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Abstract: There has been no study examining the effectiveness of an accessible computing curriculum
for students with autism spectrum disorder (ASD) on their learning of computational thinking
concepts (CTCs), flow control, data representation, abstraction, user interactivity, synchronization,
parallelism, and logic. This study aims to investigate the effects of an accessible computing curriculum
for students with ASD on their learning of CTCs as measured by the scores of 312 computing artifacts
developed by two groups of students with ASD. Conducted among 21 seventh-grade students
with ASD (10 in the experimental group and 11 in the control), this study involved collecting data
on the computing projects of these students over 24 instructional sessions. Group classification
was considered the independent variable, and computing project scores were set as the dependent
variables. The results showed that the original curriculum was statistically significantly more effective
for students in learning logic than the accessible one when all seven CTCs were examined as a single
construct. Both curriculums were statistically significantly effective in progressively improving
students’ learning of data representation, abstraction, synchronization, parallelism, and all CTCs
as a single construct when examining the gradual increase in their computing artifact scores over
the 24 sessions. Both curriculums were statistically significantly effective in increasing the scores of
synchronization and all CTCs as a single construct when the correlations between CTCs and sessions
for individual groups were analyzed. The findings underscore that students with ASD can effectively
learn computing skills through accessible or standard curriculums, provided that adjustments are
made during delivery.

Keywords: computational thinking; computational thinking concepts; autism spectrum disorders;
accessible computing curriculum

1. Introduction

Computational thinking (CT) is a crucial skill in the 21st century and will be integral to
driving new discoveries and innovations across diverse fields and endeavors. Accordingly,
many research studies have been conducted to examine the effects of CT on various aspects
of learning, teaching, and cognition at different levels.

Research indicates that CT instruction enhances students’ interest, knowledge, and
skills in computing [1–5]; improves quantitative and critical thinking abilities [6]; develops
skills in abstracting, generalizing, and writing persuasive arguments [7]; facilitates the
transfer of problem-solving skills in both near and far contexts while enhancing spatial
relations abilities [8]; aids in comprehending algorithmic flow [9]; and shows potential in
predicting future academic success [10,11].

Additionally, some reports indicated that proficiency in CT during college freshman
courses can serve as an indicator for future academic success [10], and a strong correlation
exists between students’ computational skills and their academic performance [11]. In
addition, CT has the potential to enhance both quantitative and critical thinking skills [6]
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and can assist in abstracting information, making generalizations, and crafting persuasive
arguments [7], and a curriculum centered around CT enhances students’ perceptions of,
interest in, and knowledge about computing [3,5]. Also, research has indicated that coding
contributes to both short- and long-term transfer of problem-solving skills, as well as an
improvement in the ability to solve spatial relations, particularly among fifth- and sixth-
grade students [8]. Also, integrating CT into middle school and high school classes has
been shown to increase knowledge in algorithmic flow [9] and middle school students’ CT
skills [1].

Furthermore, significant correlations between computational thinking and critical
thinking, as well as pre-service teachers’ modeling skills, were reported in [12,13], where
it was found that the fundamental concepts of CT promoted, organized, and structured
English writing; increased students’ writing motivation; and reduced their writing anxiety.
Ref. [14] reported that students’ understanding and application of linear algebra topics
were improved by familiarity with essential computational thinking concepts. Ref. [15]
analyzed the effect of an intervention program in computational thinking on the executive
functions of school-age children and reported that the intervention had significant effects on
the executive functions associated with the anterior prefrontal cortex and the dorsolateral
cortex. Ref. [16] reported that computational thinking has a positive impact on both digital
self-efficacy and self-exploration. Ref. [17] investigated the relationship between middle
school students’ computational thinking skills and their STEM career interest and attitudes
toward inquiry, and a significant correlation was observed between middle school students’
computational thinking skills and their STEM career interest and attitudes toward inquiry.

Consequently, CT should be taught to all students alongside fundamental skills like
reading, writing, and arithmetic [18]. Accordingly, researchers have studied and demon-
strated the successful integration of CT into various subjects across different grade levels
for mainstream students [3–11].

For example, the authors of [19] examined the integration of CT into mathematics
education, focusing on classroom practices and gathering opinions from students and pre-
service teachers regarding unplugged CS activities. Similarly, the authors of [16] provided a
framework for social studies teachers regarding the integration of CT into K-12 classrooms.
Another study explored the incorporation of CT into English writing instruction [13]. In
addition, in [20], the authors designed and implemented computational thinking activities
for mathematics students. Finally, the authors of [14] developed curriculum materials to
introduce students to computational thinking concepts within linear algebra topics.

Although many studies have focused on creating and implementing CT curricula
for mainstream students, there has been a limited amount of research on designing and
developing CT curricula specifically for students with special needs. Among these rare
studies is the work by [21] aimed at high school students diagnosed with learning dis-
abilities or attention deficit disorder (commonly known as ADHD). This study identified
challenges in teaching a computer science (CS) course to students with ADHD, proposing
and testing adjustments to create an accessible CS course for them. Successful adjustments
were reported, particularly addressing the barriers related to language, reading, written
expression, math, and attention [21]. Another rare study was conducted by [22], where
adaptations and accommodations were developed to make an original CT curriculum
accessible to students with ASD.

However, there have not been a sufficient number of studies focused on a thorough
examination of an accessible CT curriculum’s effectiveness in improving learning outcomes
for students with ASD. One such study, titled “Assessing the Efficacy of an Accessible
Computing Curriculum for Students with ASD”, evaluated the effectiveness of an acces-
sible CT curriculum by analyzing pretest and post-test scores, as well as computational
thinking processes, through artifact-based interview scores. According to the study re-
sults, students with ASD demonstrated improved computational thinking concepts when
exposed to a computing-based curriculum, whether accessible or not. Specifically, the
accessible computing curriculum showed significant improvements in students’ proficiency
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in debugging and testing, iterating and experimenting, modularizing and abstracting, and
remixing and reusing. However, relying solely on pretest, post-test, and interview scores
does not provide a comprehensive understanding of progressive learning, improvements,
and the development of computational thinking concepts throughout the duration of the
intervention. They may offer an objective way of assessing single points in time (before
and after an intervention), but they may not accurately describe the learning experiences
students undergo while developing computing projects over a period of time as they learn
computing, which is crucial to measure for a more comprehensive assessment of their
learning of computational thinking concepts. These computing projects offer valuable
insights into the technical progress they make and the challenges they encounter as they
learn CT concepts.

Therefore, this research investigates the effectiveness of an accessible CT curriculum in
enhancing students with ASDs’ understanding of CTCs (computational thinking concepts:
flow control, data representation, abstraction, user interactivity, synchronization, paral-
lelism, and logic) as revealed by the computing projects that they develop. The research
involves comparing computing projects created by two sets of students: the experimental
group taught with an accessible CT curriculum and the control group taught with the
original CT curriculum.

The Problem and Research Question

No study has been conducted on the analysis of computing projects developed by
students with ASD to assess the effectiveness of an accessible CT curriculum in improving
the learning of CTCs (flow control, data representation, abstraction, user interactivity,
synchronization, parallelism, and logic). The research question in this study is as follows:

Is an accessible CT curriculum more effective in enhancing the learning of CTCs
among students than a CT curriculum designed for mainstream students?

This research question was explored by conducting a MANOVA analysis on the
computing project scores achieved by two groups of students diagnosed with ASD.

2. Participants

Twenty-one seventh-grade students, at an average age of 13, with ASD from
two inner-city schools located in the Midwest United States, participated in this research
study and were divided into experimental and control groups. All seventh-grade students
volunteered to participate in this study. The experimental group in one school was exposed
to an accessible computing curriculum, while the control group in the other school attended
the sessions under an original CT curriculum. The students were able to use applications
on Apple iPads. They had not been exposed to any CT-related instructional activities before
the study. Each student was provided with an iPad to carry out the instructional activities
in this study, including the utilization of the Scratch programming interface. Students
in both groups were equal in their knowledge of CTCs at the beginning of the study, as
indicated by the analysis of a pretest using an independent sample t-test (t(18) = 1.89,
two-sided p = 0.072). The independent variable comprised two groups: ten students in
the experimental group and eleven students in the control group. The dependent variable
encompassed the scores of the computing projects developed by these students, assessing
their comprehension of CTCs.

3. Materials and Research Methods

3.1. The Original and Accessible CT Curriculums

The original CT curriculum utilized in this study is the creative computing curricu-
lum [23], which was not specifically designed and developed for students with ASD. The
creative computing curriculum [23,24] comprises 7 units, with each unit having 6 sessions,
totaling 42 sessions overall. It provides instructional activities (a description of the instruc-
tional activities, the list of instructional resources, learning objectives, discussion questions,
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and questions for evaluating student work) centered around Scratch [25], a simple, visual,
block-based programming environment for students of all ages.

The accessible CT curriculum utilized in this study is the one modified and made ac-
cessible for students with ASD in a previous study [22] based on the original CT curriculum,
and the instructional activities teaching computing in this curriculum also revolved around
Scratch [25]. The accessible computing curriculum has a total of 6 units of 6 sessions, for
36 sessions altogether. Only 24 out of the 36 sessions were implemented in this project.

Each session of the accessible CT curriculum was composed of eight key instructional
elements. The first one was the session schedule, which was presented on separate pages
for easy printing and placement on classroom walls and student desks. Task timings and
breaks were personalized based on individual attention spans and behavioral needs. The
second involved pre-teaching activities, which comprised three components—topics, terms,
and expectations. Unfamiliar terms were explained with descriptions and visual symbols
at a level suitable for students’ reading abilities. Clear guidance on session expectations
helped to alleviate anxiety and prepared students for activities. The third one was ses-
sion learning objectives, which were presented in two sets—one for informing teachers
about session targets and the other for students regarding achievable goals by the session’s
end. The objectives were designed to be measurable, attainable, and observable, accom-
modating visual, oral, and written comprehension and responses. Additional objectives
were added or removed as required. Instructional activities were simplified and broken
down into smaller, manageable sections to accommodate diverse student characteristics (vi-
sual/verbal/kinesthetic, individual/group work, various response modes, etc.). Modeling
activities were integrated to aid students in following along with teachers’ instructions and
provided options for independent study. The fourth one included visual handouts, which
were developed as step-by-step visual guides (totaling 24) to assist students in navigating
session tasks effectively. The fifth one involved instructional videos. Approximately 60 in-
dividual instructional videos were created for students preferring visual learning methods,
supplementing the instructional content [26]. The sixth one was reflection prompts, which
were provided in both verbal and visual formats within each session, allowing students to
reflect on the covered topics. The seventh component involved work evaluation rubrics
that were created for each session, aligning with learning objectives and designed to be
objective, observable, and measurable. The rubrics assessed student achievement across
three levels for each item: with physical assistance, with verbal/visual cues, and indepen-
dently. These adaptations aimed to enhance accessibility, understanding, and inclusivity in
the curriculum, catering to various learning preferences and needs among students.

3.2. Methodology

In this study, a total of twenty-four instructional sessions comprising four units were
covered for both control and experimental groups (see Figure 1). Each instructional session
was taught over two 45 min classes on two separate days of the week, spanning a period of
27 weeks from September 2021 to the end of April 2022 for both control and experimental
groups. The duration of the intervention was the same for both groups. While the control
group was exposed to the original curriculum, consisting of 4 units of 24 sessions in total,
the experimental group had the corresponding 4 units of 24 sessions from the experimental
accessible computing curriculum (see Table 1 for the units and topics covered over the
27 weeks). Two full-time teachers facilitated the implementation of the original curriculum,
and two full-time teachers facilitated the implementation of the accessible CT curriculum.
None of the four teachers involved had any experience teaching computing to students,
including students with ASDs.
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Figure 1. Visual representation of the experiment sessions as outlined in Table 1.

Table 1. Units and session topics covered in both accessible and original CT curriculums.

Unit Session Topics

1 Introducing Scratch, Scratch Accounts, Design Journal, Scratch Surprise, Scratch Studio, Critique Group
2 Programmed to Dance, Step by Step, Ten Blocks, My Studio, Debug It, About Me
3 Performing Scripts, Build-A-Band, Orange Square—Purple Circle, It’s Alive, Debug It!, Music Video
4 Characters, Conversations, Scenes, Debug It!, Create Construction, Pass It On

3.3. Analysis of Data

The analysis and scoring of students’ computing projects was carried out using
Dr. Scratch, a plugin inspired by Scratch and built on Hairball [27,28]. Dr. Scratch automati-
cally evaluates Scratch projects, analyzing the development of CTCs and identifying certain
bad programming practices. This specific plugin was selected because it provides insights
into students’ application of CTCs learned, encompassing aspects such as flow control,
data representation, abstraction, user interactivity, synchronization, parallelism, and logic.
Dr. Scratch assigns a score ranging from 0 to 3 points for each concept, culminating in
an overall score. These results were utilized to compare the two groups and determine
whether the adapted curriculum had any impact on students’ comprehension of CTCs.

Both experimental and control groups’ computing projects were analyzed to determine
the effectiveness of the accessible CT curriculum against the original one in improving
students’ learning of the CTCs (flow control, data representation, abstraction, user inter-
activity, synchronization, parallelism, and logic). Pearson product moment correlation
analyses were carried out to examine the gradual change in students’ computing projects
from the first to the last instructional session for both groups.

To determine if the experiment affected students’ learning of CTCs, as revealed in their
computing projects, a multivariate analysis (MANOVA) was conducted. The dependent
variables were the CTCs exhibited on students’ computing projects. MANOVA analyzed
the independent variable over each dependent variable individually and all together as
a combined construct. The level of significance (alpha) was set at 0.05. Wilk’s Lambda
was used to determine the overall multivariate significance of the dependent variables
on the groups. Furthermore, to determine whether the accessible CT curriculum had
any impact on students’ learning of individual CTCs (flow control, data representation,
abstraction, user interactivity, synchronization, parallelism, and logic), 2 × 2 ANOVAs
were run separately with the experimental and control groups as the independent variables
and each CTC as the dependent variable.

4. Results

4.1. Computing Project Scores

As seen in Table 2, students in the experimental group created a total of 138 projects,
while students in the control group created a total of 174 projects. Descriptive statistics
(see Table 2) showed that students in the experimental group had higher mean CTC scores
on flow control (1.74 vs. 1.55), synchronization (1.04 vs. 1.03), and parallelism (0.747 vs.
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0.640) than students in the control group. On the other hand, students in the control group
had higher mean CTC scores on data representation (0.918 vs. 0.865), abstraction (0.913 vs.
0.813), user interactivity (1.35 vs. 1.22), and logic (0.199 vs. 0.023).

Table 2. Descriptive statistics on CTC scores of computing artifacts.

School Mean Std. Deviation N

Flow Control
Experimental 1.74 0.358 138

Control 1.55 0.431 174

Data Representation Experimental 0.865 0.206 138
Control 0.918 0.283 174

Abstraction
Experimental 0.813 0.397 138

Control 0.913 0.398 174

User Interactivity Experimental 1.22 0.326 138
Control 1.35 0.290 174

Synchronization Experimental 1.04 0.868 138
Control 1.03 0.761 174

Parallelism
Experimental 0.747 0.520 138

Control 0.640 0.472 174

Logic Experimental 0.023 0.059 138
Control 0.199 0.216 174

Considering the test of between-subject effects (see Table 3), the two-factor ANOVA
showed a significant main effect on logic scores (F(1, 310) = 0.002, p < 0.05; partial eta-
squared = 0.265; power = 0.899). As a result, it can be concluded that the original CT
curriculum had a statistically significant impact on students’ learning of logic as compared
to the accessible CT curriculum.

Table 3. Test of between-subject effects (ANOVA).

Dependent
Variable

Type III Sum
of Squares df Mean Square F Sig. Partial

Eta-Squared
Observed

Power

Flow Control 0.302 1 0.302 1.96 0.172 0.059 0.273
Data
Representation 0.023 1 0.023 0.386 0.539 0.012 0.092

Abstraction 0.082 1 0.082 0.516 0.478 0.016 0.107
User Interactivity 0.138 1 0.138 1.43 0.240 0.044 0.213
Synchronization 0.000 1 0.000 0.000 0.987 0.000 0.050
Parallelism 0.095 1 0.095 0.383 0.541 0.012 0.092
Logic 0.256 1 0.256 11.2 0.002 * 0.265 0.899

Note: * p < 0.05.

In terms of the multivariate (MANOVA) test results (see Table 4), the original CT curricu-
lum was found to cause a statistically significant difference in all CTC scores as a composite
construct (F(7, 304 = 0.028, p < 0.05; Wilk’s Lambda = 2.78, partial eta-squared = 0.438; observed
power = 0.817). Therefore, it is safe to report that the original CT curriculum had a statistically
significant impact on students’ learning of CTCs as a single construct. Therefore, based on
the project scores, students in the control group who learned with the original CT curriculum
were more effective in applying their knowledge of the seven CTCs to their artifacts than
students in the experimental group who learned with the accessible CT curriculum.

Table 4. Test of between-subject effect (MANOVA) on all seven CTC scores as a single construct.

Effect Value F Hypothesis df Error df Sig. Partial Eta-Squared Observed Power

Wilks’ Lambda 0.562 2.78 7.00 308 0.028 0.438 0.817

4.2. Correlation Analyses

Regardless of the group they were in (the experimental or control), students devel-
oped 312 computing artifacts in 24 sessions. The Pearson product moment correlation
analyses between the seven CTCs (individually and collectively as a single construct)
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and the 24 sessions were conducted to understand how the gradual change over the
24 sessions occurred.

Since CTCs, throughout the research project, were implemented in progressively
increasing complexity and variety, students’ learning of CTCs as exhibited on their projects
was expected to show more in-depth and breadth coverage of the CTCs; that is, the
scores on CTCs, individually and collectively, were expected to show a correlation to the
progression of the sessions throughout the project year. This would reveal their progressive
improvements in learning CTCs, individually and collectively.

Table 5 shows the descriptive statistics for the CTC scores of the projects developed
by the students in both groups. The mean value (mean = 1.655) was the highest for flow
control, while it was the lowest (mean = 0.103) for logic. This means that students across
the two groups were able to apply their knowledge of flow controls (loops such as repeat,
forever, etc.) better than any other CTCs. The descriptive statistics also show that students
had difficulty learning logic (conditionals such as if, if-else, etc.).

Table 5. Descriptive statistics on correlations between computing projects and instructional sessions
in both groups.

Mean Std. Deviation N

Flow Control 1.655 0.399 20
Data Representation 0.888 0.241 20

Abstraction 0.858 0.394 20
User Interaction 1.284 0.312 20
Synchronization 1.034 0.808 20

Parallelism 0.699 0.494 20
Logic 0.103 0.174 20

Table 6 shows that there were statistically significant correlations between sessions and
data representation (r = 0.456, p = 0.001), abstraction (r = 0.494, p = 0.001), synchronization
(r = 0.650, p = 0.001), parallelism (r = 0.394, p = 0.05), and all CTCs as a combined construct
(r = 0.754, p = 0.001). This indicates that both accessible and original CT curriculums were
statistically significant in gradually improving the application of students’ knowledge in
data representation (data, variables, values, etc.), abstraction, synchronization (such as the
use of wait, wait until, etc. blocks), and parallelism, as well as all CTCs combined.

Table 6. Correlations between CTCs and sessions across groups.

CTC Type Pearson Correlation Sig (2-Tailed) N (Sessions)

Flow Control 0.043 0.811 24
Data Representation 0.456 0.008 ** 24

Abstraction 0.494 0.003 ** 24
User Interaction −0.103 0.568 24
Synchronization 0.650 <0.001 ** 24

Parallelism 0.394 0.023 * 24
Logic 0.185 0.301 24

All CTCs 0.754 <0.001 ** 24
Note: * p < 0.05; ** p < 0.01.

Separate Pearson product moment correlations were calculated between sessions and
CTCs, individually and combined, for each group to look at the gradual increase for each
group. Descriptive statistics (see Table 7 below) for students in the experimental and
control groups showed that the mean CTC value for both groups was the highest for flow
control (experimental = 1.74; control = 1.55) and the lowest for logic (experimental = 0.02;
control = 0.2). This means that both CT curriculums were the most and least successful in
improving the application of students’ knowledge of flow control and logic, respectively.
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Table 7. Descriptive statistics for individual groups.

Experimental Group Control Group

Mean Std. Deviation N Mean Std. Deviation N

Flow Control 1.74 0.36 18 1.55 0.43 15
Data

Representation 0.86 0.21 18 0.92 0.28 15

Abstraction 0.81 0.40 18 0.91 0.40 15
User Interaction 1.22 0.33 18 1.35 0.29 15
Synchronization 1.04 0.87 18 1.03 0.76 15

Parallelism 0.75 0.52 18 0.64 0.47 15
Logic 0.02 0.06 18 0.2 0.22 15
Total 6.46 1.41 18 6.61 1.42 15

Based on the results of the Pearson product moment correlations (see Table 8 below),
there were statistically significant correlations between sessions and data representation
(r = 0.509, p = 0.05), sessions and synchronization (r = 0.611, p = 0.001), and sessions and
all CTCs as a combined construct (r = 0.678, p = 0.001) for students in the experimental
group. In comparison, there were statistically significant correlations between sessions and
abstraction (r = 0.617, p = 0.05), synchronization (r = 0.720, p = 0.001), and all CTCs as a
combined construct (r = 0.852, p = 0.001) for students in the control group.

Table 8. Correlations between CTCs and sessions for individual groups.

Experimental Group Control Group

CTC Type Corr. Sig (2-Tailed) N Corr. Sig (2-Tailed) N

Flow Control −0.133 0.600 19 0.293 0.289 15
Data Representation 0.509 0.031 * 19 0.408 0.131 15

Abstraction 0.385 0.114 19 0.617 0.014 * 15
User Interaction −0.057 0.824 19 −0.237 0.396 15
Synchronization 0.611 0.007 ** 19 0.720 0.002 ** 15

Parallelism 0.420 0.083 19 0.398 0.141 15
Logic −0.014 0.956 19 0.245 0.378 15

All CTCs 0.678 0.002 ** 19 0.852 <0.001 ** 15

Note: * p < 0.05; ** p < 0.01.

5. Discussion

This study aimed to determine the effectiveness of an accessible CT curriculum for
students with ASD in improving their learning of CTCs (flow control, data representation,
abstraction, user interactivity, synchronization, parallelism, and logic). Students’ learning
of CTCs was assessed via the scores of computing projects developed by them. The inde-
pendent variable was the experimental group taught using the accessible CT curriculum,
and the control group attending the session under the original CT curriculum.

Students in both groups were equal in their knowledge of CTCs at the pretest. Students
developed a total of 312 (138 in the experimental and 174 in the control group) computing
artifacts in this research project. The analysis of these artifacts indicated that the original CT
curriculum had a statistically significant impact on students’ learning of logic as compared
to the accessible CT curriculum. Additionally, when all seven CTCs were examined, it
was found that the original CT curriculum was statistically significantly more effective
than the accessible CT curriculum in helping the students learn the seven CTCs as a single
construct. This unexpected result may be attributed to the fact that the participating
classroom teachers in the control group who implemented the original CT curriculum
were not prevented from making their own modifications to the curriculum as they saw fit,
based on the characteristics of their students. Some of the modifications applied by these
teachers to the original CT curriculum included utilizing symbols, dividing the instructions
into smaller sections, simplifying the instructional language, and eliminating some of
the sessions due to their complexity. This is evident by the results that, regardless of the
groups to which the students belonged, the research project made a statistically significant
impact on students’ learning of CTCs as a single construct and on their learning of data
representation, abstraction, synchronization, and logic, individually.
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When projects developed by students in both groups were correlated over the 24
sessions, statistically significant correlations were found between sessions and data repre-
sentation, abstraction, synchronization, parallelism, and all CTCs as a single construct. This
indicates that disregarding the group membership, the research study yielded statistically
significant results highlighting a gradual improvement in students’ learning of CTCs in
data representation, abstraction, synchronization, parallelism, and all CTCs as a combined
construct, as exhibited in their computing projects.

When the correlations were analyzed for each group, it was found that both the acces-
sible and the original CT curriculum were statistically significantly effective in gradually
increasing students’ learning of CTCs in synchronization and all CTCs combined. Ad-
ditionally, the accessible and original CT curriculums were more effective in improving
students’ learning of data representation and abstraction, respectively, as revealed in their
computing projects.

These findings have several implications for computing curriculum design and de-
velopment for students with ASD. First and foremost, students with ASD can effectively
learn computing to contribute to the field of computing in every aspect on an accessible
curriculum or on a curriculum designed for mainstream students as long as it is adjusted
by a certified classroom teacher for students with ASD when being delivered. Secondly, the
findings imply that more effective instructional methods must be explored for delivering
flow control and logic, the two concepts that did not show significant improvement over the
24 sessions. Thirdly, this study shows that, for students with ASD, it is easier to learn flow
controls (loops such as repeat, forever, etc.) and more difficult to learn logic (conditionals
such as if, if-else, etc.) than any other CTCs on a CT curriculum that is adjusted based on
their learning characteristics.

Specifically, the computing projects developed by the students had a mean score of
1.74 on flow controls, which corresponds to the 58th percentile in Dr. Scratch’s [28] scoring
system. Dr. Scratch [28] assigns each concept a score between 0 and 3 points. This score
(1.74) indicates that students were able to control the behavior of characters by managing
the flow of their programs. For instance, they utilized “repeat-until”, “wait”, “forever”,
“wait-until”, and “repeat-until” blocks to control program flow and character behavior. For
example, they made the Scratch cat character jump a certain number of times using loops.

On the other hand, the projects developed by the students revealed a score of 0.23 on
logic, indicating difficulty integrating logic-related blocks into their computing projects.
In other words, they struggled with using even the most basic logic block, such as “if”,
in their projects. “if-else” and multiple “if” or “if-else” blocks were not utilized at all.
Consequently, students were unable to program their characters to behave differently based
on certain conditions, such as making the character bounce if it hits the boundaries of the
stage, or utilizing multiple conditions to have their characters behave differently based on
the respective condition, such as bouncing back if it touches the boundaries of the stage or
disappearing if it touches another character on the stage.

A future study may be conducted to see if an accessible computing curriculum would
be effective in grade levels other than seventh grade, which was the subject of this study.
Involving a larger number of students may lead to different results in terms of students’
learning of CTCs, which also requires further exploration. Finally, in a future study, it
is worth finding if there is a statistically significant correlation between sessions and an
increase in students’ project scores, indicating their development of fluency in the CTPs
affected by the curriculum.

Limitations in this study included the nature of students with ASD, particularly
the fact that each student with ASD is unique. The study comprised all seventh-grade
students who volunteered to participate without any exclusion criteria, and those who
continued to participate were permitted to stay in the project. The data generated by these
students were included in the study, which might have influenced the results. Furthermore,
the experimental and control groups originated from two different schools with different
teachers. The implementation of the computing curriculums varied in these two schools due
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to differences in teachers, administration, staffing, and available equipment and facilities.
Therefore, these discrepancies may have influenced the results.
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