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Abstract: The Amazon Basin is the largest rainforest in the world, and studying the rainfall in this
region is crucial for understanding the functioning of the entire rainforest ecosystem and its role in
regulating the regional and global climate. This work is part of the application of complex networks,
which refer to a network modeled by graphs and are characterized by their high versatility, as well as
the extraction of key information from the system under study. The main objective of this article is to
examine the precipitation system in the Amazon basin during the austral summer. The networks
are defined by nodes and connections, where each node represents a precipitation time series, while
the connections can be represented by different similarity functions. For this study, three rainfall
networks were created, which differ based on the correlation function used (Pearson, Spearman, and
Kendall). By comparing these networks, we can identify the most effective method for analyzing the
data and gain a better understanding of rainfall’s spatial structure, thereby enhancing our knowledge
of its impact on different Amazon basin regions. The results reveal the presence of three important
regions in the Amazon basin. Two areas were identified in the northeast and northwest, showing
incursions of warm and humid winds from the oceans and favoring the occurrence of large mesoscale
systems, such as squall lines. Additionally, the eastern part of the central Andes may indicate an
outflow region from the basin with winds directed toward subtropical latitudes. The networks
showed a high level of activity and participation in the center of the Amazon basin and east of
the Andes. Regarding information transmission, the betweenness centrality identified the main
pathways within a basin, and some of these are directly related to certain rivers, such as the Amazon,
Purus, and Madeira. Indicating the relationship between rainfall and the presence of water bodies.
Finally, it suggests that the Spearman and Kendall correlation produced the most promising results.
Although they showed similar spatial patterns, the major difference was found in the identification
of communities, this is due to the meridional differences in the network’s response. Overall, these
findings highlight the importance of carefully selecting appropriate techniques and methods when
analyzing complex networks.
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1. Introduction

Rainfall is crucial for human development, supporting agriculture, water supply, hy-
droelectric energy generation, and other industrial and economic activities. The availability,
intensity, and distribution of rainfall directly influence the resilience and sustainability of
society at large. Understanding the dynamics of precipitation systems becomes even more
critical when it comes to assessing the potential for extreme events and comprehending
their origins, development, and potential impacts. This knowledge is crucial for predicting
and mitigating adverse effects like extreme rainfall events. Extreme events, serving as
natural responses to atmospheric disturbances, have a vital function in regulating Earth’s
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climate through various physical and thermodynamic mechanisms [1,2]. Therefore, the in-
vestigation of atmospheric mechanisms and their influence on precipitation is crucial,
especially in regions where multiple such mechanisms are present, as is the case in South
America. One notable region is the Amazon Basin, renowned for its immense biodiver-
sity, ecological significance, and crucial role in global climate regulation [3]. This tropical
rainforest generates a substantial portion of the world’s oxygen and absorbs significant
amounts of carbon dioxide, thereby mitigating the impact of climate change [4,5]. Through
evapotranspiration, the Amazon Basin significantly contributes to local and regional pre-
cipitation patterns. Preserving this vital ecosystem is intrinsically linked to maintaining
rainfall patterns, with cascading effects on the surrounding regions.

Given the importance of the Amazon Basin, this study employed complex networks
as the method to analyze rainfall. A complex network is a powerful mathematical and
computational tool based on graph theory, utilized for studying complex systems. In this
context, a network is a representation of interconnected elements, often referred to as nodes,
with links or edges connecting them. Nodes symbolize individual entities, while links
describe the relationships, interactions, or connections between them. It is crucial to note
that not every network qualifies as a complex network; rather, complex networks exhibit
specific non-trivial statistical and topological properties absent in simple networks [6].

Due to their high application versatility, we could find complex networks in various
disciplines. In Meteorology, the nodes normally represent a time series of different vari-
ables like geopotential height 500 hPa [7,8], moisture flux [9], rainfall [10–12], drought [13],
extreme rainfall [14–16], sea level pressure [17], sea surface temperature [8,18,19] and wind
components [20], and others [21,22]. In relation to the connections between nodes (edges),
we can use different similarity functions, which may vary depending on the analysis
objectives and the nature of the data. For example, Pearson correlation coefficient [10],
cross-correlation [23,24], Spearman’s rank correlation [9], Kendall’s rank correlation [17],
mutual information [25], event synchronization [26], reconstructed vectors in the phase
space [12], and time warp edit distance [27]. Each of these similarity functions offers a
unique perspective on the relationships between nodes and can provide relevant informa-
tion about climate dynamics and patterns in the network. Complex networks have yielded
significant results, particularly in understanding atmospheric teleconnections [14,28,29]
and monsoon systems [16,26,30,31]. By examining the system’s behavior and the trans-
mission of information in response to disturbances, complex networks provide valuable
insights associated with its connections [20,32]. Additionally, the identification of groups
that exhibit similar behaviors and possess strong internal links [33–35]. There are also
different studies of complex networks applied to obtain a better understanding of the
precipitating system [14,36].

The main objective of this work is to compare three networks constructed from daily
summer rainfall data in the Amazon Basin. The networks are defined by different cor-
relation functions (Pearson, Spearman, and Kendall) employed to establish connections
between the nodes. The aim is to conduct a comparative analysis of the results. Finally,
in addition to extracting key information about the precipitation patterns in the Amazon
Basin, we could determine which of these networks yielded the most robust results by
comparing the index and communities. Analyzing these aspects allows us to understand
how each network represents precipitation dynamics. These insights can prove valuable in
various fields, including meteorological modeling, hydrology, weather/climate forecast-
ing, and the identification of suitable areas for installing new rain gauges. This paper is
structured as follows: Section 2.1 introduces the study area, Section 2.2 presents the dataset
used in this work, and Section 2.3 outlines the method employed for network construction,
similarity functions, measures, correction, and analysis. Section 3 contains the study’s
results, and finally, Section 4 is dedicated to the conclusion.
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2. Materials and Methods
2.1. Study Region

The Amazon Basin (Figure 1) is known as the largest tropical forest and hydrological
system in the world [37]. This region, encompassing approximately 6 million km2, extends
over parts of Bolivia, Brazil, Colombia, Ecuador, Guyana, Peru, Suriname, and Venezuela.
It is renowned for being an indispensable source of heat exchange with the atmosphere,
particularly due to the high rate of evapotranspiration and providing humidity, which
creates favorable conditions for the formation of tropical and extratropical convective
systems, playing a crucial role in regional circulation [38–41]. The Amazon Basin also
exhibits similarities with oceanic convection [42] and holds significant importance in
various aspects, such as global/regional climate regulation, modulation of the hydrological
cycle, and water purification [43–45].

Figure 1. Mean daily summer rainfall (mm/day) for Amazon basin from 2000 to 2021. The thick and
thin black lines represent the Amazon Basin and the country borders, respectively, while the light
blue lines indicate the rivers.

2.2. Data

The Integrated Multi-satellitE Retrievals for GPM (IMERG) is a product resulting
from the combination of the Tropical Rainfall Measuring Mission (TRMM) and the Global
Precipitation Measurement Mission (GPM). It plays a crucial role in the analysis and
retrieval of precipitation data, offering valuable information about rainfall patterns and
distribution on a global scale [46]. We used the Final Precipitation L3 daily product
from IMERG, where the rainfall rate in this product is represented in millimeters per day
(mm/day), and it has a native spatial resolution of 0.1◦. However, for computational
limits, the spatial resolution was downgraded to 0.5◦. For this work, the non-rainfall day
is defined as any value below 1 mm/day [47,48]. The data period used is from December
2000 through February 2021, using only the austral summer months (December, January,
and February).

2.3. Networks Construction

A functional climate network is composed of a set of nodes that represent a time series
of a specific climatic variable (temperature, rainfall, pressure, wind component, etc.) and
are embedded on the Earth’s surface position (latitude, longitude) and the presence or
absence of connection between nodes, called edges [49]. In this study, each node in the
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network is represented by a daily summer rainfall series (mm/day) associated with latitude
and longitude coordinates corresponding to each point on the 0.5◦ spatial IMERG grid.
The Pearson, Spearman, and Kendall correlations used to define the three precipitation
networks are commutative, indicating that the correlation between nodes i and j is the
same as between j and i. As a result, undirected networks were obtained, allowing the
identification of differences within these networks.

2.3.1. Similarity Functions

The rainfall networks were constructed using daily precipitation time series. We
created three different networks using Pearson, Spearman, and Kendall correlations, be-
cause the comparison of the results allows us to assess how each metric responds to
the dynamics of precipitation. Therefore, sensitivity analysis helps in identifying which
correlation function is more robust or suitable for capturing patterns present in the rain-
fall data. By evaluating the performance of these correlation functions, we gain insights
into their strengths and limitations, enabling us to make informed decisions about the
most appropriate metric for our study and improve the reliability and interpretability of
our results.

The Pearson correlation coefficient, also known simply as Pearson correlation, is a
statistical measure that evaluates the linear relationship between two continuous variables
and is widely used to assess the strength and direction of this relationship. This metric is
defined as follows:

r = ∑(Xi − X̄)(Yi − Ȳ)√
∑(Xi − X̄)2

√
∑(Yi − Ȳ)2

(1)

where Xi and Yi are the individual values of variables X and Y, respectively, while X̄ e Ȳ
are the means of each series. It should be noted that Pearson correlation is a parametric
technique. This means that it assumes a specific distribution for the variables involved,
in this case, a normal distribution. Applying Pearson correlation to data that does not
follow a normal distribution can compromise the interpretation and introduce artificial
bias into the results. In the case of rainfall times series, this often does not follow a
normal distribution, which can lead to an inadequate interpretation. To address this issue,
the methodology proposed by Ciemer et al. [11] was used. It allows for reducing artificial
bias and obtaining a more accurate estimate of the Pearson correlation between variables
such as precipitation.

Spearman’s correlation or Spearman’s rho, is a non-parametric statistical measure
for assessing the linear relationship between two variables. Spearman’s rho considers the
monotonic relationship between variables, meaning that one variable consistently increases
or decreases with the other regardless of the shape of the relationship. Similar to Pearson’s
correlation, Spearman has a range from −1 to 1, and is defined as follows:

rs = 1 − ∑t
i=1(ai − bi)2

n(n2 − 1)
(2)

where ai and bi are the ranks of x e y, respectively, while n is the number of observations.
This correlation is based on the ranking of the variables, as each variable is individually
ranked and then the differences between these rankings are calculated to capture non-
linear relationships.

Kendall’s correlation is also a non-parametric statistical measure used to assess the
relationship between two ordinal variables. Similar to Spearman’s correlation, Kendall’s
correlation is based on the ranks of the observations for each variable. This measures the
agreement between the rankings of the two variables, indicating whether the observations
tend to have a consistent order between the variables. Kendall’s correlation does not
assume any specific functional relationship between the variables, making it suitable for
capturing non-linear and monotonic relationships. Kendall’s correlation is computed based
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on the number of concordant and discordant pairs, which are defined according to the
following conditions. A pair is considered concordant if xi > xj and yi > yj or xi < xj
and yi < yj. A pair is considered discordant if xi > xj and yi < yj or xi < xj and yi > yj.
Otherwise, the pair is neither concordant nor discordant. Kendall’s correlation coefficient
is defined as:

τk =
NC − ND
n(n − 1)/2

(3)

where NC and ND are the numbers of concordant and discordant pairs, respectively, while
n is the number of observations. Like Pearson and Spearman, Kendall’s correlation ranges
from −1 to 1, where +1 indicates a perfect concordance between the rankings, −1 indicates
a perfect discordance, and 0 represents no concordance.

2.3.2. Adjacency Matrix

Once the similarity functions for the rainfall networks have been defined, the next
step is to calculate the connections between all pairs of vertices, resulting in an N × N
connectivity matrix. After calculating the correlations between all possible vertex combi-
nations, a threshold was set to define the strongest connections. This threshold defined
as the minimum link value (MLV) was determined using the 98th percentile of the con-
nections [50], and this criterion was applied to all networks. Values equal to or above
this MLV are classified as 1, while values below are classified as 0. Thus, the resulting
network contains only the strongest connections (2% of the total). It is important to note
that self-loops, represented by the main diagonal of the adjacency matrix, are excluded.

2.3.3. Network Measures

Some indices provide relevant information about the system of interest. In this study,
the following indices were applied: The Average Neighbor Degree (AND), which indi-
cates the average degree of the neighbors of a given vertex [51]. This measure provides
information about the connectivity of a node’s neighbors and helps to understand the
neighborhood structure. This measure gives an idea of how the neighboring nodes of a
particular node are connected to each other nodes. Another index used was the Mean Geo-
graphical Distance (MGD), which refers to the average physical distance between a node
and its neighbors, taking into account their geographic locations. In some cases, geographic
distance can play a significant role in network connectivity or influence the relationships
between nodes [50,52]. MGD can be utilized to analyze spatial patterns or identify potential
regions, indicating areas with local or regional influences. The third index used was the
Degree Centrality (DC), which indicates the importance of a node based on the number of
links it has [53]. In other words, DC measures how central or influential a node is within
the network, taking into account its degree, which is the number of links connected to it.
The higher the DC value of a node, the more important it is in terms of connections within
the network. A node with a high DC has a large number of links, indicating that it plays a
crucial role in communication and information transfer within the network. The Degree
value and the Importance of Lines (DIL) index provide information about the participation
or importance of nodes, taking into account their degree and the importance of the links
they participate in [54]. It identifies highly participatory vertices in terms of network activ-
ity. The DIL allows us to understand the vertex participation in terms of its degree and the
number of triangles in which the node participates, providing information about the overall
structure and dynamics of the network, including the identification of influential nodes and
critical connections for information propagation. The last index used was the Betweenness
Centrality (BC), an important centrality metric due to the information it provides. BC is
defined as the proportion of shortest paths that pass through a particular node compared
to the total number of shortest paths in the network [50]. BC indicates the ability of a
node to act as an intermediary in the transmission of information or flow of resources
through the network. This metric is valuable for identifying the most participatory paths
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and bridges that connect different parts of the network. By calculating the betweenness
centrality of each node, we can identify those nodes that act as key intermediaries in the
flow of information between other nodes in the network.

2.3.4. Community Identification

Typically, a network can be composed of subgroups with a high degree of internal
connectivity that exhibit distinct behaviors compared to the rest of the nodes in the network.
These subgroups are known as communities. Communities often have different charac-
teristics and provide important information about the dynamics of the network. There
are different methods to identify communities [33]. However, in this study, we applied
one of the most commonly used methods, the Greedy Modularity Maximization [55]. This
method is based on the application of modularity (Q) [56,57]. Modularity is a measure that
evaluates the community structure in the network and quantifies how well the network is
divided into distinct communities. This means that vertices within each community are
densely connected to each other, while there are fewer connections between communities.
Higher values of modularity indicate a more pronounced community structure.

2.3.5. Surrogates

The mechanisms that influence climate and weather are not limited by political bound-
aries or artificial divisions of study areas. These restrictions can affect connections and have
an influence on centrality measures, also known as spatial embedding. To correct this effect,
we create 100 sets of artificial daily rainfall series from the Fourier transform, called sur-
rogates [58]. These surrogates are artificially generated data designed to preserve specific
properties or statistical characteristics of the original data series. Within these networks,
spatially corrected indices were calculated, and their average values were determined.
Subsequently, these values were divided by the corresponding values from the original
measurements, resulting in the corrected indices. The index values were normalized to fall
within the [0, 1] range after correction.

2.3.6. Cohen’s d Value

After defining the rainfall networks, the analysis begins by examining the differences
in the degree distribution. This involves applying Cohen’s d value, which quantifies the
comparison between distributions [59]. The value represents the standardized difference
between the means of two distinct groups, indicating the number of standard deviations
between them.

3. Results

This section presents the results obtained from the three networks. Figure 1 shows the
limits of the Amazon basin as well as the mean daily summer rainfall. The areas with the
highest rainfall values in the region, located east of the central Andes, are known as the
Peruvian and Bolivian precipitation hotspots [60].

The degree of a node represents the number of edges connected to that node and
also provides information regarding its importance or potential influence on the network.
Figure 2 illustrates the degree distribution. In this figure, it can be observed the notable
difference between Pearson with the other two networks. Pearson exhibits a scarcity
of vertices with high degrees, reaching a maximum of 11, while Spearman and Kendall
continue to show probabilities of degrees exceeding 10, with maximum degrees of 27 and
25, respectively.

The distributions show that the Pearson network has a much lower mean than that of
Spearman and Kendall but with a much higher probability of occurrence. This indicates
that Pearson has much lower degrees than the other two networks but values close to its
average occur much more frequently. In this way, Pearson exhibits a more fragmented
network with low variability in connectivity. In the case of Spearman and Kendall, they
exhibit similar distributions, with Spearman showing higher mean and maximum values.
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These distributions yield a Cohen’s d value equal to 0.52 but are not considered significantly
equal based on a Kolmogorov–Smirnov test.

Meanwhile, Pearson presents a Cohen’s d value equal to 1.73 with Spearman and 1.181
with Kendall. Therefore, the three networks demonstrate different degree distributions.
This highlights that, according to Cohen’s d value, the Spearman and Kendall distributions
are closer compared to Pearson.

Figure 2. Degree distribution of Pearson, Spearman, and Kendall networks. Dashed lines represent
the mean of each distribution.

The results of different indexes are presented in Figure 3. These encompass compo-
nents for the normalized AND, MGD, and DC. These indexes enable us to identify central
and influential regions in terms of their connections. We can observe that the three networks
exhibit similar spatial structures, with the biggest difference being presented in Pearson.
Specifically, in the northern regions, both Spearman and Kendall show well-defined regions,
while Pearson exhibits lower connectivity.

Comparing the structure of Pearson with Spearman and Kendall, it can be noted
that Pearson underestimates or minimizes the activity of the northern region, mainly the
northeast of the basin, but shows a signal near the mouth of the Amazon River (Figure 3a).
These lower connectivity values in the northern region indicate weaker connections between
neighboring nodes. In the case of Spearman and Kendall, well-defined regions with dense
neighborhoods are observable (Figure 3b,c,e,f). These indexes reveal the presence of two
regions in the north of the Amazon basin and one region to the southeast of the central
Andes. Pearson also indicates this spatial distribution but in a more generalized way, as it
fails to adequately highlight the specific regions pointed out by Spearman and Kendall.

The more common region between the three networks is the eastern Andes, where
they all show a similar spatial pattern, particularly above the Bolivian hotspot. This
similarity can be attributed to the intense precipitation in the region and the predominantly
southward direction of low-level flow caused by the presence of the Andes. As a result,
a well-defined behavior is observed in this region across all networks. It is important to
note that although Spearman and Kendall show a high degree of similarity in AND, they
exhibit a noticeable meridional difference (north-south), particularly over the northern part
of the Amazon basin. For MGD, The maximum distances recorded were 90 km, 95 km,
and 105 km for Pearson, Spearman, and Kendall, respectively. These results reflect another
fact that the Pearson network has shorter connections, indicating a bit lower distance
connections compared to the other two networks. The Spearman network has longer
connections, which may be related to its identification of active regions with larger areas.
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The DC results show that the Kendall network provided the highest values,
mainly distributed over and south of the Amazon River, as well as east of the central
Andes (Figure 3g–i).

As for Pearson and Spearman, they maintain almost the same spatial distribution as
the AND and MGD indices. These results indicate how Spearman and Kendall are able
to identify well-defined regions associated with higher activity within the Amazon Basin,
whereas Pearson provides a more generalized response.

Figure 3. Normalized results using the maximum value of the respective index in relation to the
three networks (Average Neighbor Degree, Mean Geographical Distance, and Degree Centrality),
for Pearson (a,d,g), Spearman (b,e,h), and Kendall (c,f,i).

In Figure 4, it can be observed that the Pearson network highlights areas with medium
DIL values in the major part of the basin. In contrast, the results of Spearman and Kendall
show a notable difference as they do not exhibit an almost spatially homogeneous DIL
distribution, where both networks indicate three well-defined regions. Instead, they show
the presence of distinct regions in the north and southeast of the basin. However, all
three networks reveal areas related to the spatial structure of moisture transport. Spear-
man and Kendall’s networks particularly emphasize the entry and exit regions of the
moisture flow [61].

Three main regions are identified for Spearman and Kendall. The first region, located
in the northeast of the basin, extends from the mouth of the Amazon River and covers a
larger spatial extent. The second region, located in the northwest, is the smallest. These
regions are associated with the influx of warm and humid air from the Tropical Atlantic
Ocean, which contributes significantly to positive moisture divergence [62–64]. These
regions to the north of the basin are also related to an intensification of the ascending
branches of the Hadley and Walker circulations [65]. The third region is situated in the
southwest of the basin, specifically east of the Andes. This region can be considered as a
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sink of the Amazon basin, where winds travel from the eastern part of the central Andes
towards the extratropics of the continent [40,41,66].

The results suggest that these three regions have a concentration of nodes with higher
degrees, indicating that they are more active or influential areas within the rainfall Ama-
zon networks.

Figure 4. Normalized Degree and important lines (DIL) for (a) Pearson, (b) Spearman, and (c) Kendall
networks.

Therefore, the two northern areas would be related to rainfall over the central region
of the basin, while the third region in the southeast could be interpreted as a response
to the flow coming from the central region. The spatial distribution of rainfall displayed
in previous results is closely related to the presence of the South American Monsoon
System (SAMS). This distribution pattern is more evidenced by the Spearman and Kendall
networks, which is consistent with other studies that have investigated the dynamics of the
SAMS in the region [20,40,41,66].

In addition to analyzing the importance of individual vertices, it is also relevant to
investigate the existence of predominant paths that are frequently used in information
transmission. This analysis is conducted using the BC. The results of BC are presented
in Figure 5, where the three networks exhibit more common paths for information trans-
mission in the basin. These systems begin with the arrival of east winds at lower levels,
which provide moisture and promote convective activity, resulting in increased rainfall in
the region [67]. As convection produces more precipitation, evapotranspiration increases
the humidity of the atmosphere at low levels, while easterly winds carry moisture towards
the Andes [68,69]. This phenomenon explains the high BC values observed in the central
part of the Amazon basin. Additionally, when these precipitating systems from the North
Atlantic Ocean reach land, they provide high BC values near the mouth of the Amazon
River in the northeast region of the basin [50]. This observation is directly related to the
previous results of DIL, as shown in Figure 4.

It is evident that Pearson exhibits higher values of BC focused in the south center of the
region, mainly between the Purus and Madeira rivers, while Spearman and Kendall show a
more distributed response. This suggests that Spearman and Kendall have paths covering
a larger area of the Amazon basin, displaying a broader distribution. This, in turn, implies
that Spearman and Kendall appear to form much more interconnected networks, indicating
a greater number of nodes participating in the transmission of information. The three
networks show a significant response of BC in the south region of the Amazon River,
indicating a major activity of rainfall. As mentioned by Anselmo et al. [70], the authors
suggest that during the austral summer, the most intense rainfall activity is primarily
observed south of the Amazon River. This pattern is associated with high levels of surface
water elevation in the rivers over the central and west-central of the basin [71].
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Figure 5. Normalized Betweenness centrality (BC) for each network (a–c), while (d) shows the main
rivers in the Amazon basin, represented by the black lines.

The networks also exhibit a good response to the presence of the Andes, displaying
a well-defined path. This is evident from the high BC values observed to the east of the
central Andes, which indicate the strong influence of orographic rainfall processes in the
region [40,41,72]. Pearson exhibits low BC values in the eastern part of the basin localized
in the northeast of Mato Grosso (52.5◦ W–57.5◦ W and 10◦ S–15◦ S), while Spearman and
Kendall show a moderate BC activity over this region. This region is known for the presence
of mesoscale convective systems, where these events are propagated westward [70].

Furthermore, it can be observed that certain BC values are elevated around rivers,
suggesting a potential response to the influence of water bodies on precipitation. This
interaction between river, land, and precipitation is recognized as the breeze effect. This
phenomenon is notably associated with an increased incidence of rainfall events during the
morning and nighttime hours in the rivers and their vicinity [73–75], with a subsequent
decrease observed in the afternoon [76,77]. This phenomenon is influenced by temperature
disparities between land and water, which create air circulation patterns that result in cloud
formation and subsequent rainfall. Essentially, in the early morning hours, the temperature
of the river surface tends to be higher than that of the land surface, initiating upward air
movement over the water and subsidence over the land. This convective effect enhances
rainfall over the river surface.

From this response of BC in the presence of rivers, we can identify that rivers within
the Amazon basin exhibit the highest BC values. The three networks show different
regions with better responses between the BC and rivers. For instance, the Amazon River
exhibits a good response to BC values in the three networks. Pearson and Kendall reveal
a pronounced association of BC with the Purus, Madeira, and Juruá rivers. Kendall also
demonstrates more BC activity to the north of the Negro river, suggesting that this network
assigns greater importance to this particular region.
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Spearman indicates a strong relationship with Purus, Madeira, and Marañón rivers.
Notably, Spearman exhibits a pattern where the behavior of BC aligns more closely with the
rivers. To assess the response of BC activity over rivers, two groups of nodes were defined
based on whether they were located on a river or not, considering only BC values greater
than the 50th percentile. The results are presented in Figure 6. It is evident that all networks
illustrate how nodes with river presence (represented by boxes with dark colors) exhibit
higher mean and median BC values compared to nodes without river presence (represented
by boxes with light colors). These results demonstrate how all three networks are capable of
producing outcomes associated with the presence of rivers, with more pronounced results
in the Spearman and Kendall.

Figure 6. Boxplot of Betweenness centrality using only values greater than or equal to the respective
network median (50th percentile). The dark and light boxplot colors represent the node groups with
and without the presence of rivers, respectively.

The BC in the networks highlights the common paths of precipitating events. Spear-
man, in particular, demonstrates a more pronounced relationship between the BC and river
presence, whereas Pearson focuses more on the center of the basin. Kendall also exhibits a
parallel-river behavior but tends to follow a more traverse-river path. Beyond the boxplot
results in Figure 6, it becomes evident that Spearman better captures the association with
river locations, particularly in relation to the land-river breeze effect. It is important to note
that not all information transport processes can be exclusively linked to rivers. Precipitation
events in these regions are also influenced by large-scale circulation and thermodynamic
processes at different atmospheric levels, especially in connection to mesoscale convec-
tive events. Further studies using additional variables to represent these processes are
still necessary.

Figure 7 illustrates the results of community identification. In the northeastern part
of the Amazon basin, Pearson identified three distinct communities (PE1, PE3, and PE5),
while the Spearman and Kendall networks each identified one community (SP3 and KE1,
respectively). In the northwest region, Pearson identified communities PE2 and PE4, while
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Spearman identified SP2 and SP4, and Kendall identified KE2. Regarding the eastern
Andes, the Pearson network divided this region into two distinct communities.

In the north of the central Andes, one community (PE11) is identified, while the other
community encompasses the Peruvian and Bolivian precipitation hotspots (PE13). This
division into two communities may be attributed to the linear response of Pearson or to the
artificial bias [11], influenced by the high rainfall values, which are characteristic of these
two regions, leading to a higher degree of local connectivity. In contrast, Spearman and
Kendall identified only one community in this region (SP7 and KE6, respectively).

Figure 7. Daily summer rainfall communities identified for (a) Pearson, (b) Spearman, and (c) Kendall
networks.

Spearman and Kendall’s networks exhibit a similar spatial distribution of communities,
particularly in the northeast (SP1, SP3, and KE1), southeast (SP5 and KE4), and east (SP7
and KE6) of the Amazon basin. It is interesting to note that SP1 is included within the
KE1 community. This is because the region defined by SP1 exhibits very low mean rainfall
values (this can be observed in Figure 1). This indicates that Spearman has a greater
sensitivity to the precipitation regime (intensity) and is able to identify this region as a
separate community within the network. However, differences arise in the northwest
region, where Spearman presents a large community to the southeast (SP4), while Kendall
divides this region into two communities, one directly representative of the north (KE2) and
the second defines much of the center of the Amazon basin (KE3). The analysis of rainfall
communities emphasizes the distinctions between networks. As expected, Pearson tends
to generate smaller communities, reflecting the network’s lower degree of connectivity.
This characteristic is particularly noticeable in the eastern Andes. In contrast, Spearman
and Kendall identify a well-known corridor of the low-level jet stream (SP7 and KE6),
producing a community that better represents the local dynamics.

Based on the preceding results, we observe similar behaviors in Spearman and Kendall.
However, to further analyze the distinctions between these two networks, Figure 8 illus-
trates the differences in normalized indices. Positive values indicate a predominance of
the Spearman, while negative values indicate stronger indices from the Kendall. Figure 8a
reveals that Kendall displays higher values at the extremes in the north and south of the
basin, while Figure 8b shows this only in the north. This observation may be attributed
to the specific characteristics of these regions, such as the lower average rainfall amounts
highlighted in the Amazon basin. As mentioned earlier, Spearman exhibits higher sensitiv-
ity to rainfall regimes compared to Kendall, and this difference is noticeable in the region
defined by 60◦ W–65◦ W and 5◦ N–0◦ (north of Roraima State). In Figure 7, this region is
identified as part of the blue community for Kendall (KE1), indicating a low rainfall rate
within the community associated with moisture influx from the North Atlantic. However,
Spearman excludes this region from the community associated with moisture influx (SP3).
This distinction in community assignment underscores the contrasting responses of the
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networks, with Spearman showing a response of AND and DIL more towards the south.
It is evident that the Spearman network exhibits higher AND values across most of the
Amazon basin, indicating superior connectivity in this region. These findings suggest that
Spearman tends to create a more connected and integrated network.

Figure 8. Difference of normalized indices between Spearman and Kendall for (a) Average neighbor
degree, (b) Degree and important lines, and (c) Betweenness centrality.

Finally, Figure 8c illustrates differences in BC, with Kendall displaying higher values in the
south center of the basin. In contrast, Spearman shows higher values with more predominance of
the Amazon and Purus rivers. For the east of central Andes, both networks show a well-defined
path in this region, but Spearman exhibits higher BC values than Kendall.

4. Conclusions

The primary objective of this article is to assess the distinctions among three daily
rainfall networks in the Amazon basin, employing three distinct correlation metrics. Our
aim is to extract meaningful information about the precipitation system in the region and
identify the correlation metric that produces the most suitable results.

In order to obtain accurate results using Pearson, the rainfall series must follow a
normal distribution. However, it is well-known that rainfall data does not often exhibit
this characteristic. To address this issue, the criterion proposed by Ciemer et al. [11] was
applied. The results show how Pearson correlation has certain limitations due to its linear
nature. The linear relationship measured by Pearson may not fully capture the complexity
of the interactions between nodes. As a result, areas with high connectivity and strong
interactions between regions may be underestimated or not fully identified, leading to a
more fragmented network.

Spearman and Kendall, on the other hand, identify three crucial regions situated in the
northwest, northeast, and south of the basin. The northwest region serves as an entry point
for moisture from the northern part of South America, coupled with contributions from the
Pacific Ocean. The northeast region is primarily influenced by the North Tropical Atlantic,
serving as the main source of warm humid air over the Amazon basin. The third identified
region in the southeast of the basin represents the outflow of low-level flow toward the
extratropics, characterized by the presence of Peruvian and Bolivian precipitation hotspots.

The BC results illustrate how the three rainfall networks exhibit high values, aligning
with the spatial pattern of moisture transport from the central Amazon basin to the eastern
Andes. Pearson demonstrates the most intense values in the south of the Amazon River,
Kendall is slightly more focused on the eastern center, and Spearman presents a somewhat
more homogeneous BC distribution. All three networks can capture the land-river breeze effect,
as evidenced by higher means and medians of BC on nodes in the presence of rivers. Spearman
exhibits the most notable differences, indicating a more accurate response to this phenomenon.

Spearman and Kendall present similar results, emphasizing a more pronounced
spatial influence of the entrance and exit regions. Notably, Spearman demonstrates a
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better response to the importance of the northeast of the Amazon Basin and the land-
river breeze effect. The more favorable outcomes observed with Spearman underscore
its heightened sensitivity to rainfall regimes. By considering the ranks, Spearman can
capture the underlying relationships and dependencies between variables more effectively,
resulting in a higher density of connections in the network. In general, the Spearman
correlation proved to be a more robust measure than the Kendall correlation.

The disparities in the spatial distribution of the indices between Pearson and the other
networks can be attributed to parametric assumptions and linear response, whereas Spear-
man and Kendall offer a more comprehensive perspective on rainfall relationships, as they
take into account nonlinear interactions and correlations between variables. The variations
between these networks can be linked to their sensitivity to rainfall regimes. The presented
results indicate that all three networks provide findings associated with the SAMS pattern,
with Spearman and Kendall showing the most consistent outcomes. These results help
identify the regions of highest activity in the basin, closely linked to the well-known mois-
ture flow dynamics in the Amazon Basin. Finally, Spearman presented the most adequate
results, followed by Kendall.

For future work, we intend to use rainfall data with higher resolutions, both spatially and
temporally. For instance, an hourly network would be beneficial, considering the land-river
breeze effect occurring during mornings and evenings. Additionally, the relationship between
BC and the presence of rivers could be refined at higher resolutions. In other words, improved
spatial resolution can lead to noticeable differences between neighboring nodes. This approach
would allow us to verify the extent of the influence of resolution degradation. Simultaneously,
we aim to assess the impact of resolution degradation on the network response.
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