) was used to simulate a sensor and a crack with
two length conditions (4 and 8 mm), which showed that the AE signal and its frequency
spectrum depended on the crack length. These numerical results were verified through
fatigue tests with aluminium 2024-T3 specimens using a novel stress-intensity factor-
controlled fatigue crack growth method: fatigue loading was decreased as the crack grew in
order to keep the stress-intensity factor constant [73]. Garrett et al. [74] introduced artificial
intelligence to this procedure. AE hits corresponding to both crack lengths (in the ranges
of 3.5–4.5 and 7.0–8.0 mm) were collected during the tests, and their wavelet transforms
were computed and used as inputs in a CNN. Although this method is interesting from
a theoretical point of view, its practical application seems now difficult. The relationship
that the authors suggest depends on the shape of the piece or specimen, the material
properties, the crack shape, the fracture mode (opening, sliding or tearing) and, probably,
the location where the crack occurs. For all this, a lot of research is still needed for its
practical application.

Zhang et al. [75] applied the AE technique to monitor the fatigue crack growth in two
types of specimens: a gas turbine engine blade specimen and a TC11 titanium alloy plate
specimen that is widely used in gas turbine engine blades. Based on the fracture mechanics
and the experimental results, a mathematical model between the AE energy rate and crack
growth rate was developed to predict the crack extension rate of the blade material and
the residual fatigue life of the blades. Fatigue tests were carried out with both types of
specimens, measuring AEs as well as the crack lengths along them. Two models of sensors
were utilised with resonance frequencies of 125 kHz and 150 kHz. Figure 7 shows the AE
signals and their spectra for the gas turbine engine blade specimen in two stages of the
fatigue test: stable propagation stage (crack length of 2.5 mm) and fracture stage (crack
length of 17.2 mm). Figure 8 shows the same kind of information corresponding to the
TC11 titanium alloy specimen. This work did not indicate with which sensor model the
measurements were carried out. Looking at the spectra of Figures 7 and 8 and according
to the frequency scale, the peak frequency could correspond to any of the two sensor
frequencies (125 or 150 kHz).
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Figure 7. AE time histories and their spectra of the gas turbine engine blade specimen [75]:
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corresponding to (b1).
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(a1) waveform at stable propagation stage (crack length: 2.3 mm); (a2) frequency spectrum cor-
responding to a1; (b1) waveform at fracture stage (crack length: 17.5 mm); (b2) frequency spectrum
corresponding to (b1).

Shiraiwa et al. [76] developed a method to classify the fatigue crack propagation
in four stages that mainly correspond to the following: (i) microstructurally small crack
growth, (ii) physically small crack growth, (iii) long crack propagation and iv) unstable
crack growth. Fatigue tests with different specimens of different materials (pure iron,
magnesium alloys and carbon steel) were performed, and the AEs were measured. From
these measurements, different parameters were extracted: energy (U), peak frequency (Py),
rise angle (RA) (rise time/amplitude), duration (Dur), cumulative counts (c) and count
rate (dc/dN). All parameters were normalised between 0 and 1 using the minimum and
maximum values measured in each test. The following crack growth model was proposed,
as expressed with Equation (7):

da
dN

= Ci1

(
dc
dN

)mi1
+ Ci2(U)mi2 + Ci3(RA)mi3 + Ci4(Dur)mi4 + Ci5(Pk)

mi5 + ε (7)

where i is an index of a stage in fatigue crack growth, C is a coefficient, m is an exponent,
and ε is the error (the difference between model results and measurements). The crack
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growth rate was also normalised between 0 and 1. C and m were defined to change
stepwise at the transition points of the fatigue crack growth stages. The number of stages
is a hyperparameter that was set to four for pure iron and magnesium alloys. For carbon
steels, the number of stages was assigned to three because the specimens had a pre-crack
that was considered to be equivalent to the first of the four stages. In order to determine
the changing point of the fatigue crack growth stage using AE signals, a Bayesian analysis
was applied to the proposed crack growth model. Markov chain Monte Carlo (MCMC)
simulations with multiple changepoint models were applied to the proposed crack growth
model. Under the assumption that the error value between the model and the observed
crack growth rate fits on a normal distribution and the number of stages in the fatigue
process is four (except for carbon steel specimens), the subsequent distribution of Ci and
mi were calculated using MCMC simulations. The fatigue crack growth was successfully
divided into the four stages referred to above.

Chai et al. [77] studied the relationship between different AE parameters and fatigue
crack growth. Bending fatigue tests on single edge notch specimens made from 316 LN
stainless steel with different load ratios (0.1, 0.3 and 0.5), simultaneous AE acquisitions
and crack length measurements were performed. Four time-domain parameters (peak
amplitude, information entropy [78], energy and count) were extracted from the AE wave-
forms to characterise the fatigue damage. The relationships between the AE parameters
and the fatigue crack growth rate on a log–log scale were established. In order to study the
performances of different parameters in quantitatively describing the correlations between
AE and fatigue crack growth, linear least squares regressions were performed to determine
the model that best fit the observed data. The AE energy rate showed the best-fitting
regression model results. The authors highlighted that the data points were obtained from
AE waveforms recorded during the entire fatigue load cycle without any load-based AE
data filtering procedure. The same authors proposed, in a further study [41] that was
carried out with the results of the same tests, a back propagation NN model optimised
with a genetic algorithm (GA-BPNN) for fatigue crack growth rate (FCGR) prediction. This
model is based on AE parameters that can be ordered according to how significant they
are relative to the FCGR prediction model. The AE energy rate was claimed again to be
the feature that can provide the most accurate information for FCGR prediction in the
current study. As stated before, they noted that the data points were obtained from AE
waveforms recorded during the entire fatigue loading cycle without any load-based AE
data filtering procedure. However, in reference [65], filtering was carried out, taking only
the AE data corresponding to the top 10% maximum amplitudes of the applied range, as
previously reported.

Referring to the crack initiation, Keshtgar et al. [79] proposed an intensity index of
AE to detect crack initiation in 7075-T6 aluminium alloy. The intensity index encompasses
the total value of weighted features including count, amplitude and rise time. It was
discussed that the first detected jump (more than a 50% sudden increase) in intensity of AE
signals with a relatively fast rise time and high amplitude, as well as high count numbers,
corresponded to the crack initiation.

Vanniamparambil et al. [80] studied the AE produced by crack initiation in Aluminium
2024 Alloy specimens. They performed quasi-static and fatigue tests with the simultaneous
recording of AEs, digital image correlation and infrared thermography. From these tests,
they concluded that before crack initiation, AE waveforms were of a low-frequency con-
tinuous type due to the plastic strain, but that the waveforms became of high-frequency
(534 kHz) and burst type from the onset of cracking. The authors proposed that this could
be an indicator used to detect crack onset in metallic specimens, although they recognised
that its validity at various distances from the source had to be assessed.

Karimian et al. [81] developed a method for detecting fatigue crack initiation in
aluminium alloy using an information entropy AE parameter [77]. Some fatigue tests of
different AA7075-T6 material notched specimens with different loading conditions were
performed with simultaneous AE measurements. These tests were paused once a crack
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became visible. Only signals received in the top 20% of the peak load were considered to be
related to fatigue damage. Then, the detected crack was measured, and the crack initiation
cycle was calculated using the crack length at the termination cycle and material properties
used in monotonic tests. The AE counts, energy and information entropy were calculated
and analysed. The latter presented a minimum value just before the initiation of the crack,
followed by a sudden increase in the accumulated entropy. This circumstance enables the
instant (and number of cycles) in which the crack was initiated to be known.

Referring to the studies on hydraulic turbines, Wang et al. [82] compared AE signals
obtained during a laboratory fatigue test with signals recorded in a hydropower plant.
AE parameters were extracted from waveforms recorded during fatigue tests of different
20SiMn steel (material used for hydraulic turbine blades) specimens with simultaneous
crack length measurements and during hydraulic turbine operation, and it was observed
that they were very different. The background noise was found to be a continuous vibration
signal, which had a longer duration, lower frequency range and higher amplitude. It
might be noted that both tests should have been performed with the same AE sensor
model; otherwise, the signals might not be comparable as a consequence of the different
sensitivity of both sensors to the different frequencies. They also evaluated the attenuation
characteristics at the propagation distances of the AE signals using a wavelet packet
transformation [83] and also developed a procedure to locate cracks in a runner based on
support vector machines [84]. Both works were carried out in laboratory conditions on a
Francis turbine runner, and the AE signals were generated by braking pencil lead [85].

In summary, crack growth of metallic materials has been characterised in different
ways with AEs: (i) relationships between K and different AE parameters (counts or energy)
combined with the Paris–Erdogan’s law [64] have permitted the derivation of correlations
with da/dN that do not require very complex computations; (ii) AE time and frequency
parameters have been used to detect crack initiation; and (iii) wavelet power [69] or a
relationship between hit spectrum and crack length [72] have permitted the estimation of
the crack length. In addition, it is worth it to note the works of Pascoe et al. [70], who studied
AEs during a single fatigue cycle, and of Shiraiwa et al. [76], who developed a procedure
based on AEs that allows us to know the fatigue crack propagation stage. And finally, it
has been found that AI is becoming a popular methodology for the crack characterisation
of metallic materials, as demonstrated by the works of Garrett et al. [74], who studied crack
length with AE hits using a CNN model, and Chai et al. [41], who developed a NN model
optimised with a genetic algorithm to predict the crack growth from AEs. Unfortunately,
only a few works have been conducted in laboratory conditions [82], or the crack growth
has been simulated by breaking pencil lead on runners in studies on crack localisation [84]
and AE transmission [83] in hydraulic turbines.

5. Discussion

The reviewed literature shows that fatigue damage (crack initiation or growth) can
be detected through a signal analysis of the AEs. In addition, cavitation can be also
detected with AEs using demodulation or AI methods. But cavitation can also be detected
using other quantities like vibrations, dynamic pressures and noise. This suggests that
while the AEs used to detect fatigue are directly related to the damage itself in the case
of the fracture, the AEs used to detect the cavitation are induced by the hydrodynamic
(dynamic pressure) or structural disturbances (vibrations, AEs, noise) generated by the
cavitation phenomenon. Actually, it seems that in these cases, the AE sensor is used as a
“high-frequency accelerometer”.

The present review has exposed that nowadays, it is not possible to use AEs to detect
if the cavitation in hydraulic machinery is erosive or to quantify its erosiveness. The only
exception is the correlation found between pit diameters and AE transient amplitudes
in a high-speed cavitation tunnel by Ylönen et al. [56]. The pit diameters were related
to the maximum amplitudes of the AE signals in the incubation phase [56], and a rela-
tionship between the shedding frequency and the material loss in the erosion phase was
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described [57]. Unfortunately, this relationship cannot be used in hydraulic turbines be-
cause the shedding frequency is forced by the rotor–stator interaction between the fixed
guide vanes and the rotating blades or the swirl at the outlet of the runner [50]. Recently,
the hydropower community witnessed a prominent growth in AI, as it has been described
in Section 3. It must be noted that, among the studied turbines with the traditional demod-
ulation method, AEs have been used only in one of them (14%). And among the studied
turbines with AI, AEs have been used only in two of them (66%). This suggests that AI
methods and AEs constitute a promising combination in the field of cavitation research
but still need additional efforts. Cavitation detection is a well-developed technology, both
in the laboratory and in the field, but nowadays, it is not possible to evaluate the possible
damage that this detected cavitation produces. AI methods have been well incorporated
into this technology, but more research should be conducted to identify and distinguish
cavitation signals produced during the incubation phase (when plastic deformations are
produced) and the erosion phase (when fractures are produced). Nonetheless, the spectra
generated by these phenomena are expected to show measurable differences that will allow
this characterisation.

Cracks of metallic materials have been characterised during fatigue tests using AEs,
as presented in Section 4. Three main approaches have been identified: crack growth evalu-
ation, crack initiation detection and crack length evaluation. Additionally, two evaluation
cases have been found corresponding to the assessment of the AEs emitted during a single
fatigue cycle with a bonded specimen, and to the estimation of the crack growth stage from
the AEs emitted during a fatigue test. Moreover, the use of AI methods is growing in the
metallic material crack characterisation field. In relation to hydraulic turbines, three studies
have been reviewed corresponding to one laboratory research [82], as well as two studies
on runners wherein the emitted AEs were generated by breaking pencil lead [83,84], but
no applications have been found in actual prototypes. The detection of fractures with AEs
is a well-developed technology in well-controlled laboratory conditions, but, as far as the
authors are aware, there is little work on crack monitoring in industrial applications.

6. Conclusions

The detection of cavitation with AEs is a well-developed technology in laboratory
conditions and in full-scale hydraulic turbines. Nowadays, it is not possible to determine
in actual machines if the cavitation is erosive. Therefore, it cannot be determined if the
material is suffering the incubation phase (when only plastic deformations are produced)
or if it is already in the advanced erosion phase (when mass loss is produced). In this sense,
only a correlation between AEs and erosion has been obtained in a high-speed cavitation
tunnel. Therefore, further work must be carried out toward the prediction of cavitation
erosion with AEs.

The detection of fatigue cracks with AEs is a well-established technology in well-
controlled laboratory conditions and specimens, but again, few works have been conducted
in real applications with actual hydraulic turbines. Therefore, further work must be per-
formed in order to extend this laboratory-demonstrated technology to actual
industrial environments.

Various AI methodologies have been recently applied to both cavitation and crack
detection with successful results using AEs; therefore, this constitutes a very promising line
of research for improving the understanding and the prediction of the induced damages.
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