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Abstract: The analysis of metabolite mediators has allowed a broader understanding of disease mech-
anisms. Experimental evidence indicates that metabolic rewiring is a key feature of inflammatory cells
to restore tissue homeostasis upon damage. Over the last two decades, next-generation sequencing
techniques have offered the possibility of looking at the genome-wide effect of the exposure of inflam-
matory cells to external stimuli. During gout flares, monosodium urate crystals activate a distinct
metabolic profile and inflammatory transcriptional program in inflammatory cells. The extracellular
signals are transduced through distinct signalling pathways, which are regulated by non-coding RNA
and DNA sequences, and modification of histones. During response to inflammatory stimuli, changes
in the abundance of metabolic mediators can regulate the activation of histones and of chromatin
remodellers. The interplay between metabolic changes by MSUc, the regulation of epigenetic changes
and the activation of transcription factor networks in inflammatory cells remains unknown. A better
understanding of the interplay between metabolites and how it alters inflammatory response may
provide novel insights into disease mechanisms during gout. In this review, we aim to provide a
deeper understanding of the current view of how metabolic deregulation could alter the epigenetic
landscape of inflammatory cells during gout.
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1. Introduction

Over the last five decades, the working hypothesis has been that most illnesses have
a genetic disorder in their origin [1–3]. Vigorous efforts in large-scale, population-wise
studies have aimed to find gene susceptibility to disease by genome-wide association
studies (GWAS). Even though GWAS have generated essential insights to understand the
underlying mechanisms of some diseases [4,5], they have resulted in only a few suscep-
tibility genes being identified [6,7]. This indicates that additional factors such as chronic
environmental causes [8–10], an altered epigenome, and the contribution of metabolites
and microbiome could take part in the onset and progression of human diseases [8–10].

Gout is the most common inflammatory arthritis worldwide, and its incidence is
rising in developed and underdeveloped countries [11]. Gout is caused by the deposition
of monosodium urate crystals in the joints in patients with persistent hyperuricaemia
(HU) [12–16]. Besides the local clinical manifestations in the joints, gout is associated
with many other systemic complications, from renal disease [17,18] to cardiovascular
disease [19–22], diabetes [23], and metabolic syndrome [24,25]. Since the deregulation of
urate metabolism is at the heart of gout, it is vital to understand genetic conditions [26,27]
and environmental or behavioural exposures such as diet [28–33] that modify blood urate
levels and underlying molecular mechanisms [28,29,31].
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Together with the acute inflammatory reaction, gout attacks are accompanied by an
altered local and systemic metabolomic profile [34–36]. Diverse significantly dysregulated
pathways have been described in individuals with hyperuricaemia and patients with gout
compared to normouricaemic controls, among which arginine metabolism [37] and other
amino acids [38] appeared to play a critical role. Lipid and carbohydrate metabolism are
other proposed dysregulated pathways [39,40]. Finally, a significant increase in leukotriene
B4 (LTB4) in plasma associated to an increased transcriptional level of 5-lipoxygenase in
whole blood cells was described in patients with acute gout flares [41].

Metabolites are the substrate, intermediate, or final products of metabolic reactions
that drive the function of a given cell in a particular time and context. Therefore, metabo-
lites provide essential information about the connection between gene expression and the
environment, and, as such, they are elegant disease biomarkers [42]. Over the last decade,
metabolomics has extensively characterized metabolites and metabolic pathways in many
biological systems, providing novel opportunities to understand disease mechanisms and
untangle the cause of complex diseases such as cancer [43,44], diabetes [45], cardiovas-
cular [46–48], and other types of inflammatory arthritis [49–51]. In addition, it has been
suggested that the metabolic deregulation observed during gout could contribute to kidney
and cardiovascular disease [24,52,53]. Metabolomics offers, combined with other omics
(genomics, transcriptomics, proteomics), an increasing number of biomedical applications,
from disease diagnosis to patient monitoring, personalized drug treatments, and predicting
drug response [54]. Recently, the application of machine learning to perform automated
identification and quantification of novel metabolites has provided a road map of metabolic
deregulation in various biological scenarios [55,56]. In this Review, we will provide a
general overview of how metabolic changes affects histone lactylation and acetylation
macrophages during response to external stimuli. We also explain how metabolic changes
affect AP-1 transcription factor binding in macrophages by MSUc. Finally, we will present a
hypothetical novel mechanism of inflammation resolution by changes in lipid metabolism
during gouty inflammation by MSUc.

2. From Metabolomics to Epigenetics and Transcription Factor Binding: Coupling
Environmental Changes to Molecular Phenotypes

The biochemical actions of metabolites go far beyond their role in biosynthesis and
bioenergetic processes. In the last decade, metabolomics has shed light on how metabo-
lites alter gene expression and contribute to dictating biological phenotypes [54]. The
well-characterized role of metabolites in regulating the epigenetic landscape of embryonic
stem (ES) cells [57–60] was followed by an increasing interest in how metabolites alter the
immune cell phenotype, also named immunometabolism. The field of immunometabolism
has emerged as a critical tool for understanding how metabolic changes can modulate im-
mune cell response [61–63]. Moreover, we propose that the connection between epigenetics
and metabolism will provide new avenues to understand disease predisposition and to
develop personalised treatment [64,65]. The assembly of eukaryotic genomes is accom-
plished by a complex of octamers of histones that bind to the DNA. The segment of DNA
wrapped around the histone octamer in the nucleosomes presents a barrier for the binding
of transcription factors (TFs), transcription initiation complexes, and other transcriptional
regulators. Therefore, the interaction of TFs with histone modifications plays a crucial role
in integrating a finely tuned gene expression program [66–68]. Some post-translational
modifications of histones and epigenetic regulators impact the inflammatory reaction dur-
ing response to external stimuli [69,70]. For instance, whereas genome-wide remodelling
of acetylation of lysine 27 of H3 (H3K27ac) is seen specifically in distal regions, changes
in methylation of lysine 4 of H3 (H3K4me3) are mainly detected in genomic regions close
to the transcription start site and regulate macrophages’ response to microenvironmental
signals [69–73]. During the last decades, the development of next-generation sequencing
(NGS) techniques has allowed profiling the histone landscape and transcription factor
binding genome-wide to understand the dynamic mechanism of gene expression during
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homeostasis and disease [74,75]. In addition, NGS techniques have allowed an advance
which links genetics with environment and disease, revolutionizing the way we carry out
science [76,77].

Macrophages represent an elegant model for understanding histone dynamics, tran-
scription factor recruitment, and changes in gene expression during signal transduction
by environmental signals [69,78,79]. These environmental signals are integrated with in-
tracellular signalling pathways that regulate non-coding DNA regulatory elements (RE),
termed enhancers, and promoters, to control macrophage phenotypes. The accessibility
of DNA binding sites in the regulatory elements controls the ability of TFs to produce a
spatiotemporal-specific and context-specific transcriptional output. Macrophage pheno-
types are regulated by activation of distinct inflammatory programs determined by the
response of various TF to external signals from the cellular context [69,78,79].

2.1. Histone Lactylation Contributes to Establishing an Inflammation Resolving Program
in Macrophages

In the immunometabolism field, there has been emerging interest in understanding
the molecular consequences of metabolic imbalance in regulating histone activity through
changes in post-translational modifications (PTMs) [80]. Histone lactylation is one of
the most compelling cases of epigenetic modification by changes in metabolic balance in
macrophages. The Warburg effect was first described in cancer cells, where glycolysis
is highly upregulated; therefore, cancer cells produce large amounts of lactate [81–83].
Initially, lactate was considered a by-product of the glycolytic activity of the cell. However,
more evidence suggests that lactate is involved in various cellular processes in health and
disease [84–86], including activating the Krebs cycle [87,88] and acting as an extracellular
signalling molecule allowing the intercommunication of neighbouring cells [89]. In 2019,
Zhang and colleagues demonstrated that lactate could modify histones in macrophages,
a process named histone lactylation [90]. During the response to a pro-inflammatory per-
turbation, macrophages produce larger amounts of lactate that, among other molecular
consequences, leads to histone lactylation over a subset of inflammatory genes associated
with establishing an anti-inflammatory gene expression program and genes related to facil-
itating the resolution of inflammation [90]. Zhang’s work has been followed up by other
studies supporting the hypothesis that dynamic histone lactylation by lactate is a hallmark
of metabolic rewiring and a crucial mechanism of gene expression in macrophages [91,92].
Interestingly, histone lactylation is not observed over the promoter regions of inflammatory
genes and does not alter the expression of cytokines and other proinflammatory genes,
indicating specificity for a subset of anti-inflammatory genes. The current view is that to
react against an inflammatory insult the cells need to use glucose via anaerobic glycolysis
to activate an inflammatory gene expression program at early time points. The sustained
activation of glycolysis leads to increased intracellular lactate levels, which induces lacty-
lation of the histones recruited over the promoter of anti-inflammatory/resolution genes.
Histone lactylation is a hallmark of an anti-inflammatory phenotype in macrophages that
establishes resolution of inflammation. Importantly, we and others have demonstrated
that stimulation of macrophages with MSUc leads to increased glycolytic metabolism,
including higher intracellular lactate levels [34–36]. Thus, histone lactylation to activate
anti-inflammatory genes could be part of the underlying mechanism observed during
gout flares that leads to resolution. In addition, we speculate that the imprinting of an
anti-inflammatory epigenetic and transcriptomic signature during gout flare must occur to
avoid the apoptosis of inflammatory cells and the destruction of the synovial membrane
of the joint tissue MSUc and promote resolution of the flare. This mechanistic role for the
so-called “reparative inflammation” has been extensively studied in highly proliferative
tissues such as gut and liver epithelial cells [93], but common molecular behaviour high-
lights its importance in other tissues. As they are involved in any inflammatory disease,
there has been great interest in understanding the role of innate immune cells, mainly
macrophages, in regulating resolution of inflammation [94–97]. Therefore, we hypothesise
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that histone lactylation would have a crucial role in regulating macrophage response to
MSUc. However, supporting experimental data are required to confirm this hypothesis.

2.2. Histone Acetylation Takes Charge of the Dynamic Enhancer Activation in Macrophages in
Response to External Stimuli

Besides glycolysis, another important metabolic pathway is the Krebs cycle. The
Krebs cycle is fuelled by acetyl-CoA produced from glucose or fatty acids and can lead to
acetylation. Interestingly, MSUc leads to increased glycolysis, with accumulation of citrate
and succinate [35], which together with itaconate can modify proteins in the context of
immunity and inflammation [98,99]. For instance, itaconate was shown to modify cysteines
on a range of target proteins, with the modification being linked to a functional change [98].
In addition, acetyl-CoA can produce acetylation and deacetylation of histones and it rep-
resents one of the most widely used histone modifications to understand the epigenetic
activation of macrophages during inflammation [69,70,79]. Two main protein families,
the histone acetyltransferases (HATs) and the histone deacetylases (HDACs), dynamically
and reversibly control the acetylation state of histones and, in consequence, are important
regulators of the context-specific responses of macrophages [100], and help to decipher
molecular phenotypes of macrophages during disease. This dynamic epigenetic response
has been largely studied in enhancer regions by using H3K27ac as a read-out of enhancer ac-
tivity in the context of macrophage activation by TLR agonists and other ligands [70,78,101],
but the enhancer landscape induced by MSUc in macrophages remains unknown. In vitro
studies of mouse macrophages indicate that most enhancers are recognised by a combina-
tion of TFs that collaboratively interact with each other to bind to specific DNA sequence
motifs in regulatory regions of the genome. Of these TFs, the current view is that the
transcriptional output of a repertoire of enhancers in macrophages is dictated by the contri-
bution of lineage-determining transcription factors (LDTFs), including PU.1 and the AP-1
family, and signal-dependent transcription factors (SDTFs), including nuclear receptors
(NR) and NFKB and interferon regulatory factors (IRFs), among others [78,79,102]. Of note,
interestingly, whereas the promoter of genes induced by LPS in macrophages is enriched in
IRFs, NFKB and STAT motifs, the promoter of genes induced by MSUc is enriched in DNA
motifs for AP-1, MITF/TFE, NR, and circadian clock regulators, indicating that a different
combination of TFs takes charge of the epigenetic activation of macrophages by MSUc [35].
Moreover, the genes uniquely upregulated by MSUc belong to signalling pathways related
to NRs signalling and transcription and activation of circadian clock regulators. However,
this in silico prediction of putative binding of TFs to the DNA requires empirical validation
to identify the motif enrichment in regions of open chromatin with increased enhancer
activity. However, the changes in the epigenetic landscape of macrophages by MSUc and its
contribution to altering inflammatory programs of gene expression remain to be elucidated.

2.3. Differential Recruitment of Transcription Factor Binding to Genomic Regulatory Regions
Regulates the Response of Macrophages to MSUc: The Case of the AP-1 Family

The integration of histone landscape and TF binding by ChIP-Seq analysis with gene
expression by RNA-Seq is fundamental to dissecting macrophage cell phenotypes during
gout flares. Our work and that of others demonstrate that in macrophages signalling
pathways regulated by inflammatory molecules such as MSUc during gout flares are
coupled to a battery of TFs whose ability to induce specific gene expression programs is
dictated by the accessibility (“openness”) of the chromatin and the presence of particular
motifs in the macrophage DNA genome [35,69,103]. Our in silico analyses of DNA motifs
define the putative transcription factor families to regulate the transcriptional output of
macrophages and offer candidates to understand the interplay between MSUc and the
control of macrophage function. In line with this, we found that the promoter region
of genes induced by MSUc in unprimed bone marrow derived (BMDM) mouse and hu-
man monocyte-derived (MDM) macrophages are mainly enriched in motifs for activator
protein 1 (AP-1). The AP-1 is a dimeric family that includes members of the JUN, FOS,
activating transcription factor (ATF), and musculoaponeurotic fibrosarcoma (MAF) protein
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families [104,105]. The different dimer compositions of AP-1 complexes determine the
biological output of the process controlled by AP-1 [106,107]. Historically described during
oncogenic transformation [104,108,109], AP-1 members are abundant in macrophages, reg-
ulating molecular phenotypes and contributing to macrophage function. Increased JUN
upregulation and phosphorylation by MSUc via JNK and increased JUN recruitment to
the promoter of metabolic genes are required for the response of macrophages to MSUc.
Molecular or pharmacological reduction in JNK-JUN activity modifies the epigenetic land-
scape; it ameliorates the induction of metabolic genes and metabolic changes, including a
reduction in lactate, indicating that JUN’s role during gouty inflammation by MSUc goes
beyond its role in activating an inflammatory gene expression program. The sustained
activation of JUN and JNK and the altered metabolic program when JNK-JUN activity is
compromised could indicate that JUN and its downstream target genes are involved in the
later stages of the response of macrophages to MSUc by regulating metabolic mediators.

2.4. Epigenetic Changes by Higher Soluble Urate Levels in Myeloid Cells

Hyperuricaemia is the main risk factor for gout flares [12–16]. High levels of urate
induce IL1b and IL6 production by monocytes and reduced levels of IL-1 receptor an-
tagonist (IL-1Ra) [110]. Moreover, ChIP-Seq data on H3K27ac and H3K4me3 show that
some inflammatory genes such as Il1a, Il1b displayed increased enrichment in H3K27ac
and H3K4me3 by urate [110], which indicates that soluble urate can alter the epigenetic
landscape of inflammatory genes in myeloid cells [111]. Together with changes in histone
modifications, elevated serum urate alters the DNA methylation profile of circulating
inflammatory cells including the glucose transporter SLC2A9, the amino acid transporter
SLC7A11 and the amino acid biosynthesis gene PHGDH [112]. Interestingly, SLC2A9 is a
known urate transporter that regulates serum urate concentration and excretion during
gout [113], indicating that epigenetic gene deregulation may provide information about
genetic traits in hyperuricaemia and gout.

3. Lipidomics and Gout, Signalling Pathways in the Resolution of Inflammation
by Macrophages

The deposition of MSUc in the joints causes a self-limited, acute inflammatory reac-
tion. The effect MSUc during gouty inflammation offers a suitable system to understand
anti-inflammatory programs of gene expression in macrophages. The original view was
that biological systems resolve inflammation by diluting proinflammatory mediators that
eventually restore tissue function. This view has been surpassed, thanks to the work of Dr
Charles N. Serhan and others, by a more active notion where macrophages and other cell
types produce specialized pro-resolving mediators (SPMs) and other anti-inflammatory
oxylipins to counterbalance the initial wave of proinflammatory signals to prevent surplus
inflammation and subsequent tissue damage [114–119]. Even though SPMs are oxylipins
widely studied in the context of inflammation and have been primarily studied in other
inflammatory diseases, including lung disease [118,120] and cancer [121], the role of SPMs
in the resolution of gout flares remains unknown. SPMs, resolvins, protectins, and maresins
are derived mostly from alpha linolenic acid (α-LA), which is an omega-3 essential fatty
acid (EFA) from green leafy vegetables, flax and chia seeds, and walnuts. Omega-6 EFA
are generally generated by linoleic acid (LA) from vegetable oils, meats, and eggs. Some
omega-6 lipids, such as lipoxins, PGJ2, and PGB2, are also considered anti-inflammatory
molecules [122].

The central catalytic enzymes involved in the generation of STMs are phospholipases
(PLA)2 and lipoxygenases (LOX). The time course of biosynthesis and bioavailability of
SPMs dictates their molecular function to ensure a cell type and context-specific response. In
macrophages, lipoxin A4 (LXA4), protectin D1 (PD1) and resolvin D1 (RvD1) are involved
in the clearance of apoptotic neutrophils and other polymorphonuclear cells [123–125].
Regardless of the subtype, SPMs exert their biological activity upon binding with high
affinity to specific cognate receptors. Over the last years, the receptors for some of the SPMs
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have been characterized. LXA4 binds and signals through the LXA4 receptor (ALX or formyl
peptide receptor(FPR2)) [126], RvE1 through chemokine-like receptor 1 (CMKLR1) [127],
RvD1 through G protein-coupled receptor GPR32, and RvD2 through GPR18 [128,129].
Therefore, changes in EFA, an altered expression of the enzymatic cascade that bio-converts
EFA to SPMs and other anti-inflammatory oxylipins, or changes in the expression and
availability of any of the receptors will impact the activity of SPMs during the resolution
of inflammation. Interestingly, the treatment of mice with MSUc results in an increased
production of prostaglandins and other oxylipins suggesting that oxylipin metabolism
could be also involved in limiting the duration of gouty inflammation by MSUc [130,131].
Below we will review some of the mechanisms that could contribute to regulate SPM
production in macrophages during gout flares.

3.1. Phospholipases A2

Phospholipase A2 (PLA2) encompasses a superfamily of enzymes with more than
50 members, whose expression and activity dictate a cell-specific and temporal
response [132–135]. PLA2 is the first enzymatic machinery in the metabolism of SPMs.
Therefore, extensive work has been put into understanding PLA2 regulation during inflam-
matory processes in macrophages [136]. PLA2 enzymes can act as degradative, biosynthetic
(when coupled to an acetyltransferase) or as a signalling enzyme. This versatility of action,
the high degree of functional redundancy, and their dynamic expression have made the
PLA2 family challenging to ascribe to specific regulatory signalling programs. It is widely
accepted that many different mechanisms, including increased [Ca2+] [137], ceramide phos-
phate [138], phosphatidylinositol [139,140], bisphosphate [141], and phosphorylation [142]
activate PLA2. In addition, the transcription of the endogenous secretory phospholipase
A2 group IIA (sPLA2-IIA) gene is regulated by the direct binding of CCAAT/Enhancer
Binding Protein (C/EBP), NFKB, and ETS proto-oncogene TF (ETS) transcription factors
to the PLA2 regulatory region [143,144]. Interestingly, whereas Pla2g4a and Pla2g5 are
upregulated, Pla2g15 is downregulated, suggesting a role of Pla2 transcriptional regulation
in macrophages during gout.

3.2. COX and ALOX5/ALOX5AP

The next step in the formation of oxylipins associated to the resolution of inflammation
involves the conversion of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and
some products derived from AA by cyclooxygenases (COX) and lipoxygenases. MSUc
stimulates COX-2 expression in peripheral monocytes, which correlated with the synthesis
of pro-inflammatory oxylipins such as prostaglandin E2 (PGE2) and thromboxane A2
(TXA2) [145]. Leukotriene B4 (LTB4) was also relevant in the MSUc-induced maturation
of IL-1b [146]. Of interest, PGD2 and 15d-PGJ2 had an anti-inflammatory role in animal
models of MSUc-induced inflammation [147,148]. Of the genes coding for lipoxygenases,
ALOX5/Alox5 and Alox5 activating protein ALOX5AP/Alox5ap are the two most expressed
in unprimed MDM and BMDM. The significance of ALOX5/ALOX5AP during gout is
supported by a study by Luo and colleagues where after performing metabolomics of
PUFA of patients with acute gout plasma validated in two independent cohorts, they found
a higher increase in leukotriene B4 (LTB4), accounting for altered activity of lipoxygenase
5 [41]. Notably, stimulation with MSUc leads to downregulation of ALOX5 in unprimed
MDM and BMDM and downregulation of Alox5ap in unprimed BMDM [35], which is
in accordance with a negative feedback mechanism of metabolic networks to regulate
active metabolic pathways [149,150]. Importantly, ALOX5/ALOX5AP are JUN target genes,
and treatment with JNK inhibitor SP600125 ameliorates the downregulation by MSUc,
providing further evidence that ALOX5 and ALOX5AP repression by JUN could contribute
to the formation of oxylipins during gouty inflammation. Interestingly, the expression
of the main LXA4 receptor, FPR2, is downregulated in unprimed MDM stimulated with
MSUc. Of interest, besides the participation of 5-LOX in inflammation by promoting
the biosynthesis of leukotrienes, this enzyme possesses other non-canonical functions as
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transcriptional regulator in monocytic cells including the interaction with β-catenin, p53,
and chromatin [151,152]. These results provide substantial evidence to suggest a role of
signalling by LOX products and their downstream signalling during the resolution of
gout flares.

3.3. Activation of Enzymatic Pathways by Damaged Subcellular Organelles

During the early stages of the acute phase of gout flares, ingested MSUc induces the
rupture of lysosome in leukocytes and the release of the lysosomal content into the sur-
rounding medium, which is a hallmark of damage induced by MSUc [153–157]. Aberrant
lysosomal compartment leads to increased intracellular and extracellular [Ca2+] [158,159],
which can activate PLA2 to release free fatty acids that fuel the synthesis of new pro- and
anti-inflammatory oxylipins.

4. Conclusions

In this review, we have provided extensive evidence demonstrating the importance of
metabolomic analyses in gouty inflammation. Although well implemented in the study
of other pathologies, the knowledge of the metabolic contribution during the acute phase
of gout flares is relatively scarce. We have decided to focus the scope of this review
on the some of the possible epigenetic mechanisms underlying the activation of innate
immune cells, mainly macrophages, by MSUc during the acute phase of gouty inflammation.
Undeniably, other cell types are involved in regulating the response to MSUc. However,
the degree of plasticity of macrophage epigenetic phenotypes [69,79], their bona fide cell
ability to be involved in the phagocytosis of MSUc, and their involvement in the resolution
phase of inflammatory processes make macrophages an elegant target to dissect molecular
mechanisms in pursuit of novel therapeutical regimens [153]. In addition, the extensive
knowledge of the epigenetics and transcriptomics of macrophages after perturbation makes
it easier to ascribe epigenetic programs of gene expression associated with the stimulation
by MSUc.

We have placed significant emphasis on the epigenetic activation of transcriptional pro-
grams by changes in metabolite composition as in the production of specialised molecules
involved in the resolution of inflammation. Our view is summarised in Figure 1. In
summary, during gout flares, macrophages respond to MSUc, activating first a cascade of
pro-inflammatory signalling and then likely a more robust cascade engaged in the resolu-
tion of the inflammation. Whereas the “pro-inflammatory” phase enables macrophages to
recruit other inflammatory cell types, the resolution phase might activate a vital signalling
cascade to induce the phagocytosis of apoptotic cells and produce pro-resolution lipids to
restore tissue homeostasis. In our view, the activation of a pro-inflammatory program by
MSUc lies in the early activation of JNK-JUN and other AP-1 members [35]. The role of
AP-1 in activating inflammatory programs is well known, and our data demonstrate that
treatment with a JNKi ameliorates severe inflammation by MSUc in vitro and in vivo [35].

In parallel with the activation of inflammatory gene expression, we hypothesise that
in macrophages during gouty inflammation, the resolution of inflammation is regulated at
different levels. Increased lactate production through anaerobic glycolysis lactylates histone
H3 and histone H4 could open the chromatin of the regulatory regions of anti-inflammatory
genes and promote their transcription. The family of suppressors of cytokine signalling
proteins (SOCS), including Socs1, Socs3, Socs4, Socs5, and Socs7, which are upregulated by
MSUc [35], ameliorates the production of inflammatory cytokines and is a well-known
negative regulator of JNK signalling [160–163]. The SOCS gene family is an example of
many other anti-inflammatory genes induced by MSUc. Our data using a JNKi suggest that
JNK and AP-1 also regulate the levels of some metabolites [35], including lactate, possibly
through JUN binding to their promoter region, and could act as a TF effector downstream
of histone lactylation. We acknowledge that the high levels of urate in patients with
hyperuricaemia and gout can contribute to the deregulation of the epigenetic landscape
of myeloid cells during gout flares. However, given the lack of strong deregulation of
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H3K4me3 or H3K27ac enrichment in monocytes exposed to urate [110], we hypothesise
that the majority of epigenetic changes will be driven by the deposition of MSUc. On the
contrary, we hypothesise that exposure to urate will impact the capacity of myeloid cells to
respond to MSUc, priming myeloid cells to more exacerbated changes induced by MSUc.
Moreover, it has been proposed that urate can induce immune memory in inflammatory
cells [111], which is in accordance with our view of more dramatic epigenetic changes of
macrophages by MSUc during gout. The proposed mechanisms of macrophage activation
during gouty inflammation are summarised in Figure 1.
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Figure 1. Mechanisms of macrophage activation during gouty inflammation. During gout flares,
MSUc leads to a cell autonomous response in macrophages that is mediated by activation of transcrip-
tion factors (TFs) including activation of nuclear receptors (NRs) upon binding to fatty acids, AP-1
via JNK signalling, MITF/TFEB, and circadian clock regulators (Clock). The recruitment of these
TFs to genomic regions with altered histone landscape marked with histone lactylation (La), due to
increased intracellular lactate, or H3K27ac (Ac) dictates the transcriptional response of macrophages
by MSUc. On the other hand, local activation by MSUc leads to a non-cell autonomous activation
of neighbouring macrophages mediated by a yet-unknown transcriptional and epigenetic mecha-
nism. We hypothesise that the production of specialised pro-resolving mediators (SPM) by activated
metabolism of polyunsaturated fatty acids (PUFA) via arachidonate lipoxygenases (ALOX) and
intracellular calcium levels plays a crucial role in in activating a resolution program in macrophages
during gout flares. Figure created with BioRender.com.

However, perhaps the most challenging thing will be to relate metabolites to their
biological roles in regulating the response to MSUc. It is true that with machine learn-
ing techniques we have been able to narrow down the spectrum of action of a specific
metabolite, but this is an ongoing area of research and needs to be improved. Integrat-
ing metabolomics with epigenomics, transcriptomics, and proteomics could help deter-
mine the relationship between gene expression, metabolite concentration, and biologi-
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cal function. Applying orthogonal approaches, including silencing gene expression by
CRISPR-mediated knock-down, inhibiting enzymatic activity using chemical blockers or
anti-metabolites, or targeting the immune response of macrophages, could help to provide
novel mechanistic insights.
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