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Abstract: Understanding prostate carcinogenesis is crucial not only for identifying new treatment
targets but also for developing effective strategies to manage the asymptomatic form of the disease.
There is a lack of consensus about predicting the indolent form of the disease prostate cancer, leading
to uncertainties regarding treatment initiation. This review aims to enhance the assessment and
management of early prostate cancer by providing a comprehensive picture of the molecular anatomy
of the prostate, synthesising current evidence, highlighting knowledge gaps, and identifying future
directions. It presents evidence for the efficacy of active surveillance as an alternative treatment
strategy and its potential benefits in specific patient groups through androgen receptor disruption.
Overall, an improved understanding of prostate carcinogenesis and its molecular underpinnings
can pave the way for tailored and precise management approaches for this common cancer. Further
development and validation of molecule-based assessment tools are needed. Integrating genomic,
proteomic, and phenotypic models, as well as functional approaches, can help predict outcomes.
This facilitates selecting candidates for active surveillance and targeting interventions for higher-risk
cases, contributing to more precise management strategies.
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1. Introduction

Prostate cancer has exhibited a concerning rise in incidence over the past two decades,
particularly in Western countries, resulting in a significant impact on public health with
more than 500,000 new cases and 100,000 deaths [1–3]. Autopsy investigations have
revealed a high rate of age-related neoplastic lesions among men aged 70–79 years old,
with 36% of men of European-Caucasian ancestry and 51% of African American men
affected [4]. Similarly, we found a prevalence of neoplastic lesions in 35% of autopsied men
of French-European Caucasian ancestry over 50 years old [5] (Figure 1).

In contrast, emerging evidence from randomised studies indicates that a significant
proportion of localised prostate cancer cases may have a low risk of cancer-specific mortality
or clinical progression [6–8]. Altogether, these observations emphasise the urgent need for
new strategies to prevent or manage early stages of prostate cancers. Consequently, the
concept of active surveillance has gradually emerged over the years as a viable alternative
treatment strategy for these ‘favourable’ tumours, aiming to minimise overtreatment and
its potential side effects [9–11].

Significant progress has been made in our understanding of prostate carcinogenesis
and its natural history, leading to the identification of early and late molecular events and
recognition of the heterogeneity of the cellular origins of prostate cancer [12–17]. This
knowledge has paved the way for the development of molecular predictors that could
considerably improve the management of prostate cancers. Clinical observations revealed
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that intervention in the androgen receptor (AR) pathway during the early stages of the
disease conventionally termed as secondary chemoprevention, can effectively reverse low-
grade and early-stage prostate cancer [18–22]. Moreover, at advanced stages, a specific
subset of prostate cancer characterised by SPOP/SPOPL deficiency has shown remarkable
responses to androgen deprivation [23]. These recent advances in our understanding of
functional and molecular subtypes of prostate cancer are of considerable clinical relevance
in introducing new paradigms for the management of early-stage prostate cancer.
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Figure 1. Series of autopsy cases (men over 50 years old) taken from the CeRePP database [5].
Correlation between age (X) and prostate cc volume (Y) with (blue dot) or without (red dot) prostate
adenocarcinoma lesions.

In this review, we aim to provide a comprehensive view of the molecular anatomy
of the prostate, encompassing the intricate molecular processes, cellular interactions, and
signalling pathways that contribute to the development, function, and disease progression
of the prostate. Furthermore, we delve into the concept of active surveillance as an alter-
native treatment strategy and discuss the potential benefits of early intervention through
AR disruption. By synthesising current evidence, identifying gaps in knowledge, and
exploring future prospects, this review may contribute to the ongoing efforts to improve
the assessment and management of early prostate cancer.

2. Molecular Anatomy of the Prostate

The prostate is divided into different histological zones according to the well-established
McNeal segmentation [24,25] (Figure 2), whose foundations were laid by Gil-Vernet [26].
These zones are composed of the anterior fibromuscular stroma, the posterolateral peripheral
zone, the periurethral transition zone, and the central zone surrounding the ejaculatory ducts.
In pathology, benign prostatic hyperplasia mainly affects the transition zone, whilst prostate
cancer is more commonly found in the peripheral zone of the prostate (70%) rather than the
transition zone (25%) and the anterior fibromuscular stroma zone (5%) [25]. This discrepancy
is mainly due to the varying density of glandular tissue susceptible to transformation in
each zone. In normal ageing, the morphological changes occurring in the central zone are
increasingly challenging to identify and the mechanisms underlying these changes remain
unclear, even in McNeal’s reports [27–29].
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Figure 2. Zones of the prostate. This figure illustrates the distinct anatomical zones within the pros-
tate gland: the peripheral zone in orange, the central zone in purple, and the transition zone in blue. 

2.1. Gene Expression According to Cell Types 
The functional unit of the prostate gland is the acinar which comprises distinct layers 

of epithelial cells, each characterised by specific gene expression and functions (Figure 3) 
[30]. 

 
Figure 3. Cellular architecture of prostate epithelium and expression of its associated gene. The 
prostate epithelium is composed of luminal cells, responsible for secretion, and a layer of basal cells 
in direct contact with the basement membrane. The basement membrane acts as a protective barrier 
between the epithelium and the stromal compartment (including fibroblasts, smooth muscle cells, 
nerves, blood vessels and inflammatory cells). Transit amplifying cells exhibit features of both basal 
and luminal cells. In addition, rare neuroendocrine cells are found in the basal layer. Cell type-spe-
cific markers are shown in italics. Created with BioRender.com (accessed on 7 July 2023) and in-
spired by Rybak et al., Figure 1 [31]. 

The basal layer plays a crucial role in ensuring structural support and tissue integrity. 
It consists of basal cells that express cytokeratin (CK5, CK14), integrin α2β1, CD44, and 
TP63 genes, while lacking AR expression [30,32–35]. These basal epithelial cells also ex-
press genes associated with castration resistance, such as BCARC1 (p130cas) and EGFR 
[36,37], and with angiogenesis, such as NRP1 and VEGFA [38]. Of note, rare 

Figure 2. Zones of the prostate. This figure illustrates the distinct anatomical zones within the
prostate gland: the peripheral zone in orange, the central zone in purple, and the transition zone
in blue.

2.1. Gene Expression According to Cell Types

The functional unit of the prostate gland is the acinar which comprises distinct layers of
epithelial cells, each characterised by specific gene expression and functions (Figure 3) [30].
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Figure 3. Cellular architecture of prostate epithelium and expression of its associated gene. The
prostate epithelium is composed of luminal cells, responsible for secretion, and a layer of basal cells
in direct contact with the basement membrane. The basement membrane acts as a protective barrier
between the epithelium and the stromal compartment (including fibroblasts, smooth muscle cells,
nerves, blood vessels and inflammatory cells). Transit amplifying cells exhibit features of both basal
and luminal cells. In addition, rare neuroendocrine cells are found in the basal layer. Cell type-specific
markers are shown in italics. Created with BioRender.com (accessed on 7 July 2023) and inspired by
Rybak et al., Figure 1 [31].

The basal layer plays a crucial role in ensuring structural support and tissue integrity.
It consists of basal cells that express cytokeratin (CK5, CK14), integrin α2β1, CD44, and
TP63 genes, while lacking AR expression [30,32–35]. These basal epithelial cells also express
genes associated with castration resistance, such as BCARC1 (p130cas) and EGFR [36,37],
and with angiogenesis, such as NRP1 and VEGFA [38]. Of note, rare neuroendocrine cells
are found within this layer, exhibiting positive staining for Chromogranin A and other
neuropeptides [39]. These cells have a developmental stem cell of origin in common with

BioRender.com
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epithelial cells [40]. The basal stem cells are responsible for the development and renewal
of differentiated and functional luminal cells in adult prostatic glands [41,42]. The luminal
cells, in direct contact with the basal cells, secrete substances like prostate-specific antigen
(KLK3/PSA) and other kallikreins contributing to the secretion of the seminal fluid. These
cells express the AR along with a combination of AR pathway drivers such as FOXA1
and HOXB13, as well as AR-targeted genes such as KLK3, KLK2, TMPRSS2, PSMA, and
PSCA [43,44].

Additionally, there is a population of transit amplifying cells that may encompass ‘Club’
(KRT4+, SCGB1A1+) and “hillock” (KRT13+) cells described by G.H. Henry et al. [45,46]. In a
normal adult prostate, these cells are rare; they are more frequent in foetal prostates and in
pre-tumoral conditions [47]. These cells are characterised by the co-expression of basal and
luminal cytokeratin, high proliferation, and a lack of the cyclin-dependent kinase inhibitor p27
(CDKN1B). This gene is involved in cell cycle arrest, wherein increased level of p27 indicates
an exit from the cell cycle [48]. In adult prostatic glands, p27 is expressed by all cells in the
luminal compartment and by a subpopulation of basal cells. Conversely, p27 downregulation
occurs not only in most prostate cancers [49] but also in high grade prostatic intraepithelial
neoplasia (PIN) [50].

Positioned beneath the basal layer and separated by a basement membrane [51], the
non-epithelial prostate microenvironment, collectively termed ‘stroma’, is composed of
various cell types. The stroma is a complex cellular network that plays a vital role for
normal prostate development and related diseases [52–55].

The predominant cell type within the stroma is fibroblasts, which when beside cancer can
be known as cancer-associated fibroblasts (CAF). CAFs can be identified by specific markers
such as vimentin, ZEB1, MMP2, COL1A1, COL1A2, ASPN, BGN, and SFRP4 [52,56,57].
Smooth muscle cells are also present in the stroma and can be distinguished by the expression
of ACTA2, MYLK, CALD1, and CNN1 [15,58]. In prostate cancer, the reactive stroma is
characterised by a higher proportion of fibroblasts/myofibroblasts, which is offset by a
decrease in differentiated smooth muscle cells [59–61].

Apart from fibroblasts and smooth muscle cells, the stroma contains other components,
including blood vessels, lined by endothelial cells expressing endothelial receptors (EDNR
and CD31) [62,63]. The stroma also houses nerves and a diverse infiltration of inflam-
matory immune cells, T cell phenotypes (CD3, CD45), macrophage phenotypes (CD68),
granulocytes (CD24, CD15), and B cells (CD19, CD20) [64,65].

Altogether, epithelial layers and stroma form a complex and dynamic network,
wherein effective bidirectional communication between prostate epithelial cells and the
stroma is crucial for prostate development, renewal, and secretory function [66,67]. The
secretion of growth factors, such as transforming growth factor beta (TGFβ) and fibroblast
growth factors (FGF), are key players ensuring these functions and efficient communica-
tion [68,69]. Indeed, stroma cells secrete FGF7 and FGF10, primarily affecting epithelial
cells and lead to the development of prostate cancer by increasing sensitivity to andro-
gens [70–74]. Conversely, epithelial cells secrete FGF2, which regulates fundamental stromal
processes such as angiogenesis and cell proliferation [75]. In addition, TGFβ is an important
mediator of bidirectional communication, promoting tumour growth and metastasis by
facilitating epithelial-to-mesenchymal transition in epithelial cells [76,77]. TGFβ-secreting
epithelial cells influence stromal cell behaviour, including proliferation and extracellular
matrix production, thereby supporting tumour invasion and metastasis [78,79].

Stromal and epithelial prostate cells collaborate in the metabolism of sexual steroid
hormones and fatty acids. Prostate tissue can locally synthesise dihydrotestosterone (DHT),
the most potent androgen, from various androgen precursor molecules [80]. As a result,
despite androgen deprivation, levels of these hormones in the prostate remain high enough
to promote cancer progression [81]. This phenomenon led to the development of new
anti-androgen drugs which target the enzymes involved in steroid synthesis or which
directly target the AR in prostate cells. Additionally, it is well-established that fatty acid
metabolism is a potential target of the epithelial-mesenchymal transition, a key driver of
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prostate cancer development [82,83]. Prostate cells undergo a shift in lipid beta-oxidation
pathways during carcinogenesis, accompanied by increased expression of AMACR, ACLY,
ACACA, and FASN enzymes involved in the lipid metabolism [84].

2.2. Impact of Genetic Susceptibility in Prostate Cancer

Polygenic susceptibility to prostate cancer is influenced by functional polymorphisms
of a single nucleotide. These polymorphisms play crucial roles during prostate development
and homeostasis, influencing the expression of specific prostate transcripts and carrying
implications for prostate cancer risk [85] or fertility. In addition to rare germline mutations,
which encompass DNA repair genes associated with prostate cancer susceptibility, these
polymorphisms affect key pathways, including those related to the AR (HOXB13, FOXA1)
and proliferation (MYC, FGF10) [85]. These genetic variations have been found to correlate
with disparities in prostate cancer risk based on ancestral backgrounds. For instance, genes
such as KLK3 [86], coding for the prostate-specific antigen (PSA), MSMB [87,88], known as a
tumour suppressor, and MLPH [89], thought to facilitate resistance to androgen deprivation,
have shown a specific correlation with tissue expression in non-tumour prostate glands.

2.3. Gene Expression According to Prostate Cancer Histopathological Features

Histopathological evaluation of prostate cancer involves the assessment of several
key features, including the Gleason score, tumour grade, tumour stage, and the presence
of extraprostatic extension [90,91]. Since 1996 [92], the Gleason score has been a widely
used grading system that assesses the architectural patterns of cancer cells. The initial
scoring system ranged from 2 to 10, where higher scores indicated a more aggressive
disease. However, the scoring system has been revised to now range from 6 to 10 and is
transposed into the International Society of Urological Pathology (ISUP) grading system,
which ranges from 1 to 5 [93]. Tumour grade refers to the degree of cellular differentiation
and is categorised as low grade (Gleason score 6 or ISUP-1), intermediate grade (Gleason
score 7 (3 + 4) or ISUP-2 and Gleason score 7 (4 + 3) or ISUP-3), or high grade (Gleason
score 8–10 or ISUP-4-5). Tumour stage provides information about the extent of cancer
spread beyond the prostate gland and extraprostatic extension indicates the presence of
cancer cells outside the prostatic edge.

Prostate cancer primarily consists of adenocarcinoma, but rare variants, comprising
less than 5% of cases, have been identified [94–96]. These variants include acinar sub-
types (such as cribriform, intraductal, mucinous, prostatic intraepithelial neoplasia-like
carcinoma, signet ring cell carcinoma, sarcomatoid carcinoma, and pleomorphic giant cell
carcinoma) and non-acinar subtypes (such as ductal carcinoma, carcinoma with neuroen-
docrine differentiation as small cell carcinoma, squamous cell carcinoma, and adenoid
cystic carcinoma). Each variant has distinct histological and clinical features, leading to
different outcomes. For instance, the mucinous variant tends to have a more favourable
prognosis, with an approximately 80% 10-year survival rate, while the neuroendocrine
variant has a poorer prognosis, with less than 10% survival at 10 years [39].

Typical acinar adenocarcinoma is characterised by glandular structures with a luminal
phenotype, lacking basal cells and basement membrane layers. The diagnosis of typical
acinar adenocarcinoma is confirmed in pathological practice by identifying AMARC+/P63-
gland pattern using immunohistochemistry [97]. New tissue markers associated with
prostate cancer, such as PCA3, DLX1, and HOXB6, as well as hypermethylated genes like
GSTP1, APC, RASSF1, and copy number variations, have been identified and used in the
development of new diagnostic tests based on molecular changes in prostatic secretions
collected in the urine [98–101]. However, it is important to note that typical prostatic
adenocarcinoma exhibits molecular heterogeneity [102–104]. In addition, gene expression
profiling studies have identified distinct molecular subtypes of prostate cancer, including
acinar and non-acinar subtypes [94,105,106]. The acinar subtype, characterised by glan-
dular structures resembling normal prostate tissue, is the most common. In contrast, the
non-acinar subtype lacks typical glandular structures and is often associated with more ag-
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gressive disease behaviour, higher Gleason scores, and poorer clinical outcomes compared
to the acinar subtype [107].

Recent advances in genomic profiling have further subdivided primary prostate
cancers into subgroups based on their genetic and epigenetic profiles [108–112]. The main
subgroup consists of erythroblast transformation-specific (ETS) fusion-positive tumours
(59%), resulting from a fusion between androgen-driven genes (TMPRSS2, SLC45A3)
and embryogenic/oncogenic genes (ERG, ETV1/4, FLI1) [113,114]. These fusion-positive
tumours, in particular TMPRSS2-ERG fusion-positive tumours (46%), often exhibit PTEN
deletion and demonstrate upregulation of HDAC1 which is involved in the regulation of
the AR. These tumours also show upregulation of NPY and PLA2G7, which are involved
in cell growth, migration and invasion, along with downregulation of AZGP1, known
to play a role in lipid metabolism [115–118]. Although these fusions are predominantly
associated with the common acinar adenocarcinoma, they have also been detected in rare
variants [119]. Interestingly, in prostate cancer, harbouring androgen dependent fusion
genes, such as TMPRSS2-ERG, the AR switches from an antiproliferative to an oncogenic
gene [113].

Other genetic alterations have been observed in adenocarcinoma, such as PTEN, AR,
and SPOP [120,121]. PTEN plays a crucial role in regulating the phosphatidylinositol
3-kinase kinase (PI3K)- protein kinase B (AKT) signalling pathway, which controls cell
growth, survival, and metabolism. PTEN is also known as a tumour suppressor gene
in prostate cancer, and its loss or inactivation is associated with patterns of increased
tumour aggressiveness in localised prostate cancer [122,123]. AR is a critical driver of
prostate cancer, playing a key role in the growth and survival of cancer cells. Alterations
in AR signalling, such as AR amplification, mutations, or ligand-independent activation,
are frequently observed. Constitutively active variant ARs are also found in prostate
cancer [124–126]. SPOP is an E3 ubiquitin ligase with mutations accounting for 11% of cases,
which affect protein degradation and influence the development of adenocarcinoma [108].
Additional genetic alterations include FOXA1 and IDH1 mutations, found in 3% and 1% of
cases, respectively [108].

Similar to acinar adenocarcinoma, rare variants of prostate cancer involve several
genes in their development and progression. TP53 mutations are commonly found in
small cell carcinoma of the prostate, contributing to its aggressive nature [104,127]. Cribri-
form patterns can be further classified based on the proportion of cancer cells exhibiting
PTEN-loss and PD-L1 overexpression [128]. Genes such as AR, ERG, FOXA1/2, MUC16,
RB1, CDH1, BRCA2, and TP53 have also been involved in different variants of prostate
cancer [129–131]. However, the molecular mechanisms underlying these rare variants are
still poorly understood despite extensive research.

2.4. Gene Expression Associated with Prostate Cancer Outcomes

Nowadays, histopathological patterns are well recognised to play a crucial role in
determining the management approach for early-stage prostate cancer [132]. However,
certain patterns such as large cribriform or intraductal patterns are not recommended for ac-
tive surveillance due to their association with a higher risk of disease progression [133–135].
Rare events like BRCA2 germline mutations, which are known to have a worse prognosis,
also exclude patients from active surveillance management [136]. The management ap-
proach of prostate cancer is complex, as exemplified by TMPRSS2-ERG, a key player in the
initial development of prostate cancer [137], which is not correlated with the progression
of the disease to its life-threatening stage. Conversely, molecular events linked to BRCA2,
TP53, RB1, and AR become more frequent as prostate cancer progresses from the metastatic
stage to the castration-resistant stage, indicating their involvement in the later stages of the
disease [138] (Figure 4).
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Figure 4. Molecular events associated with prostate cancer progression. This figure illustrates the
changing landscape of molecular events in prostate cancer as it progresses from localised to metastatic
to castration-resistant stage.

Recently, genomic profiling has emerged as a valuable tool in prostate cancer prognosis
and therapeutic decision-making, which may help to decipher the progression of prostate
cancer [139,140]. It provides a molecular dimension that complements the traditional
histopathological classification. Genomic prognostic signatures based on transcriptomic
profiles have been developed to provide clinicians and patients with more confidence in
selecting between active surveillance or radical therapies in the early stages of the dis-
ease [141]. These genetic signatures encompass biological processes that may play a central
role in tumour initiation and progression. For example, the Prolaris® test [142,143] focuses
on genes associated with proliferation, providing insights into the tumour’s growth rate.
On the other hand, tests like OncotypeDx® [144,145] or Prostadiag® [120] incorporate multi-
functional gene patterns, including proliferation, differentiation, androgen responsiveness,
epithelial-mesenchymal transition, and the presence of cancer-associated fibroblasts, to
provide a more comprehensive assessment of the tumour’s behaviour. In particular, the
Prostadiag® signature has been extensively studied [120], wherein three distinct subgroups
of tumours based on gene expression patterns have been found (Figure 5). The first sub-
group (S1) comprises aggressive tumours (TMPRSS2-ERG+) often characterised by PTEN
deletion or TP53 deficiency, indicating a higher risk of disease progression. The second
subgroup (S2) consists of tumours (TMPRSS2-ERG+) with a low risk of progression, with a
likelihood of less than 10%. The third subgroup (S3) is enriched with SPOP mutations or
SPOPL deletions, as well as hypermethylated tumours showing decreased expression of
the WNK2 gene and overexpression of EZH2. This subgroup indicates an intermediate risk
of aggressiveness (between S1 and S3) for disease progression.
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2.5. Gene Expression According to Key Prostate Cancer Signalling Pathways

One of the key signalling pathways involved in prostate cancer is the AR pathway [146–148].
The AR is a transcription factor playing a fundamental role in regulating gene transcription
upon binding to androgens. Its activity involves intricate interactions with other transcription
factors, nuclear translocation, and binding to response elements, resulting in both genomic
and non-genomic activities [149]. In the context of prostate cancer, the dysregulation of the AR
signalling pathway leads to increased AR activity and the expression of genes that promote tumour
growth [146–148]. These modifications arise from various mechanisms, including amplification
or mutations in the AR gene, alterations in co-regulatory proteins, and abnormal activation of
downstream signalling molecules.

The AR protein is predominantly expressed in the luminal epithelial cells of the prostate [150].
In the luminal layer, the AR pathway maintains differentiation and secretion functions and
blocks the cell cycle [151]. Ligand binding induces conformational changes that liberate the
AR from heat shock proteins and expose its ligand-binding domain, which contains a nuclear
localization signal [152,153]. The ligand-bound AR subsequently forms dimers and undergoes
phosphorylation, which are translocated to the nucleus. Within the nucleus, the AR binds to
specific elements of the androgen response on DNA and recruits coregulators or coactivators such
as FOXA1, GATA2, NKX3-1, and HOXB13 [154–158]. In consequence, the transcription of targeted
genes (such as KLK2, KLK3, TMPRSS2, CAMKK2, CDH2, SCL43A1, and FKBP5), playing
pivotal roles in various biological functions such as tumour progression, cell cycle regulation,
glycosylation, calcium metabolism, and lipid metabolism, is enhanced [157–160]. AR can also
interact with other proteins, such as HES6 and E2F1 [161], during castration resistant conditions,
and can also repress gene expression. In fact, by collaborating with EZH2-mediated repressive
chromatin remodelling, the AR facilitates the repression of target genes [162].

The WNT/β-catenin pathway also plays an essential role in prostate cancer, influenc-
ing cell proliferation, invasion, and stem cell-like properties [163,164]. Although WNT-1
is generally found in low levels in primary prostate epithelial cells, its upregulation has
been observed in lymph nodes and bone metastases [165]. Disruption of this pathway
can result from genetic mutations or altered expression of key components, including
β-catenin or APC. Mutations in APC and CTNNB1 have been identified in up to 22% of
castration-resistant prostate cancers [166,167]. Interestingly, stromal cells release WNT
proteins that can activate the WNT signalling pathway in tumour cells [163,168–170]. An
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important downstream target of this pathway is FOXA2, whose induction is essential for
bone metastasis development in prostate cancer [171].

The PI3K/AKT/mammalian target of rapamycin (mTOR) leads to the increased ex-
pression of genes involved in cell proliferation, survival, and metabolism. Furthermore,
it contributes to the development of resistance to androgen deprivation therapy [172].
Dysregulation of the PI3K/AKT/mTOR pathway is frequently observed in prostate cancer,
with up to 42% of primary tumours and 100% of metastatic samples showing abnormalities
in this pathway [138,166,167,173,174].

The RAS/mitogen activated protein kinase (MAPK) cascade transduces extracellular
growth signals through transmembrane receptors to regulate gene expression and cellu-
lar functions [175,176]. It is frequently deregulated in cancer, including prostate cancer.
The cascade involves activation of RAS and the rapidly accelerated fibrosarcoma (RAF)/
mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) sig-
nalling pathway, leading to transcription of target genes such as MYC and cFOS.

Feedback loops and interactions between components enable cross-regulation within
the cascades. A complex interplay unfolds between the PI3K/AKT/mTOR pathway and
other oncogenic signalling cascades, including AR, MAPK, and WNT pathways, which
further promotes the growth of prostate cancer and contribute to drug resistance [172,177].
These pathways interact and regulate each other.

Figure 6 presents a summary of this section, illustrating how the expression of genes
in benign and adenocarcinoma prostate tissue relates to the Gleason Grade Group. The
analysis is performed using principal component analysis.
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Figure 6. Principal component analysis reveals gene expression patterns in benign (N = 67) and
adenocarcinoma (N = 104) prostate tissues. The more the gene is expressed, the closer it is to the
edge. The highly correlated genetic expressions are close. The ‘aggressivity’ variable is defined by
the D’Amico clinical aggressiveness score [91]. The coloured circles on the edge indicate the tissue
compartments where the genes are expressed. The coloured boxes indicate the functional cells or
subtypes where the genes are expressed. ISUP-1: Gleason score 6; ISUP-2 or 3: Gleason score 7;
ISUP-4 or 5: Gleason score 8, 9 or 10.
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3. Active Surveillance and Early Intervention

This review highlights the importance of considering not only the anatomical and
histopathological features, but also functional characteristics. The complex nature of
prostate cancer, with its multi-stage development and multiple origins, complicates the
initial assessment of aggressiveness in the early stages. Importantly, a biopsy sample alone
does not provide a complete representation of the overall aggressiveness of the disease.
Furthermore, the small amount of tumour tissue obtained during biopsies, often associated
with potentially indolent prostate cancer, can limit the use of relevant biomarkers and
signatures of aggressiveness in clinical practice.

Active surveillance is considered an appropriate option for patients diagnosed with
low-risk or favourable intermediate-risk prostate cancer [178,179]. This approach is used
when the potential benefits of immediate treatment, such as surgery or radiation therapy,
may not outweigh the risks and side effects associated with interventions. By opting
for active surveillance, patients can avoid unnecessary treatments and their potential
complications [6,10,180,181].

The primary goal of active surveillance is to closely monitor the progression of prostate
cancer over time, using regular tests such as PSA levels, digital rectal exams, and periodic
biopsies. This approach allows clinicians to assess changes in the aggressiveness and growth
of the cancer, providing valuable information to determine if and when active treatment
should be initiated. However, active surveillance without any treatment potentially allows
cells to acquire new molecular changes after mitosis, leading to a sudden increase in
disease aggressiveness.

During the initial phase of prostate cancer, clinicians rely on the examination and
classification of the disease based on its histopathological features, a particularly useful
method for indolent prostate cancer. The definition of indolent prostate cancer encompasses
specific criteria defined as (1) a stage termed T1cN0M0 indicating a localised tumour which
is not spreading to lymph nodes or distant areas, (2) a low tumour volume estimated to be
present in two or fewer biopsy cores with 20% or less tumour involvement in each core,
(3) a low Gleason score below 7 without pattern 4 involvement, and (4) a low level of PSA
below 10 ng/mL. These criteria form the basis of the active surveillance concept [182].

Despite this well-established stratification, accurately determining the aggressiveness
of focal or multifocal prostatic neoplasia during diagnosis and follow-up can be challenging.
Indeed, the differences between indolent cancers that may not progress significantly, and
cancers that may present a greater risk, remains elusive.

The need for better prognostic factors for patients on active surveillance is crucial,
considering the drawbacks associated with this approach [6]. Despite surveillance involving
PSA levels, Magnetic Resonance Imaging (MRI), and repeat biopsies, accurately assessing
disease progression remains challenging. Interpreting PSA levels and PSA doubling times
becomes particularly difficult in the presence of benign prostate hypertrophy [20,183]. It is
therefore key to identify the most reliable indicators likely to improve therapeutic decisions,
by enabling a more in-depth understanding and alignment of the tumour phenotype with
its genotype [16,17,103].

The role of PSA as a diagnostic and predictive tool for prostate cancer is much de-
bated [184]. This emphasises the crucial necessity for novel molecular markers that can
effectively anticipate outcomes and, by extension, provide guidance for therapeutic deci-
sions. Significant progress has been made in prostate cancer biomarker research in recent
years. Promising new molecular markers are actively explored to improve the accuracy
and specificity of prostate cancer diagnosis and surveillance [185,186]. For instance, studies
have investigated the utility of various genetic markers, such as specific gene mutations and
alterations in gene expression patterns, as potential indicators of prostate cancer presence
and progression. Additionally, investigations into non-coding RNAs, such as microRNAs,
have unveiled their potential as diagnostic biomarkers due to their involvement in cancer-
related processes. Moreover, cutting-edge technologies to detect circulating tumor DNA
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and RNA in the form of liquid biopsies, could provide a minimally invasive method for
monitoring disease status [187].

The integration of multi-omics data, including transcriptomics and proteomics, is
contributing to the identification of comprehensive biomarker signatures that could rev-
olutionise the assessment of prostate cancer. As these diverse biomarkers continue to
undergo rigorous validation and clinical trials, they hold the promise to significantly im-
pact the criteria and practices underlying current approaches to active surveillance for
prostate cancer.

Reversibility of Low-Risk Prostate Cancer and Super-Active Surveillance

In parallel with active surveillance, the concept of secondary prevention based on
reducing AR function has emerged [20]. The aims of secondary prevention are to detect
and treat or slow existing prostate cancer lesions at an early stage before they cause signifi-
cant morbidity. The corollary hypothesis is that early prostate cancer lesions resistant to
secondary chemoprevention based on AR reduction are suspected of harbouring molecular
events (stem cell-like) leading to metastatic stages and lethality. As an example, a functional
classification of prostate cancer based on response to androgen deprivation therapy (ADT)
in the early stages has been proposed to identify potentially aggressive disease (persistence
of neoplastic lesions after reduction of AR activity) [19,20,22]. On normal prostate acini,
chemical castration induces apoptosis of the luminal layer cells (AR+), but basal layer cells
(AR−) are constitutively resistant to castration (Figure 7). This approach, applied to the
management of prostate cancer, makes it possible to identify early prostate cancer lesions
capable of resisting the reduction in AR function like normal basal cells.
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Figure 7. Comparative analysis (hematoxylin-eosin saffron) of a non-tumour prostate tissue (left)
and a prostate tissue after androgen deprivation with a luteinizing hormone-releasing hormone
(LHRH) analogue (‘chemical castration’; middle), revealing the lasting presence of basal cells and the
disappearance of luminal cells after treatment. Primary localised prostate cancer (initially ISUP-2)
resistant to castration (right). These images were generated from tissue obtained during the follow-up
(prostate biopsy) of patients included in our previous study [21].

In advanced prostate cancer, initial treatment incudes measures primarily for palliative
purposes [188]. However, intriguing findings from animal models suggest that androgen
deprivation may also have potential in the treatment of precancerous lesions and even small
tumours [189,190]. This potential benefit challenges the idea that ADT must be restricted
to a palliative measure. Several clinical reports have further highlighted the primary or
secondary preventive effects of 5-alpha reductase inhibitors (dutasteride or finasteride),
enzymes that convert testosterone into dihydrotestosterone, in localised prostate cancers
with a well-differentiated (Gleason 6) low-volume profile. The Reduction by Dutasteride
of Prostate Cancer Events (REDUCE) trial [191] and the Prostate Cancer Prevention Trial
(PCPT) [192–194] demonstrated the effectiveness of these inhibitors in reducing the inci-
dence of low-grade prostate cancer, which is admittedly of questionable benefit. However,
the notion is further supported by studies showing that androgen depletion for three
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months prior to radical prostatectomy can result in tumour burnout (stage pT0), high-
lighting the potential of androgen deprivation in preventing cancer progression [195]. In
addition, long-term follow-up studies of participants in the PCPT yielded promising results,
suggesting that finasteride reduces overall prostate cancer incidence by approximately
one-third [196]. Similarly, the Reduction by Dutasteride of Clinical Progression Events in
Expectant Management (REDEEM) randomised controlled trial revealed that androgen
modulation with dutasteride delayed disease progression in men on active surveillance for
low-risk prostate cancer [19].

Another pilot study examined the effects of secondary chemoprevention within three
months of androgen depletion using leuprolide acetate as an alternative to active surveil-
lance for low-risk prostate cancer. In this study, early ADT reversed a subset of 45% of
low-risk prostate cancer lesions [21]. This suggests that the response to transient ADT could
be used as a stratification tool to assess the aggressiveness and persistence of neoplastic
lesions. Lesions that persist after three months of androgen deprivation may be considered
aggressive and warrant radical therapy, such as surgery or radiotherapy [195].

More recently, Shore et al. reported a reduction of almost 50% in the risk of prostate
cancer progression compared with active surveillance using two years of monotherapy
with enzalutamide, an AR signalling inhibitor, for low and intermediate risk localised
prostate cancers [22].

Altogether, these clinical reports support the hypothesis that a subset of early-stage
prostate cancers can be reversed through AR disruption. The identification of exceptional
responses to antiandrogen therapies in ETS fusion-negative tumours with SPOP/SPOL
mutation/deletion goes further and suggests a specific profile of early-stage prostate cancer
patients which may benefit from AR pathway disruption therapy [197].

4. Concluding Remarks

In this review, we explored the molecular anatomy of prostate cancer and its relevance
to the concept of active surveillance as a management strategy for early prostate cancer. We
discussed the evidence for its effectiveness in carefully selected patients, highlighting the
potential benefits of avoiding unnecessary treatment-related side effects and preserving
quality of life.

Despite the unequivocal advances made in implementing active surveillance, there are
still gaps in our understanding of the biology of prostate cancer and its implications for risk
stratification and disease progression. Molecule-based assessment tools need to be further
developed and validated, and it needs to be determined whether the origin of cell types
can explain indolent or lethal prostate cancer outcomes. By integrating genomic, proteomic,
and phenotypic models, as well as functional approaches based on drug response, we can
improve our ability to predict individual patient outcomes. This could help identify those
who benefit most from active surveillance and enable targeted interventions for those at
higher risk of disease progression.
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