Impact of Stocking Densities on the Microbiota of the Cloaca, Eggshell, and Egg Content of White Egg Layers in Colony Cages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hens and Housing
2.2. Microbialogical Analysis
2.3. Statistical Analysis
3. Results
3.1. Cloacal Swabs
3.2. Shell Rinse and Egg Contents
3.3. Salmonella
3.4. Correlative Analysis
4. Discussion
4.1. Cloacal Swabs
4.2. Shell Bath
4.3. Salmonella
4.4. Correlative Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Huffman. Bill AB 1437 Introduced into the California Legislature Dealing with Shelled Eggs (2009). 2010. Available online: https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=200920100AB1437 (accessed on 14 April 2022).
- Miranda-de la Lama, G.C.; Sepúlveda, W.S.; Villarroel, M.; María, G.A. Attitudes of Meat Retailers to Animal Welfare in Spain. Meat Sci. 2013, 95, 569–575. [Google Scholar] [CrossRef] [PubMed]
- De Backer, C.J.S.; Hudders, L. Meat Morals: Relationship between Meat Consumption Consumer Attitudes towards Human and Animal Welfare and Moral Behavior. Meat Sci. 2015, 99, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Bennett, R.; Butterworth, A.; Jones, P.; Kehlbacher, A.; Tranter, R. Valuation of Animal Welfare Benefits; University of Reading: Berkshire, UK, 2012. [Google Scholar]
- Nocella, G.; Hubbard, L.; Scarpa, R. Farm Animal Welfare, Consumer Willingness to Pay, and Trust: Results of a Cross-National Survey. Appl. Econ. Perspect. Policy 2010, 32, 275–297. [Google Scholar] [CrossRef]
- Clark, B.; Stewart, G.B.; Panzone, L.A.; Kyriazakis, I.; Frewer, L.J. Citizens, Consumers and Farm Animal Welfare: A Meta-Analysis of Willingness-to-Pay Studies. Food Policy 2017, 68, 112–127. [Google Scholar] [CrossRef]
- Gast, R.K.; Guraya, R.; Jones, D.R.; Anderson, K.E.; Karcher, D.M. Frequency and Duration of Fecal Shedding of Salmonella Enteritidis by Experimentally Infected Laying Hens Housed in Enriched Colony Cages at Different Stocking Densities. Front. Vet. Sci. 2017, 4, 47. [Google Scholar] [CrossRef]
- Neill, C.L.; Chen, S.E. Food Safety Events versus Media: Nonlinear Effects of Egg Recalls on U.S. Egg Prices. J. Agric. Resour. Econ. 2022, 47, 23–37. [Google Scholar] [CrossRef]
- Arnade, C.; Calvin, L.; Kuchler, F. Consumer Response to a Food Safety Shock: The 2006 Food-Borne Illness Outbreak of E. coli O157: H7 Linked to Spinach. Rev. Agric. Econ. 2009, 31, 734–750. [Google Scholar] [CrossRef]
- Painter, J.A.; Hoekstra, R.M.; Ayers, T.; Tauxe, R.V.; Braden, C.R.; Angulo, F.J.; Griffin, P.M. Attribution of Foodborne Illnesses, Hospitalizations, and Deaths to Food Commodities by Using Outbreak Data, United States, 1998–2008. Emerg. Infect. Dis. 2013, 19, 407–415. [Google Scholar] [CrossRef]
- Fajardo, T.A.; Anantheswaran, R.C.; Puri, V.M.; Knabel, S.J. Penetration of Salmonella Enteritidis into Eggs Subjected to Rapid Cooling. J. Food Prot. 1995, 58, 473–477. [Google Scholar] [CrossRef]
- Hincke, M.T.; Gautron, J.; Panheleux, M.; Garcia-Ruiz, J.; McKee, M.D.; Nys, Y. Identification and Localization of Lysozyme as a Component of Eggshell Membranes and Eggshell Matrix. Matrix Biol. 2000, 19, 443–453. [Google Scholar] [CrossRef]
- Lunam, C.A.; Ruiz, J. Ultrastructural Analysis of the Eggshell: Contribution of the Individual Calcified Layers and the Cuticle to Hatchability and Egg Viability in Broiler Breeders. Br. Poult. Sci. 2000, 41, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Gautron, J.; Hincke, M.T.; Panheleux, M.; Garcia-Ruiz, J.M.; Boldicke, T.; Nys, Y. Ovotransferrin Is a Matrix Protein of the Hen Eggshell Membranes and Basal Calcified Layer. Connect. Tissue Res. 2001, 42, 255–267. [Google Scholar] [CrossRef]
- Wellman-Labadie, O.; Picman, J.; Hincke, M.T. Comparative Antibacterial Activity of Avian Egg White Protein Extracts. Br. Poult. Sci. 2008, 49, 125–132. [Google Scholar] [CrossRef]
- Sharma, M.K.; McDaniel, C.D.; Kiess, A.S.; Loar, R.E.; Adhikari, P. Effect of Housing Environment and Hen Strain on Egg Production and Egg Quality as Well as Cloacal and Eggshell Microbiology in Laying Hens. Poult. Sci. 2022, 101, 101595. [Google Scholar] [CrossRef] [PubMed]
- Englmaierová, M.; Tumová, E.; Charvátová, V.; Skřivan, M. Effects of Laying Hens Housing System on Laying Performance, Egg Quality Characteristics, and Egg Microbial Contamination. Czech J. Anim. Sci. 2014, 59, 345–352. [Google Scholar] [CrossRef]
- Galvão, J.A.; Biondo, A.W.; Possebon, F.S.; Spina, T.L.B.; Correia, L.B.N.; Zuim, C.V.; Guerra, J.B.P.; Pantoja, J.C.F.; Pinto, J.P.d.A.N. Microbiological Vulnerability of Eggs and Environmental Conditions in Conventional and Free-Range Housing Systems. Semina Ciênc. Agrár. 2018, 39, 133–141. [Google Scholar] [CrossRef]
- Vlčková, J.; Tůmová, E.; Ketta, M.; Englmaierová, M.; Chodová, D. Effect of housing system and age of laying hens on eggshell quality, microbial contamination, and penetration of microorganisms into eggs. Czech J. Anim. Sci. 2018, 63, 51–60. [Google Scholar] [CrossRef]
- Crabb, H.K.; Gilkerson, J.R.; Browning, G.F. Does Only the Age of the Hen Matter in Salmonella Enterica Contamination of Eggs? Food Microbiol. 2019, 77, 1–9. [Google Scholar] [CrossRef]
- Howard, Z.R.; O’Bryan, C.A.; Crandall, P.G.; Ricke, S.C. Salmonella Enteritidis in Shell Eggs: Current Issues and Prospects for Control. Food Res. Int. 2012, 45, 755–764. [Google Scholar] [CrossRef]
- Galiş, A.M.; Marcq, C.; Marlier, D.; Portetelle, D.; Van, I.; Beckers, Y.; Théwis, A. Control of Salmonella Contamination of Shell Eggs—Preharvest and Postharvest Methods: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 155–182. [Google Scholar] [CrossRef]
- Whiley, H.; Ross, K. Salmonella and Eggs: From Production to Plate. Int. J. Environ. Res. Public. Health 2015, 12, 2543–2556. [Google Scholar] [CrossRef] [PubMed]
- Teunis, P.F.M.; Kasuga, F.; Fazil, A.; Ogden, I.D.; Rotariu, O.; Strachan, N.J.C. Dose-Response Modeling of Salmonella Using Outbreak Data. Int. J. Food Microbiol. 2010, 144, 243–249. [Google Scholar] [CrossRef]
- Denagamage, T.; Jayarao, B.; Patterson, P.; Wallner-Pendleton, E.; Kariyawasam, S. Risk Factors Associated with Salmonella in Laying Hen Farms: Systematic Review of Observational Studies. Avian Dis. 2015, 59, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Schoeni, J.L.; Glass, K.A.; McDermott, J.L.; Wong, A.C.L. Growth and Penetration of Salmonella Enteritidis, Salmonella Heidelberg and Salmonella Typhimurium in Eggs. Int. J. Food Microbiol. 1995, 24, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Gross, S.; Johne, A.; Adolphs, J.; Schlichting, D.; Stingl, K.; Müller-Graf, C.; Bräunig, J.; Greiner, M.; Appel, B.; Käsbohrer, A. Salmonella in Table Eggs from Farm to Retail–When Is Cooling Required? Food Control 2015, 47, 254–263. [Google Scholar] [CrossRef]
- Jones, D.R.; Anderson, K.E.; Curtis, P.A.; Jones, F.T. Microbial Contamination in Inoculated Shell Eggs: I. Effects of Layer Strain and Hen Age. Poult. Sci. 2002, 81, 715–720. [Google Scholar] [CrossRef]
- Wickman, H. Reshaping Data with the {reshape} Package. J. Stat. Softw. 2007, 21, 1–20. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- de Mendiburu, F.; Yaseen, M. Agricolae: Statistical Procedures for Agriculture Research; Universidad Nacionalde Ingenieria (UNI-PERU): Lima, Peru, 2020. [Google Scholar]
- Mazerolle, M.J. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c); Springer: New York, NY, USA, 2020. [Google Scholar]
- Kassambara, A. Rstatix: Pipe-Friendly Framework for Basic Statistical Tests. Available online: https://cran.r-project.org/web/packages/rstatix/index.html (accessed on 9 August 2023).
- Harrell, F.E., Jr. Hmisc: Harrell Miscellaneous. 2022. Available online: https://cran.r-project.org/web/packages/Hmisc/index.html (accessed on 9 August 2023).
- Chen, X.; Li, X.; Guo, Y.; Li, W.; Song, J.; Xu, G.; Yang, N.; Zheng, J. Impact of Cuticle Quality and Eggshell Thickness on Egg Antibacterial Efficiency. Poult. Sci. 2019, 98, 940–948. [Google Scholar] [CrossRef]
- Wellman-Labadie, O.; Lakshminarayanan, R.; Hincke, M.T. Antimicrobial Properties of Avian Eggshell-Specific C-Type Lectin-like Proteins. FEBS Lett. 2008, 582, 699–704. [Google Scholar] [CrossRef]
- Rose-Martel, M.; Du, J.; Hincke, M.T. Proteomic Analysis Provides New Insight into the Chicken Eggshell Cuticle. J. Proteomics 2012, 75, 2697–2706. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, X.; He, Z.; Hou, Z.; Xu, G.; Yang, N.; Zheng, J. Comparative Study of Eggshell Antibacterial Effectivity in Precocial and Altricial Birds Using Escherichia Coli. PLoS ONE 2019, 14, e0220054. [Google Scholar] [CrossRef] [PubMed]
- De Reu, K.; Grijspeerdt, K.; Heyndrickx, M.; Zoons, J.; De Baere, K.; Uyttendaele, M.; Debevere, J.; Herman, L. Bacterial Eggshell Contamination in Conventional Cages, Furnished Cages and Aviary Housing Systems for Laying Hens. Br. Poult. Sci. 2005, 46, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Tenaillon, O.; Skurnik, D.; Picard, B.; Denamur, E. The Population Genetics of Commensal Escherichia Coli. Nat. Rev. Microbiol. 2010, 8, 207–217. [Google Scholar] [CrossRef]
- Vogt, R.L.; Dippold, L. Escherichia Coli O157:H7 Outbreak Associated with Consumption of Ground Beef, June–July 2002. Public Health Rep. 2005, 120, 174–178. [Google Scholar] [CrossRef]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L.T. Pathogenic Escherichia Coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Heaton, J.C.; Jones, K. Microbial Contamination of Fruit and Vegetables and the Behaviour of Enteropathogens in the Phyllosphere: A Review. J. Appl. Microbiol. 2008, 104, 613–626. [Google Scholar] [CrossRef]
- Chalmers, R.M.; Aird, H.; Bolton, F.J. Waterborne Escherichia Coli O157. J. Appl. Microbiol. 2000, 88, 124S–132S. [Google Scholar] [CrossRef]
- CFR-Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=120.25 (accessed on 13 September 2023).
- Sarno, E.; Pezzutto, D.; Rossi, M.; Liebana, E.; Rizzi, V. A Review of Significant European Foodborne Outbreaks in the Last Decade. J. Food Prot. 2021, 84, 2059–2070. [Google Scholar] [CrossRef]
- Wigley, P. Genetic Resistance to Salmonella Infection in Domestic Animals. Res. Vet. Sci. 2004, 76, 165–169. [Google Scholar] [CrossRef]
- Calenge, F.; Kaiser, P.; Vignal, A.; Beaumont, C. Genetic Control of Resistance to Salmonellosis and to Salmonella Carrier-State in Fowl: A Review. Genet. Sel. Evol. 2010, 42, 11. [Google Scholar] [CrossRef] [PubMed]
- Gast, R.K.; Regmi, P.; Guraya, R.; Jones, D.R.; Anderson, K.E.; Karcher, D.M. Contamination of Eggs by Salmonella Enteritidis in Experimentally Infected Laying Hens of Four Commercial Genetic Lines in Conventional Cages and Enriched Colony Housing. Poult. Sci. 2019, 98, 5023–5027. [Google Scholar] [CrossRef] [PubMed]
- Kirk, M.D.; Pires, S.M.; Black, R.E.; Caipo, M.; Crump, J.A.; Devleesschauwer, B.; Döpfer, D.; Fazil, A.; Fischer-Walker, C.L.; Hald, T.; et al. World Health Organization Estimates of the Global and Regional Disease Burden of 22 Foodborne Bacterial, Protozoal, and Viral Diseases, 2010: A Data Synthesis. PLoS Med. 2015, 12, e1001921. [Google Scholar] [CrossRef]
- Cardoso, M.J.; Nicolau, A.I.; Borda, D.; Nielsen, L.; Maia, R.L.; Møretrø, T.; Ferreira, V.; Knøchel, S.; Langsrud, S.; Teixeira, P. Salmonella in Eggs: From Shopping to Consumption—A Review Providing an Evidence-Based Analysis of Risk Factors. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2716–2741. [Google Scholar] [CrossRef] [PubMed]
- Gast, R.K.; Guraya, R.; Jones, D.R.; Anderson, K.E.; Karcher, D.M. Colonization of Internal Organs by Salmonella Enteritidis in Experimentally Infected Laying Hens Housed in Enriched Colony Cages at Different Stocking Densities. Poult. Sci. 2016, 95, 1363–1369. [Google Scholar] [CrossRef] [PubMed]
- Aruwa, C.E.; Pillay, C.; Nyaga, M.M.; Sabiu, S. Poultry Gut Health–Microbiome Functions, Environmental Impacts, Microbiome Engineering and Advancements in Characterization Technologies. J. Anim. Sci. Biotechnol. 2021, 12, 119. [Google Scholar] [CrossRef]
- Miyamoto, T.; Horie, T.; Baba, E.; Sasai, K.; Fukata, T.; Arakawa, A. Salmonella Penetration through Eggshell Associated with Freshness of Laid Eggs and Refrigeration. J. Food Prot. 1998, 61, 350–353. [Google Scholar] [CrossRef]
- Kretzschmar-McCluskey, V.; Curtis, P.A.; Anderson, K.E.; Kerth, L.K.; Berry, W.D. Influence of Hen Age and Molting Treatments on Shell Egg Exterior, Interior, and Contents Microflora and Salmonella Prevalence During a Second Production Cycle. Poult. Sci. 2008, 87, 2146–2151. [Google Scholar] [CrossRef]
- Cox, N.A.; Berrang, M.E.; Cason, J.A. Salmonella Penetration of Egg Shells and Proliferation in Broiler Hatching Eggs–a Review. Poult. Sci. 2000, 79, 1571–1574. [Google Scholar] [CrossRef]
- Gantois, I.; Eeckhaut, V.; Pasmans, F.; Haesebrouck, F.; Ducatelle, R.; Van Immerseel, F. A Comparative Study on the Pathogenesis of Egg Contamination by Different Serotypes of Salmonella. Avian Pathol. J. WVPA 2008, 37, 399–406. [Google Scholar] [CrossRef]
- Ayerst, G. The Effects of Moisture and Temperature on Growth and Spore Germination in Some Fungi. J. Stored Prod. Res. 1969, 5, 127–141. [Google Scholar] [CrossRef]
- Ziółkowska, G.; Tokarzewski, S. Occurrence of Moulds in Reproductive Goose Flocks in Southern-Eastern Poland. Bull. Vet. Inst. Pulawy 2007, 51, 553–561. [Google Scholar]
- Shi, C.; Maktabdar, M. Lactic Acid Bacteria as Biopreservation Against Spoilage Molds in Dairy Products–A Review. Front. Microbiol. 2022, 12, 819684. [Google Scholar] [CrossRef] [PubMed]
- Abedi, D.; Feizizadeh, S.; Akbari, V.; Jafarian-Dehkordi, A. In Vitro Anti-Bacterial and Anti-Adherence Effects of Lactobacillus Delbrueckii Subsp Bulgaricus on Escherichia Coli. Res. Pharm. Sci. 2013, 8, 260–268. [Google Scholar] [PubMed]
Ingredient | Diet (%) |
---|---|
Corn | 51.842 |
Soybean Meal | 32.241 |
Calcium Carbonate | 9.42 |
Dicalcium Phosphate | 1.808 |
Salt | 0.38 |
DL-Methionine | 0.181 |
Soybean Oil | 3.729 |
Santoquin | 0.05 |
Choline Chloride | 0.05 |
NCSU Trace Mineral Premix 1 | 0.20 |
NCSU Vitamin Premix 2 | 0.05 |
NCSU Selenium Premix 3 | 0.05 |
Calculated Values | |
Crude Protein (%) | 19.50 |
Metabolizable Energy (kcal/kg) | 1328.0 |
Calcium (%) | 4.14 |
Available Phosphorus (%) | 0.45 |
Total Lysine (%) | 1.10 |
Total Sulfur Amino Acids (%) | 0.8245 |
TAC | E. coli | Coliforms | EB | Yeasts | Molds | |
---|---|---|---|---|---|---|
Density/bird | ||||||
208 in2 | 4.19 b | 3.04 | 3.12 | 3.13 | 0.584 | 0 b |
139 in2 | 4.32 a,b | 3.04 | 3.23 | 3.33 | 0.336 | 0.251 a |
104 in2 | 4.69 a | 3.18 | 3.43 | 3.38 | 0.236 | 0 b |
83 in2 | 4.47 a,b | 2.70 | 3.19 | 3.04 | 0.407 | 0 b |
69 in2 | 4.5 a,b | 2.75 | 3.03 | 3.29 | 0.226 | 0.033 a,b |
SEM | 0.263 | 0.288 | 0.23 | 0.235 | 0.166 | 0.04 |
p-Value | 0.015 | 0.698 | 0.875 | 0.875 | 0.489 | 0.018 |
Age | ||||||
39 weeks | 3.48 c | 3.04 | 3.15 | 3.20 | 0.565 a | 0 b |
55 weeks | 5.06 a | 2.79 | 3.25 | 3.20 | 0.445 a,b | 0.17 a |
68 weeks | 4.79 b | 3.10 | 3.17 | 3.38 | 0.064 b | 0 b |
SEM | 0.084 | 0.28 | 0.195 | 0.176 | 0.114 | 0.034 |
p-Value | 0.0001 | 0.482 | 0.920 | 0.752 | 0.0173 | 0.016 |
Density × age p-Value | 0.241 | 0.401 | 0.276 | 0.707 | 0.542 | 0.005 |
TAC | E. coli | Coliforms | EB | Yeasts | Molds | |
---|---|---|---|---|---|---|
Density/bird | ||||||
208 in2 | 3.87 | 0.347 | 0.602 | 0.218 | 1.69 | 1.61 |
139 in2 | 3.81 | 0.499 | 0.591 | 0.229 | 1.59 | 1.63 |
104 in2 | 3.86 | 0.173 | 0.386 | 0.443 | 1.90 | 1.85 |
83 in2 | 3.87 | 0.404 | 0.514 | 0.509 | 1.81 | 1.72 |
69 in2 | 3.83 | 0.251 | 0.542 | 0.711 | 1.66 | 1.46 |
SEM | 0.236 | 0.177 | 0.202 | 0.216 | 0.16 | 0.245 |
p-Value | 0.557 | 0.404 | 0.876 | 0.557 | 0.634 | 0.284 |
Age | ||||||
39 weeks | 3.97 | 0.861 a | 1.060 a | 1.260 a | 1.88 | 2.144 a |
55 weeks | 3.80 | 0.519 b | 0.296 b | 0.371 b | -- | -- |
68 weeks | 3.77 | 0.092 b | 0.224 b | 0.182 b | 1.58 | 1.16 b |
SEM | 0.049 | 0.083 | 0.113 | 0.104 | 0.0942 | 0.0757 |
p-Value | 0.055 | 0.001 | 0.001 | 0.001 | 0.052 | 0.001 |
Density × age p-value | 0.979 | 0.474 | 0.543 | 0.450 | 0.442 | 0.986 |
Shell Rinse Salmonella | Cloacal Swabs Salmonella | Egg Content Salmonella | |
---|---|---|---|
Density/bird | |||
208 in2 | 11% | 44% | 0% |
139 in2 | 22% | 56% | 0% |
104 in2 | 11% | 41% | 0% |
83 in2 | 11% | 37% | 0% |
69 in2 | 22% | 26% | 0% |
p-Value | 0.9075 | 0.2659 | 1.000 |
Age | |||
39 weeks | 0% | 0% b | 0% |
55 weeks | 27% | 64% a | 0% |
68 weeks | 20% | 58% a | 0% |
p-Value | 0.111 | 0.001 | 1.000 |
Cloacal | Eggshell | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E. coli | Coliforms | Enterobac | Aerobic | Yeast | Mold | E. coli | Coliforms | Enterobac | Aerobic | Yeasts | Molds | ||
Cloacal | E. coli | 1 | |||||||||||
Coliforms | 0.851 (<0.001) | 1 | |||||||||||
Enterobac | 0.666 (<0.001) | 0.680 (<0.001) | 1 | ||||||||||
Aerobic | 0.069 (0.704) | 0.207 (0.225) | 0.194 (0.229) | 1 | |||||||||
Yeasts | 0.036 (0.842) | 0.173 (0.304) | 0.133 (0.408) | −0.273 (0.073) | 1 | ||||||||
Molds | −0.161 (0.362) | −0.176 (0.299) | −0.213 (0.182) | 0.325 (0.031) | −0.015 (0.922) | 1 | |||||||
Eggshell | E. coli | 0.195 (0.267) | 0.131 (0.439) | −0.095 (0.554) | −0.622 (<0.001) | 0.324 (0.030) | −0.201 (0.186) | 1 | |||||
Coliforms | 0.305 (0.076) | 0.308 (0.064) | 0.010 (0.950) | −0.150 (<0.001) | 0.336 (0.024) | −0.193 (0.205) | 0.804 (<0.001) | 1 | |||||
Enterobac | 0.169 (0.267) | 0.260 (0.120) | −0.005 (0.974) | −0.535 (<0.001) | 0.383 (0.009) | 0.209 (0.168) | 0.730 (<0.001) | 0.841 (<0.001) | 1 | ||||
Aerobic | 0.130 (0.469) | 0.068 (0.695) | 0.132 (0.417) | −0.209 (0.179) | 0.159 (0.168) | 0.040 (0.799) | 0.316 (0.037) | 0.249 (0.103) | 0.281 (0.065) | 1 | |||
Yeasts | 0.251 (0.273) | 0.262 (0.238) | 0.284 (0.151) | −0.204 (0.289) | 0.283 (0.129) | - | 0.209 (0.268) | 00.253 (0.177) | 0.255 (0.173) | 0.389 (0.037) | 1 | ||
Molds | 0.257 (0.261) | 0.273 (0.218) | 0.101 (0.617) | −0.646 (0.002) | 0.554 (<0.001) | - | 0.632 (0.002) | 0.395 (0.002) | 0.791 (<0.001) | 0.712 (<0.001) | 0.599 (0.004) | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alig, B.N.; Anderson, K.E.; Malheiros, R.D.; Lowery, J.H.; Walker, L.L. Impact of Stocking Densities on the Microbiota of the Cloaca, Eggshell, and Egg Content of White Egg Layers in Colony Cages. Poultry 2023, 2, 418-429. https://doi.org/10.3390/poultry2030031
Alig BN, Anderson KE, Malheiros RD, Lowery JH, Walker LL. Impact of Stocking Densities on the Microbiota of the Cloaca, Eggshell, and Egg Content of White Egg Layers in Colony Cages. Poultry. 2023; 2(3):418-429. https://doi.org/10.3390/poultry2030031
Chicago/Turabian StyleAlig, Benjamin N., Kenneth E. Anderson, Ramon D. Malheiros, Justin H. Lowery, and Lin L. Walker. 2023. "Impact of Stocking Densities on the Microbiota of the Cloaca, Eggshell, and Egg Content of White Egg Layers in Colony Cages" Poultry 2, no. 3: 418-429. https://doi.org/10.3390/poultry2030031